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Abstract: Phosphine-sulfonate based palladium and nickel catalysts have been extensively studied in
ethylene polymerization and copolymerization reactions. Previously, the majority of the research
works focused on the modifications of the substituents on the phosphorous atom. In this contribution,
we systematically demonstrated that the change of the ligand backbone from benzene to naphthalene
could greatly improve the properties of this class of catalysts. In the palladium system, this change
could increase catalyst stability and polyethylene molecular weights. In the nickel system, this change
could dramatically increase the polyethylene molecular weights. Most interestingly, the change
in the connectivity of phosphine and sulfonate moieties to the naphthalene backbone could also
significantly influence the catalyst properties.
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1. Introduction

In olefin polymerization, late transition metal catalysts have attracted much attention because
of their low oxophilicity, and correspondingly the potentials to incorporation polar functionalized
monomers into polyolefins. Among the numerous late transition metal catalysts, the Brookhart type
α-diimine Ni(II) and Pd(II) [1–14], phenoxyminato based Ni(II) [15–21] and the phosphine-sulfonate
Pd(II) catalysts [22–35] are the most extensively studied systems. It has been demonstrated that the
properties of these catalysts are very sensitive to the ligand sterics. Specifically, it has been well
established that the steric bulk on the axial positions in α-diimine systems could decrease the chain
transfer rate, and increase the polyolefin molecular weight (Scheme 1, I) [1,2,36–39]. Similarly, the steric
bulk on the axial positions in phenoxyminato (Scheme 1, II) and phosphine-sulfonate (Scheme 1, III)
systems is crucial to obtain high-performance catalysts [40–42].

The modulation of the steric effect on the axial positions directly affects the steric environment
of the metal center. In addition, the ligand backbone structure could indirectly influence the steric
environment of the metal center, and correspondingly affect the properties of the metal catalysts.
For example, different substituents on the backbone R position could greatly alter the properties
of the α-diimine Pd(II) and Ni(II) catalysts (Scheme 1, IV) [43–45]. Despite the various efforts to
modify the phosphine-sulfonate ligands, there have been very few studies on the modifications of the
ligand backbone structures [46]. Recently, our group showed that the catalyst stability and activity
could be greatly enhanced by changing the phosphine-sulfonate backbone from a benzene bridge to a
naphthalene one (Scheme 1, V) [47]. In this contribution, we hope to further improve the properties of
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the naphthalene based phosphine-sulfonate Pd(II) and Ni(II) catalysts by: (1) changing the linking
position of the phosphine and the sulfonate moieties on the naphthalene backbone; and (2) using a
sterically very bulky bi-aryl substituent on the phosphorous atom.
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The reactions of ligands L1-L3 with (TMEDA)PdMe2 (TMEDA = tetramethylethylenediamine) 
in DMSO (dimethylsulfoxide) led to the formation of the Pd(II) complexes (Pd1-Pd3) at 41–48% 
yields (Scheme 2). The reaction of ligands L1-L3 with Na2CO3 and trans-[(PPh3)2Ni(Cl)Ph] afforded 
the desired Ni(II) complexes (Ni1-Ni3) at 34–76% yields. These metal complexes were characterized 
using 1H, 13C, and 31P NMR (see Supplementary Materials, Figures S10–S20), elemental analysis and 
MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry). 
For comparison purpose, the palladium complex Pd2′/Pd2″ and the nickel complex Ni2′/Ni1″ were 
prepared according to literature procedures [48,49]. 

Scheme 1. The α-diimine, phenoxyminato and phosphine-sulfonate based olefin polymerization catalysts.

2. Results and Discussion

Literature procedure was employed to prepare the ligands [47]. First, the 2-naphthalenesulfonic
acid was converted to the toluidinium salt from the reaction with excess amount of p-toluidine
(Scheme 2, see Supplementary Materials, Experimental Sections). The corresponding lithium salt was
generated from the reaction with 1 equivalent of nBuLi, and dehydrated using a dean-stark apparatus
in refluxing toluene. Subsequently, ligands L1-L3 were obtained in 39–47% yields from the reaction
of 1 equivalent of nBuLi with the lithium salt in THF (tetrahydrofuran) followed by the addition of
R2PCl. These ligands were characterized by by 1H, 13C, and 31P NMR (Nuclear Magnetic Resonance)
spectroscopy (Bruker, Karlsruhe, Germany) (see Supplementary Materials, Figures S1–S9), elemental
analysis and Mass spectrometry (EI+, Bruker Daltonics Inc., Billerica, MA, USA).
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Scheme 2. Synthesis of the phosphine-sulfonate ligands and the palladium and nickel complexes.

