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Abstract: This paper presents the fabrication of a molecularly imprinted, polymer-based disposable
electrochemical sensor for paraoxon (PO) determination. The sensor was based on a screen-printed
carbon electrode (SPCE) modified with a surface molecularly imprinted poly (p-aminothiophenol)
(PATP)/gold nanoparticles (AuNPs) composite film, which consisted of a PATP outer layer and
an AuNPs inner layer. We report a novel strategy, combining surface molecularly imprinting and
self-assembly directed electro-polymerization with high densely imprinting PO molecules in the
PATP/AuNPs film. Firstly, AuNPs were in situ electrodeposited at the electrode surface, and then
assembled with electropolmerizable functional monomer p-aminothiophenol (ATP). Subsequently,
PO molecules were assembled onto the ATP monolayer-modified AuNPs, forming a basis of surface
molecular imprinting. After that, replenished PO molecules were embedded in the PATP/AuNPs film
by PO and the ATP molecular self-assembly directed electro-polymerization in the polymerization
precursor mixture. The resulting imprinted PATP/AuNPs/SPCE possesses high sensitivity, affinity,
and selectivity toward PO, with a low detection limit of 1 × 10−9 M. The proposed sensor was
successfully applied for the determination of PO in fruit and vegetables, giving satisfactory recoveries.
The strategy reported herein can be further expected to fabricate various molecular imprinted sensors
for the determination of other pesticide residuals.

Keywords: molecularly imprinted polymer; surface molecularly imprinting; self-assembly directing;
paraoxon; gold nanoparticles; electro-polymerization; electrochemical sensor

1. Introduction

Highly neurotoxic organophosphates, such as paraoxon (PO), are widely used as persistent
pesticides and nerve agents, and are responsible for a number of poisonings. Organophosphate can
disrupt the cholinesterase enzyme that catalyzes the breakdown of acetylcholine, a neurotransmitter
needed for proper nervous system function, which often causes convulsions, coma, respiratory
paralysis, and death [1,2]. In view of the their high toxicity, developing simple, fast, and sensitive
methods for the specific determination of organophosphates is of great interest in environmental,
food safety, and human health concerns [3–5]. Different analytical methods have been used to detect
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organophosphates in the past decade, including liquid or gas chromatography, often coupled to
mass spectrometry [6,7] and biological methods, such as immunoassay [8] and enzyme catalysis of
organophosphates hydrolysis [9], or inhibition of cholinesterase activity [10]. Although sensitive, these
different analytical protocols suffer from time-consuming sample pretreatments, poor specificity, long
analysis time intervals, complex analytical protocols, expensive instruments, and, moreover, potable
and fast online tests are impractical.

As an alternative approach—molecularly imprinted polymers (MIPs) that exhibit high selectivity
and affinity to the predetermined specific species—are now experiencing fast research growth, and
have been applied as the sensor recognition element for organophosphates determination [11–13].
The molecularly imprinting technique is based on the preassembly of the template molecule and the
functional monomer, and is subsequently copolymerized with cross-linking monomers. The removal
of the template leaves selective recognition sites that are complemented to the target analyte in the
imprinted substrates. This artificial molecular recognition system has significant advantages such
as mechanical/chemical stability, low cost, and ease of preparation, thus have increasingly attracted
considerable attentions [14,15]. However, the use of conventional MIPs as functional sensing matrices
suffers several basic limitations, including incomplete template removal, small binding capacity, poor
site accessibility to target species, and inefficient communication between the binding sites and the
transducers [16]. For one thing, it is quite difficult to remove templates from the inside of the high
cross-linked bulk imprinted polymers [17], which reduce the capacity of the rebinding target analyte.
For another, if the generated template-shaped cavities are not at the surface or in close proximity to the
materials’ surface, the high mass transfer resistance will hinder the targets from accessing the inner
imprinted cavities, resulting in poor site accessibility in the imprinted polymers [18].

