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Abstract: Polypeptide polymers can adopt natural protein secondary structures such as α-helices
or β-sheets, and this unique feature is at the origin of some intriguing physico–chemical properties.
In this work, we present how side chain imidazoylation of a poly(L-lysine) scaffold affords the
preparation of poly(histidine) counterparts exhibiting α-helix conformation. This structuring behavior
is reversible and can be controlled by means of pH and or temperature changes.

Keywords: smart polypeptides; imidazole-containing polymers; helix-to-coil transition; poly(lysine);
pH-responsive

1. Introduction

Synthetic polypeptide polymers are made of natural building blocks (amino acids), and they
bring important breakthroughs in materials sciences applications including those requiring smart
polymers, i.e., polymers able to respond to external stimuli [1–3]. Smart polypeptides are ideal
candidates to mimic adaptive biological systems such as natural proteins, by undergoing structural or
conformational changes in response to biologically relevant external stimuli including other molecules
or the environment (temperature, pH, redox . . . ) [4]. Indeed, synthetic polypeptide polymers can
reproduce natural protein secondary structures including α-helices or β-sheet structures [5]. Compared
to polymers presenting a coil structure, structured polypeptides exhibit intriguing physico–chemical
properties either in bulk, at the surface, or in solution [6]. Compared to natural proteins, polypeptidic
polymers can easily undergo secondary structure transitions that can be easily implemented and tuned
by tailoring amino acid side chains [5]. For instance, helix to coil transitions can be controlled by means
of pH changes for poly(L-glutamic acid) PGA [7,8] and poly (L-lysine) PL [9]. Recent developments in
this direction include the use of polypeptide polymers to enable a structuring switch upon biologically
relevant stimuli changes [1,10–13], including redox changes [14,15], metal coordination [16] or DNA
binding [17].

Imidazole-containing polymers are an important class of smart materials that possesses
remarkable properties [18,19]. They are extensively used to develop responsive nanocarriers, which are
utilized in biomedical applications such as anti-cancer drug delivery (response to tumor extracellular
pH) and nucleic acid delivery (response to endosomal pH) [20]. Among imidazole-containing polymers,
poly(histidine) (PHIS) is a well-known macromolecule made of histidine amino-acids [20,21]. PHIS
displays imidazole moieties on its lateral chains, which can be protonated at a pKa value between 6
and 7. This pKa value is unique within natural amino acids, and the amphoteric nature of PHIS in
physiological conditions has led to materials exhibiting sol–gel responsiveness, endosome disruption
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properties, or theranostic applications [18]. So far, synthetic methodologies that are involved in PHIS
synthesis have involved protected N-carboxyanhydride (NCA) monomers that require drastic synthetic
schemes, and which have often led to significant racemization upon deprotection [22]. Aside from
the use of NCA derivatives of histidine, imidazole-containing polypeptides can also be prepared by
post-polymerization coupling [23], and previous works have introduced imidazole moieties onto the
lateral chains of polypeptide polymers [23,24]. Generally, one big challenge of the post-polymerization
approach relies on the achievement of full grafting density, which is favored for structured polypeptide
polymers [25]. To the best of our knowledge, previous attempts have permitted the introduction of
imidazole moieties with high but incomplete grafting density, and no study has revealed the resulting
structure of the polymer after imidazole grafting [24].

In this work, we have prepared a small library of poly(imidazoyl-L-lysine) (PIL) grafted with
imidazole moieties spanning 0% to 99% grafting density. The structure of the different PILs was
studied in detail by circular dichroism and by infrared spectroscopy, and our results showed that PILs
are homopolymers that can be structured as an α-helix if high grafting density is achieved. This is
in marked contrast to poly(L-histidine) blocks, which have been shown recently to adopt a highly
aggregating β-sheet structure when lateral chains are deprotonated [22]. Herein, we also show that
this α-helix structure is reversible by means of pH changes and temperature changes. Overall the
structure difference between PHIS and PIL (1) may have a crucial impact in biology in a context where
the α-helix may present unique biological properties [26]; and (2) should now be taken into account if
both materials are compared for drug or gene delivery [18].