The reactions of ligands L1-L3 with (TMEDA)PdMe2 (TMEDA = tetramethylethylenediamine) in
DMSO (dimethylsulfoxide) led to the formation of the Pd(II) complexes (Pd1-Pd3) at 41–48% yields
(Scheme 2). The reaction of ligands L1-L3 with Na2CO3 and trans-[(PPh3)2Ni(Cl)Ph] afforded the
desired Ni(II) complexes (Ni1-Ni3) at 34–76% yields. These metal complexes were characterized
using 1H, 13C, and 31P NMR (see Supplementary Materials, Figures S10–S20), elemental analysis and
MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry).
For comparison purpose, the palladium complex Pd2′/Pd2” and the nickel complex Ni2′/Ni1” were
prepared according to literature procedures [48,49].
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The molecular structures of Pd2 and Ni1 were determined by X-ray diffraction analysis (Figure 1;
see CIF files and Supplementary Materials, Tables S1 and S2). The geometry at both the palladium
and the nickel center is square planar with the methyl or phenyl substituent cis to the phosphine
group. Clearly, the hydrogen atom on the C15 in Pd2 and C7 in Ni1 could exert some steric influence
to the substituents on the phosphorous atom. Especially, this steric effect could be enhanced when the
substituents are bulky. Most importantly, this interaction could potentially influence the properties of
these catalysts in ethylene polymerization and copolymerization reactions.
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Figure 1. Molecular structures of: (a) Pd2; and (b) Ni1. Hydrogen atoms have been omitted for
clarity. Selected bond lengths (Å) and angles (◦) for Pd2: Pd1-C23 = 2.067(11), Pd1-P1 = 2.211(2),
Pd1-O3 = 2.143(7), Pd1-O4 = 2.131(7), S1-O3 = 1.469(8), S1-O1 = 1.436(8), S1-C22 = 1.781(9),
P1-C13 = 1.864(3), C13-C22 = 1.387(4), P1-Pd1-O32 = 91.3(1), P1-Pd1-O4 = 177.3(2), P1-Pd1-C23 = 94.7(3),
Pd1-P1-C13 = 115.5(3), S1-O3-Pd1 = 112.9(4); for Ni1: Ni1-C41 = 1.8873(15), Ni1-P1 = 2.2221(4),
Ni1-P2 = 2.2100(4), Ni1-O1 = 1.9553(11), S1-O1 = 1.4352(13), P2-C23 = 1.8309(15), P2-C17 = 1.8118(17),
P1-Ni1-O1 = 93.63(3), P1-Ni1-C41 = 88.18(5), P2-Ni1-O1 = 89.47(3), P2-Ni1-C41 = 89.62(5),
O1-Ni1-C41 = 174.92(6).

The palladium catalysts are highly active in ethylene polymerization, with activities well above
105 g·mol−1·h−1 (Table 1, entries 1–6). Catalyst Pd3 with the biaryl substituent showed almost 10-fold
increase in polymer molecular weight comparing with catalyst Pd1. The nickel catalysts are also
highly active in ethylene polymerization, with activities comparable with those of the palladium
catalysts (Table 1, entries 7–9). The palladium catalysts completely lost activity at 25 ◦C. However,
the nickel catalysts could maintain high activity at 25 ◦C. Most importantly, the polyethylene molecular
weight could be dramatically increased at lower polymerization temperature. For the case of Ni3,
molecular weight of up to 142,300 could be achieved (Table 1, entry 12). Similar with the palladium
case, catalyst Ni3 with the biaryl substituent showed much higher polymer molecular weight than
catalysts Ni1 and Ni2.

Some very interesting results were obtained from the comparisons between catalysts Pd2/Ni2
and our previously reported catalysts Pd2′/Ni2′. Catalyst Pd2 showed similar activity and similar
polymer molecular weight with catalyst Pd2′ (Table 1, entry 2 versus 13). The polyethylene molecular
weights for catalysts Pd2 and Pd2′ are much higher than that of the conventional catalyst Pd2” with the
benzene as ligand backbone. In terms of catalyst stability, catalyst Pd2 showed slightly better stability
than catalyst Pd2′, both of which are much more stable than conventional catalyst Pd2” (Figure 2).
Clearly, the change in the ligand backbone from benzene to naphthalene could significantly improve
the performance of phosphine-sulfonate palladium catalysts. However, the change in the connectivity
of the phosphine moiety and the sulfonate moiety to the naphthalene backbone does not influence the
properties of these palladium catalysts.



Polymers 2017, 9, 168 4 of 9

Table 1. Ethylene polymerization catalyzed by Pd(II) and Ni(II) complexes a.