Addressing the limitations of conventional molecular imprinting techniques, several research
groups have begun to explore alternative approaches for developing new imprinting methodologies.
An effective approach is to control templates to locate at the surface of imprinted materials, typically
exampled by surface imprinting, which is carried out by immobilizing template molecules at the
surface of suitable substrates, forming thin imprinted films [19,20]. Surface molecularly imprinting
is especially valuable as it solves the problems of limited mass transfer and template removal to
some extent, as compared to the conventional molecularly imprinting technique. Another attempt
to address the limitations of the conventional MIPs is the development of molecularly imprinted
nanomaterials [21]. Nanostructured imprinted substrates have extremely high surface-to-volume ratio,
so that most of the template molecules can be situated at the surface of the materials, resulting in
a large amount of effective imprinted sites, a high binding capacity, and good site accessibility for
the molecularly imprinted nanomaterials [22,23]. In view of the advantages of the two approaches,
we wish to incorporate both of them to develop surface molecularly imprinted nanomaterials for the
sensitive and selective analysis of organophosphates.

Herein, we fabricated a novel disposable electrochemical sensor based on surface molecularly
imprinted PATP/AuNPs composite film for sensitive and selective analysis of PO. Specially, we
demonstrated a self-assembly directing strategy for the highly dense imprinting of the template
molecules in the electropolymerized PATP/AuNPs film at the disposable screen printed carbon
electrode (SPCE) surface (see Scheme 1). For the sensor construction, AuNPs were electrodeposited
onto the SPCE surface and then were modified with the electropolymerizable functional monomer
ATP via molecular self-assembly. This ATP (self-assembled, monolayer, (SAM)-modified AuNPs
(ATP–AuNPs)) can serve as a high-conductive, nanostructured, imprinted inner layer. The initial PO
imprinted sites were generated by the surface imprinting of the PO molecules to the ATP–AuNPs,
and then the imprinted sites were further replenished by the subsequent electropolymerization of the
PATP film in the presence of PO moleculars in the polymerization precursor mixture. It was expected
that the ATP SAM on the AuNPs would drive PO molecules to richen onto the electrode surface to
form high dense imprinted sites, and simultaneously direct the selective occurrence of the imprinting
electropolymerization of ATP at the electrode, forming a high-quality uniform MIP film [24]. Thus,
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the developed surface molecularly imprinted PATP/AuNPs composite film would concentrate PO
with high efficiency at the electrode surface and enable the sensitive and selective detection of PO.
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Scheme 1. (a) Preparation procedures of the imprinted p-aminothiophenol (PATP)/gold nanoparticles
(AuNPs)/screen-printed carbon electrode (SPCE) and the principle for recognition of paraoxon (PO):
(i) electrodeposition of an AuNPs inner layer on the surface of the SPCE; (ii) ATP assembled onto the
AuNPs and following PO assembled onto the formed ATP–AuNPs, forming a basis of surface molecular
imprinting; (iii) electropolymerization of PATP film on the surface of the electrode in the presence
of PO molecules in the polymerization precursor mixture; (iv)/(v) removal/rebinding of PO on the
imprinted sites of the imprinted PATP/AuNPs/SPCE; (b) schematic illustrations for the adsorption of
the ATP molecules at the AuNPs surface and the further self-assembly of PO at the ATP–AuNPs.

2. Materials and Methods

2.1. Reagents

Paraoxon, monocrotophos, p-nitrophenol, isocarbophos, and parathion were purchased from
Dr. Ehrenstorfer GmbH (Augsburg, Germany). An individual stock solution of pesticide was prepared
by dissolving each compound in ethanol with a concentration of 0.1 M of both solutions and stored
in amber bottles at 4 ◦C. p-aminothiophenol was obtained from Alfa Aesar (Heifelier, MA, USA).
HAuCl4·4H2O (Au% > 47.8%) was purchased from Sinophacm Chemical Reagent Co., Ltd (Shanghai,
China). The other reagents used were commercially available as analytical reagent grade or better.