2. Materials and Methods

Carboxylic acid of 4-imidazoleacetic acid (IAA), N,N′-dicyclohexylcarbodiimide (DCC),
N-hydroxysuccinimide (NHS), triethylamine (TEA), methanol, dimethylsulfoxide (DMSO), acetone,
diethyl ether, sulfuric acid (H2SO4) and sodium hydroxide (NaOH) were purchased from
Sigma-Aldrich (Darmstadt, Germany) and used without further purification. N-carboxyanhydride
monomer (NCA) of trifluoroacetyl-L-lysine was purchased from Isochem (Vert-le-Petit, France).
Propargylamine (98%) was purchased from Sigma-Aldrich and double distilled before use.
N,N-Dimethylformamide (DMF) was obtained from a Solvent Purification System (SPS) and freshly
used for the polymerization. Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker
Avance spectrometer (Bruker, Germany). Chemical shifts are reported relative to the deuterated
solvents used (CDCl3, D2O). For structuring studies, diluted solutions were prepared with Milli-Q
water. The pH of every sample was measured with a Mettler Toledo SevenCompactTM S220 pHmeter
(Mettler Toledo, France), calibrated with Mettler Toledo buffer solutions between pH = 4 and pH = 10.
The circular dichroism (CD) measurements were performed on a JASCO J-815 spectropolarimeter
(JASCO, Oklahoma City, OK, USA) between 195 and 260 nm (far-UV), by using a quartz cell of 1 cm
path length, at the desired temperature (20 ◦C for standard measurements, or a temperature gradient
between 10 and 80 ◦C for special measurements). The measure parameters were optimized as follows:
sensitivity between 5 and 200 mdeg, 0.01 mdeg resolution, 8 s response time (Digital Integration Time),
1 nm bandwidth and 10 nm/min scanning rate. The polypeptide solutions were diluted with Milli-Q
water. The pH of the solutions was adjusted either by using H2SO4 or NaOH aqueous solutions (0.1 M).
Detailed descriptions of the synthetic procedures, circular dichroism analyses and molecular dynamic
simulations can be found within the supporting info part (ESI).

3. Results and Discussion

Considering previous works dealing with imidazole post-polymerization coupling onto
polypeptide, poly(L-lysine) (PL) was chosen, as it previously afforded high grafting density [23,24].
First, the polypeptide scaffold was obtained in two steps.

The first step involved the controlled ring-opening polymerization of N-ε-trifluoroacetyl-L-
lysine-N-carboxyanhydride, initiated by propargylamine in DMF at room temperature (see Scheme 1).
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Size exclusion chromatography analysis in DMF evidenced a low polydispersity index of 1.14 for a Mn

value of 18,600 g·mol−1 (see Figure S1a in ESI). In a second step, poly(N-ε-trifuoroacetyl-L-lysine)
lateral chains were deprotected using smooth basic conditions to avoid racemization of the backbone.
Extensive dialysis afforded a poly(L-lysine) polymer that was characterized by both NMR and size
exclusion chromatography (SEC) performed in water (see ESI and Figure S1b). A polymerization
degree of 67 was determined by 1H NMR analysis by comparing integrals of the proton signal of the
initiator (propargylamine, 3.9 ppm) and the signal of the polypeptide backbone (COCHNH, 4.3 ppm,
see Figure S1b in ESI) and SEC performed in aqueous conditions provided a Mn value of 21,500 g·mol−1

and a low polydispersity index of 1.15. Then, aqueous solutions of PL were prepared at pH values
of between 4 and 8 (150 µM in monomer units). Circular dichroism of the solutions further revealed
an extended structure (coil structure) for all these pH values, as the spectra presented a positive and
maximum ∆ε value at λ = 216 nm (see ESI Figure S5).

A small library of 4 poly(imidazoyl-L-lysine) polymers with various grafting densities of
imidazole was then obtained by using post-polymerization coupling with 4-imidazoleacetic acid
(IAA). The peptidic coupling involved free amine lateral chains of the poly(L-lysine) (Scheme S1) and
the carboxylic acid moiety of IAA. The coupling was performed in anhydrous dimethylsulfoxyde
conditions by using in excess, and concomitantly, N,N′-dicyclohexylcarbodiimide (DCC) and
N-hydroxysuccinimide (NHS) as coupling agents (Scheme S2). After purification, NMR and SEC
analysis were used to evaluate imidazole grafting by (1) calculating the grafting density from NMR
analysis (integration of the signal a’ from the polypeptide backbone at 4.1 ppm, as compared to the
signal g’ of the imidazole ring at 7.2 ppm; see Figure 1 and Table 1; and (2) checking the change in
elution time after coupling by size-exclusion chromatography (ESI, Figure S2). Overall, 4 different
poly(imidazoyl-L-lysines) were prepared as PIL 1–4, with 31%, 47%, 75% and 99% imidazole grafting
respectively (Table 1 and Figure S4 in ESI).

Table 1. Influence of the IAA stoichiometry to control imidazole grafting density.

Polymer IAA Used for
Coupling a

% Imidazole
Grafting b

Yield of the
Coupling Step Mn d (PDI)

PL - 0 - 21,500 (1.15)
PIL 1 2 eq. >99 c 85% 38,400 (1.17)
PIL 2 1 eq. 75 84% nd e

PIL 3 0.6 eq. 47 86% nd e

PIL 4 0.3 eq. 31 89% nd e

a As compared to monomer units stoichiometry, eq. means equivalent; b calculated from 1H NMR spectrum using
the signals e and e’ (cf Figure 1 and ESI); c no residual e signal observed; d in g/mol; e nd: not done.
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Figure 1. 1H NMR spectra in D2O: (a) poly(L-lysine); (b) poly(imidazoyl-L-lysine).