Entry Catalyst [cat] (µmol) T (◦C) Yield (g) Activity b Mw
c Polydispersity c Tm (◦C) d

1 Pd1 10 80 2 2.0 2100 1.15 109
2 Pd2 10 80 2.4 2.4 5100 2.36 117
3 Pd3 10 80 5 5.0 27,800 2.56 129
4 Pd1 2 80 0.5 2.5 3200 2.06 114
5 Pd2 2 80 0.4 2.0 5700 2.18 124
6 Pd3 2 80 1.2 6.0 24,800 1.84 131
7 Ni1 10 80 1.9 1.9 3600 1.58 128
8 Ni2 10 80 2.2 2.2 9100 2.18 129
9 Ni3 10 80 5.7 5.7 17,500 2.04 133

10 Ni1 2 25 0.7 1.7 37,200 3.64 134
11 Ni2 2 25 0.5 1.3 58,600 1.99 135
12 Ni3 2 25 1.4 3.5 142,300 1.51 136
13 Pd2′ 10 80 2.1 2.1 4200 2.28 123
14 Pd2” 10 80 1.4 1.4 1800 1.44 115
15 Ni2′ 10 80 1.5 1.5 4100 1.46 124
16 Ni2′ 2 25 0.4 2.0 27,800 2.57 133
17 Ni1” 10 80 trace - - - -
18 Ni1” 2 25 trace - - - -
a Polymerization conditions: toluene = 22 mL, CH2Cl2 = 3 mL, ethylene = 9 atm, 80 ◦C, time = 1 h. b Activity is in
unit of 105 g·mol−1·h−1. c Determined by Gel Permeation Chromatograph (GPC) in trichlorobenzene at 150 ◦C
(see Supplementary Materials, Figures S36–S49). d Melting temperature was determined by differential scanning
calorimetry (DSC) (see Supplementary Materials, Figures S26–S35).
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In the nickel system, catalyst Ni2 showed polyethylene molecular weight twice as much as that
of catalyst Ni2′ (Table 1, entry 8 versus 14, entry 11 versus 15). This suggested that the very small
perturbations in ligand sterics could exert significant effect on the properties of the phosphine-sulfonate
nickel catalysts. Most interestingly, more dramatically differences were observed for the cases of
catalyst Ni1 versus catalyst Ni1” bearing phenyl substituent on the phosphorous atom. No isolate
solid polymer product was generated by catalyst Ni1” in ethylene polymerization at either 80 or
25 ◦C. This agrees well with literature results [9]. In contrast, catalyst Ni1 demonstrated high activity
(up to 1.9 × 105 g·mol−1·h−1), high polymer molecular weight (up to 37,200) and high melting
temperature (134 ◦C) in ethylene polymerization. Cleary, the ligand backbone structure also plays an
important role in determining the catalyst properties.
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The palladium catalysts Pd1-Pd3 can also initiate efficient ethylene/metal acrylate copolymerization,
with comonomer incorporation ratios ranging between 3% and 27% (Table 2, entries 1–6). The polymer
molecular weights were dramatically reduced comparing with those in ethylene homopolymerization.
Because of the great performance of catalyst Ni3 in ethylene homopolymerization, its properties in
ethylene/polar monomer copolymerization were also investigated. Recently, Coates et al. showed
that α-diimine nickel catalyst could mediate ethylene/methyl 10-undecenoate copolymerization
in the presence of MAO (methylaluminoxane) [50]. Our groups showed that some sterically
very bulky phosphine-sulfonate nickel catalysts could copolymerize ethylene with various polar
monomers [51]. Here, Ni3 could also achieve moderate catalytic activity, along with moderate
comonomer incorporation and high copolymer molecular weights in ethylene copolymerization
with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, entries 7 and 8). The palladium complex
Pd2” with benzene backbone showed much lower activity and copolymer molecular weight than the
corresponding complex Pd2 with the naphthalene backbone (Table 2, entries 9 and 10). Moreover, the
nickel complex Ni1” with benzene backbone is not active in the copolymerization (Table 2, entry 11).

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a.

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L Yield (mg) Activity b X c (%) Mw
d Polydispersity d

1 Pd1 9 80
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8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 

2.5 510 25 27 3600 1.58

7 Ni3 9 25

Polymers 2017, 9, 168  5 of 8 

 

entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 

1.0 500 25 0.5 124,600 2.25

9 Pd2” 9 25

Polymers 2017, 9, 168  5 of 8 

 

entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
weights in ethylene copolymerization with methyl 10-undecenoate and 6-chloro-1-hexene (Table 2, 
entries 7 and 8). The palladium complex Pd2″ with benzene backbone showed much lower activity 
and copolymer molecular weight than the corresponding complex Pd2 with the naphthalene 
backbone (Table 2, entries 9 and 10). Moreover, the nickel complex Ni1″ with benzene backbone is 
not active in the copolymerization (Table 2, entry 11). 