2.2. Apparatus

Disposable SPCEs were purchased from Dropsens, Inc. (Asturias, Spain), which consisted of an
Ag/AgCl reference electrode, a carbon working electrode (3 mm in diameter), and a carbon auxiliary
electrode. A sensor connector (Alderon Biosciences, Beaufort, NC, USA) allowed for the connecting
of the SPCE to a Bio-analytical System (BAS, West Lafayette, IN, USA) CV-50w electrochemical
workstation. The scanning electron microscopy (SEM) images were obtained by using a JEOL-6700F
SEM instrument (JEOL, Tokyo, Japan). UV spectra were recorded using a UV-2501 spectrophotometer
(Shimadzu, Kyoto, Japan).



Polymers 2017, 9, 359 4 of 13

2.3. Preparation of the AuNPs Inner Layer Modified SPCE

A SPCE was first applied at a potential of +1.2 V in acetate buffer (pH 5.0) for 300 s, and then
cycle scanned from +0.3 V to +1.1 V at a rate of 50 mV·s−1 until a steady current–voltage curve was
obtained. The electrode was further washed three times with distilled water and then dried under
nitrogen gas. To electrodeposit AuNPs on the SPCE surface, the electrode was applied at a potential of
−0.2 V for 80 s in 0.2 g·L−1 HAuCl4 solution. Optimization of the deposition parameters can be seen
in Section 1.1 and Figure S1 in Supplementary Materials. After being cleaned with ethanol and doubly
distilled water, the AuNPs/SPCE was immersed in a fresh piranha solution (H2SO4/H2O2, 7:3) for
about 300 s, rinsed again with doubly distilled water, and finally dried under nitrogen gas.

2.4. ATP Modification and PO Self-Assembly on the AuNPs Inner Layer

ATP modification was carried out by immersing the pretreated AuNPs/SPCE into a 10 mM
solution of ATP in ethanol. After reacting at RT for 24 h, the AuNPs/SPCE was taken out and then
rinsed three times with ethanol and distilled water, respectively. Afterwards, the AuNPs/SPCE
was immersed into a PO solution (1 mM) for 6 h, and then was taken out, rinsed with ethanol, and
subsequently dried under nitrogen flow at RT.

2.5. Preparation of the Imprinted PATP/AuNPs/SPCE

The pretreated PO–ATP–AuNPs/SPCE was immersed in the HAc–NaAc (pH 5.0) aqueous
electrolyte solution containing 5 mM ATP and 0.1 mM PO. The electropolymerization was performed
by seven cyclic scanning from −0.20 V to +0.60 V at a scan rate of 50 mV·s−1. Optimization of the
scan parameters on the PATP film formation can be seen in Section 1.2 in Supplementary Materials.
Then, the imprinted PATP/AuNPs/SPCE was rinsed with ethanol three times for 5 min, and then
potentially cycled between +0.60 and −1.00V in acetate buffer solution for three cycles to remove the PO
template [25]. The complete removal of the template molecules was confirmed by the disappearances
of the characteristic differential pulse voltammetric (DPV) response and the UV absorption of PO in
the extracting solution. Finally, the imprinted PATP/AuNPs/SPCE was rinsed with distilled water
and ethanol, respectively, and subsequently dried under nitrogen for further use. The nonimprinted
control was prepared and treated in the same way, except with omit PO.

2.6. Electrochemical Measurements

The modified electrodes were allowed to pre-absorb PO by incubating in the acetate buffer solution
containing varying PO concentrations for 10 min. After removing the physically adsorbed substances
on the electrode surface by doubly distilled water rising, 20 µL of acetate buffer solution was placed
onto the working electrode. The amount of bound probe was quantified by DPV measurements from
−0.50 V to −1.00 V. The corresponding maximum current was used for concentration determination.
All the measurements were performed at RT.