We further screened the structure of PIL 1, which was fully functionalized with imidazole moieties.
Different polymer solutions were prepared in water (150 µM in monomer units), and the pH was
carefully adjusted. As depicted in Figure 2, CD spectra were recorded between 195 and 255 nm at
different pH values between 4 and 7. In marked contrast to the spectra of PL (dashed line at pH 7),
the spectra of PIL revealed significant changes in CD with the appearance of minimum values that
were attributable to an alpha helix structure [16]. Overall, the CD signature of the helix displayed
a significant smaller 208 nm minimum and a slight red shifted n–π * peak at 225 nm (as compared to
222 nm) that previous work have attributed to the occurrence of alpha helix nanoaggregation [27,28].
It should be mentioned here that the minimum values obtained above pH = 6 correspond to a [θ]
value at 222 nm of −17.6 × 10−3 mdeg·cm2·dmol−1. Moreover, FTIR spectra of PIL 1 strengthen
the structuring behavior observed by CD: IR spectra displayed amide bands typical of α-helical
conformations (1654 and 1545 cm−1, see Figure S3 ESI).
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Figure 2. CD spectra at 150 µM in aqueous solutions of poly(L-lysine) at pH = 7 (dashed line) and of
poly(imidazoyl-L-lysine) at pH values comprised between 4 and 7 (other traces).

We then studied helix formation with PIL 2 to 4 by monitoring CD spectra in aqueous solutions at
the same concentration and at different pH values between 4 and 8. As clearly depicted in the
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Figure 3, the influence of the grafting density was significant, and only PIL 1 and 2 exhibited
structuring above a pH of 6. As the [θ] values became more important with increasing amounts
of imidazole units, the grafting density was assigned to the structuring of the polypeptide block.
Overall, CD analyses pointed out that a significantly high grafting density had to be achieved to form
secondary conformations at a pH comprised between 6 and 8.
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from θobs at 222 nm).

Pursuing the design of smart polypeptide systems, we then focused on helix destructuring by
means of temperature changes (Figure S6 in ESI). In fact, and as previously reported with PL alone,
an increase in temperature triggers helix-to-β sheet transition, a rare feature with polypeptide polymers.
Therefore, CD spectra of PIL 1 in an aqueous solution (pH = 7) were recorded at a temperature range
from 10 to 80 ◦C. Molar ellipticities taken from these analyses, at 222 nm, were plotted, as shown in
Figure 4. Significant helix destructuring was indeed observed when the temperature was increased.
Nevertheless, at 80 ◦C, the CD spectra did not reveal structuring in beta sheet conformation, meaning
that the post-polymerization coupling inhibits this PL structuring behavior.
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Previous studies on multicharged polypeptides, such as PGA and PL, have established that
their reversible helix-to-coil transition was attributable to the electric repulsion of their respective
side chains [8,9]. When charged, the repulsion of lateral chains breaks the hydrogen network at
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the origin of the helix structure. This structure is then recovered when the side chain charges are
controlled, for instance, by pH changes. This phenomenon is certainly at the origin of the helix-to-coil
transition observed with poly(imidazoyl-L-lysine) backbones. To strengthen this point, molecular
modelling was performed with GROMACS in order to evaluate how the hydrogen-bonding network
behaves with or without charges at the imidazole lateral chain extremities. Upon dynamic calculations
(see ESI Figures S7 and S8), the presence of positive charges at the imidazole ring significantly
disturb the hydrogen-bonding network of the polymer, as compared to the same hydrogen-bonding
network without charges at the lateral chains extremities. This theoretical result prompted us to
conclude that electronic repulsion is also at the origin of the structuring changes observed for
poly(imidazoyl-L-lysine). Current studies in our laboratory include PIL helix structuring to design
a smart metallopolypeptide [16] in a context where its poly(L-histidine) counterpart affords the
production of polypeptide adopting beta sheet conformations [22].

4. Conclusions

As simplified analogues of natural proteins, synthetic polypeptide polymers constitute important
tools for developing new promising applications, particularly if smart systems can be designed.
In this paper, we showed that, thanks to imidazole group introduction onto the lateral chains of
a poly(L-lysine), the helix-to-coil transition of the polypeptide occurs around a neutral pH value.
This result appears to be important for two reasons: (1) poly(L-histidine) polymers adopt beta sheet
conformations and poly(imidazoyl-L-lysine) is therefore a helical counterpart of these polymers;
(2) imidazole-containing polypeptides hold tremendous promise in drug and gene delivery, and it
is noteworthy that the structuring behavior presented in this work occurs in the pH range of their
promising bioactive properties.

Supplementary Materials: Supplementary materials (ESI) are available online at www.mdpi.com/2073-4360/9/
7/276/s1.
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