Table 2. Ethylene copolymerization catalyzed by Pd(II) and Ni(II) complexes a. 

Entry Catalyst P (bar) T (oC) Comonomer [M] mol/L
Yield 
(mg) 

Activity b X c (%) Mw d Polydispersity d 

1 Pd1 9 80  1.2 500 25 3 1000 1.19 

2 Pd2 9 80  1.2 340 17 5 4400 1.92 

3 Pd3 9 80  1.2 950 47 15 5500 1.55 

4 Pd1 9 80  2.5 200 10 8 1600 1.43 

5 Pd2 9 80  2.5 300 15 12 2100 1.35 

6 Pd3 9 80  2.5 510 25 27 3600 1.58 

7 Ni3 9 25  1.0 150 7.5 1.5 61,500 2.64 

8 Ni3 9 25  1.0 500 25 0.5 124,600 2.25 

9 Pd2″ 9 25  1.2 110 5.5 2.5 1950 1.95 

10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
important role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic 
than benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that 
naphthalene based ligand is electronically more withdrawing than the benzene based ligand. 
Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
the 8 position of the naphthalene backbone with the phosphine or sulfonate substituent may also 
influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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entries 1–6). The polymer molecular weights were dramatically reduced comparing with those in 
ethylene homopolymerization. Because of the great performance of catalyst Ni3 in ethylene 
homopolymerization, its properties in ethylene/polar monomer copolymerization were also 
investigated. Recently, Coates et al. showed that α-diimine nickel catalyst could mediate 
ethylene/methyl 10-undecenoate copolymerization in the presence of MAO (methylaluminoxane) [50]. 
Our groups showed that some sterically very bulky phosphine-sulfonate nickel catalysts could 
copolymerize ethylene with various polar monomers [51]. Here, Ni3 could also achieve moderate 
catalytic activity, along with moderate comonomer incorporation and high copolymer molecular 
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10 Pd2″ 9 25  2.5 80 4 6 1100 1.63 

11 Ni1″ 9 25  1.0 0 0 - - - 

a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 μmol.  
b Activity in unit of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined 
by 1H NMR spectroscopy (see Supplementary Materials, Figures S21–S25). d Determined by GPC in 
trichlorobenzene at 150 °C (see Supplementary Materials, Figures S49–S56).  

Clearly, great enhancement in the polymerization properties was achieved by changing the 
ligand backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an 
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Moreover, the bigger size of the naphthalene backbone may help to prevent catalyst deactivation 
reactions such as bis-ligation [53]. Furthermore, the potential interaction of the hydrogen atom on 
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influence the catalyst properties. This steric effect may be the key factor in the differences between 
the two sets of catalysts with different connectivity to the naphthalene backbone. 
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a Polymerization conditions: total volume toluene + polar monomer = 25 mL, catalyst = 20 µmol. b Activity in unit
of 103 g·mol−1·h−1. c Amount of polar monomer incorporated (mol %), determined by 1H NMR spectroscopy (see
Supplementary Materials, Figures S21–S25). d Determined by GPC in trichlorobenzene at 150 ◦C (see Supplementary
Materials, Figures S49–S56).

Clearly, great enhancement in the polymerization properties was achieved by changing the ligand
backbone from benzene to naphthalene (Scheme 3). Ligand electronic effect may play an important
role. 1-Naphthalenesulfonic acid (pKa = 0.17 at 298 K in aqueous solution) is more acidic than
benzenesulfonic acid (pKa = 0.70 at 298 K in aqueous solution) [52], suggesting that naphthalene based
ligand is electronically more withdrawing than the benzene based ligand. Moreover, the bigger size of
the naphthalene backbone may help to prevent catalyst deactivation reactions such as bis-ligation [53].
Furthermore, the potential interaction of the hydrogen atom on the 8 position of the naphthalene
backbone with the phosphine or sulfonate substituent may also influence the catalyst properties.
This steric effect may be the key factor in the differences between the two sets of catalysts with different
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3. Conclusions

To conclude, a series of phosphine-sulfonate based palladium and nickel catalysts were prepared
and characterized. A naphthalene bridge was installed in the ligand framework. These palladium
and nickel catalysts showed very high activities in ethylene polymerization. For the case of nickel
system, very high polyethylene molecular weights could be achieved. Both the palladium and the
nickel catalysts could initiate ethylene-polar monomer copolymerization. We clearly demonstrated
the importance of ligand backbone structure and connectivity in determining the properties of these
metal catalysts. This work provides an alternative strategy to modify/improve the properties of
group 10 phosphine-sulfonate catalysts.
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