2.7. Real Sample Preparation

Apple and cabbage samples were purchased from a local market at Wuhan, China. The real
samples were prepared by peeling and chopping the fruit and vegetables into small pieces. Twenty-five
grams of the homogenized sample was mixed with 50 mL of acetonitrile and subsequently blended
for 3 min. The extract was then filtered through a filter paper into an evaporation flask with 5–7 g of
sodium chloride. The mixture was blended for 1 min and let stand for 30 min to let the phases separate.
After phase separation, 10 mL of the upper acetonitrile layer was drained and filtered through a 0.2 µm
pore size membrane into an evaporation flask, and then evaporated to dryness, following which
ethanol (5 mL) was added. Spiking of the samples was achieved by adding different levels of PO stock
solution into the samples, and then homogenizing the mixtures.
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3. Results and Discussion

3.1. Preparation of the Imprinted PATP/AuNPs Composite Film

In this work, we aim to enhance the sensitivity and selectivity of PO analysis by modifying
the electrode surface with electron-rich amino groups, as well as π-donor aromatic ring groups that
would selectively concentrate PO at the electrode surface using hydrogen bonds and π-donor-acceptor
interactions. ATP is an appropriate molecular anchor for anchoring template molecules on Au surfaces.
Thus, ATP was chosen to act as the polymerizable functional monomer for preparing the PO imprinted
polymer films. Furthermore, AuNPs were introduced onto the sensor surface, serving as a high conductive
nanostructured imprinted substrate that has a higher surface area, for further increasing the amount of
effective imprinted sites [26]. The preparation procedures of the imprinted PATP/AuNPs/SPCE are
displayed in Scheme 1a.

In the first procedure, AuNPs were easily formed in situ on the surface of SPCE by electrochemical
deposition of HAuCl4 at a constant potential of −0.20 V for 80 s. Then the AuNPs-modified SPCE
was immersed into the ATP solution for 24 h. The ATP molecules could absorb onto the AuNPs
surface based on the Au–S bonds and the exposed an array of the amino groups towards the solution,
forming an ATP SAM [27] (see Scheme 1b). The ATP–AuNPs can serve as an initial matrix to develop
the surface-imprinted nanoparticles. Meanwhile, the polymerizable ATP monolayer is expected to
improve the “wetting” of the AuNPs/SPCE surface by the functional monomer, which may drive the
selective occurrence of polymerization at the electrode surface, forming the uniform and the compact
polymer film [24].

The imprinting procedures of PO can be seen in step ii and iii of Scheme 1a. Immersing the
ATP–AuNPs/SPCE into a 1 mM PO solution for another 6 h allowed for the assembly of PO molecules
onto the ATP monolayer through the π–donor–acceptor interactions, as well as hydrogen bond
interactions between ATP and PO, forming orderly surface imprinted sites. Then these PO molecules
were embedded into the imprinted PATP film during the following electropolymerization process in
present of additional PO, thus the imprinted sites were further replenished.

3.2. Spectroscopic, Electrochemical, and Microscopic Characterizations

The intermolecular interaction between ATP and PO was investigated by the measurement of the
UV spectra. With the addition of PO into an ATP solution, the maximum absorption wavelengths of
ATP slightly shifted to red wavelength form 285 to 289 nm, and strengthened continuously with the
increase of the PO amount (see Figure 1). These observations of visible absorption clearly demonstrate
that the strong hydrogen bonds and π–donor–acceptor interactions between the ATP and PO molecules,
which would drive PO molecules to assemble onto the surface of the ATP monolayer, modified
AuNPs/SPCE.
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Film formation was monitored through the changes in the current per cycle. Figure 2a shows
representative CV for the electropolymerization process of ATP on the ATP–AuNPs/SPCE in the
presence of PO. At each CV cycle, the oxidation current decreases, suggesting a stepwise growth of
the polymer film and resulting in the suppression of the voltammetric response. There is not any
difference obtained in the presence/absence of PO from CVs (see Supplementary Materials Figure S2),
demonstrating that PO does not exhibit any electrochemical activity in the potential range from −0.2 V
to +0.6 V. Therefore, the molecular structure of PO is not affected during electropolymerization. The top
morphology of the subsequently formed PO imprinted PATP/AuNPs film was shown in Figure 2b;
the imprinted PATP/AuNPs film displayed a uniform and compact morphology, meanwhile, and the
visible AuNPs of dimension ca. 12 nm were evenly distributed on the electrode surface.
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Figure 2. (a) Cyclic voltammograms for the electropolymerization of PATP at the ATP–AuNPs/SPCE
surface in HAc–NaAc solution (pH 5.0), containing 5 mM ATP and 0.1 mM PO: scan rate, 50 mV·s−1;
(b) Typical scanning electron microscopy (SEM) image of the imprinted PATP/AuNPs film.

3.3. Sensitivity Enhancement with the Imprinted PATP/AuNPs/SPCE

The amperometric response of the developed sensor towards PO was tested at a 50 µM PO solution
and compared to the conventional one-step electropolymerized imprinted PATP/AuNPs/SPCE,
the imprinted PATP/SPCE, and the bare SPCE. The conventional one-step electropolymerized
imprinted control was prepared by immersing the AuNPs/SPCE into the electrolyte solution containing
ATP and PO molecules, and following with an electropolymerization step (as described in Section 2.5).
The self-assembling of ATP and PO was omitted from the preparation procedure of the conventional
control, as compared to that of the developed sensor. Meanwhile, the imprinted PATP/SPCE was
prepared and treated in the same way as the conventional one-step electropolymerized imprinted
PATP/AuNPs/SPCE, except that the electrodeposition of AuNPs was omitted. As shown in Figure 3,
the DPV response that corresponded to the electrochemical reduction of PO at the bare SPCE
(see curve a) showed a well-defined reduction peak at ~−0.82 V. The reduction current increased
when the SPCE was modified with the imprinted PATP film (see curve b). This phenomenon was
attributed to the concentration of the analyte at the electrode surface by the hydrogen bonds and the
π–donor–acceptor interactions with the monolayer modifier. Similarly, the one-step electropolymerized
imprinted PATP/AuNPs/SPCE (see curve c) displayed an obvious increase in the electrocatalytic
reduction current because of the introduction of the AuNPs, which resulted in an increase of the
effective surface area and a promotion of the interfacial electron transfer. Furthermore, we observed a
more significant increased reduction current (increased to about 28%, compared with the curve c) at
the interface of the developed sensor (see curve d). The surface imprinting procedure for preparing
the developed sensor through molecular self-assembly of PO on the ATP monolayer would control
templates to locate at the electrode surface, increase the amount of effective imprinted sites, and thus
enhance the sensitivity of the electrode. The results revealed that by controlling the imprinted sites to
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locate at the surface of the AuNPs with the highly specific surface area, and further replenishing the
imprinted sites by electropolymerized imprinting, the sensitivity of the imprinted PATP/AuNPs/SPCE
can be effectively enhanced.
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PATP/SPCE, (c) conventional one-step electropolymerized imprinted PATP/AuNPs/SPCE, and
(d) self-assembly directed electropolymerization imprinted PATP/AuNPs/SPCE in the presence of
50 µM PO in HAc–NaAc (pH 5.0).

3.4. Performance of the Imprinted PATP/AuNPs/SPCE

3.4.1. Sensitivity and Affinity

The DPV responses that correspond to the analysis of PO by the imprinted PATP/AuNPs/SPCE
are shown in Figure 4a. Figure 4b shows the linear calibration curve for analyzing PO by the imprinted
PATP/AuNPs/SPCE (see curve a) in the PO concentration range from 1 × 10−8 to 1 × 10−4 M, with a
correlation coefficient of 0.9992. The limit of detection (LOD) was determined using the criterion S/N = 3
was 1 × 10−9 M. For comparison, curve b depicts the calibration curve observed with the nonimprinted
PATP/AuNPs/SPCE. The LOD for analyzing PO by the nonimprinted PATP/AuNPs/SPCE is
1.7 × 10−7 M. The results show that the LOD for PO by the imprinted PATP/AuNPs /SPCE is
about two orders of magnitude lower than that with the nonimprinted control.Polymers 2017, 9, x FOR PEER REVIEW  8 of 13 
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Figure 4. (a) DPV responses corresponding to the reduction of PO rebound to the imprinted
PATP/AuNPs/SPCE by incubating the sensor in HAc–NaAc solutions (pH 5.0) containing increasing
PO concentrations (curves a–j: 1 × 10−8 to 2 × 10−4 M) for 10 min. (b) Calibration curves corresponding
to the analysis of PO at the (curve a) imprinted and (curve b) nonimprinted PATP/AuNPs/SPCE.
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To account for the enhanced sensitivity observed with the imprinted PATP/AuNPs/SPCE,
we analyzed the association constant (Kα) of PO to the imprinted sensing surface on the basis of
Equation (1) [28]. Kα is given by Equation (2), where α is defined as the amount of imprinted sites in
the system, and θ is defined as the amount of imprinted sites that are occupied by PO, which can be
derived from the coulometric analysis of the first wave of the reduction of PO at any concentration.
Equation (2) can also be rearranged to form Equation (3). The charge associated with the bound PO is
proportional to the amount of occupied, imprinted sites. Curve a in Figure 5 shows the coulometric
analysis of the PO bound to the imprinted PATP/AuNPs/SPCE at different bulk concentrations of
PO, according to Equation (3). The derived Kα with the imprinted PATP/AuNPs corresponded to
(2.5 × 104 M−1), that is, ca. 7-fold higher than that with the nonimprinted control (Kα = 3.5 × 103 M−1,
see curve b in Figure 5). Therefore, the enhanced sensitivity for analyzing PO by the imprinted
electrode can be attributed to the improved concentration of PO at the electrode surface, which resulted
from the higher affinity of PO to the imprinted sites.

PO + imprintedsites(α − θ) 
 imprintedsites − PO(θ) (1)

Kα =
θ

(α − θ)[PO]
(2)

1
θ
=

1
α
+

1
α·Kα[PO]

(3)
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for 10 min.

3.4.2. Selectivity

We studied the selectivity of the imprinted PATP/AuNPs/SPCE and compared it to the
nonimprinted control. Parathion (PT) was used to verify the response selectivity of the imprinted
PATP/AuNPs/SPCE towards PO. The response selectivity factor (kPO/kPT) of the imprinted
PATP/AuNPs/SPCE equals 8 (see Figure 6), where k is defined as the slope of the respective calibration
curve. The selectivity of the imprinted PATP/AuNPs/SPCE is ca. 7-fold higher than the nonimprinted
control, which has a PO response selectivity factor value 1.1 (see Supplementary Materials Figure S3).
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Figure 6. Calibration curves corresponding to the analysis of PO (curve a) and PT (curve b) by the
imprinted PATP/AuNPs/SPCE. All data were recorded after interacting the respective electrode with
the PO or PT solution sample for 10 min.

The competitive selectivity property to PO of the developed sensor was evaluated by testing its
DPV responses in the presence of some possible interfering substances, including PT, monocrotophos
(MC), isocarbophos (IC), and p-nitrophenol (p-NP), respectively. The competitive selectivity of the
imprinted PATP/AuNPs/SPCE electrode to PO molecules was evaluated by calculating the peak
current ratio (Ip/Ia), where Ip and Ia were the anodic peak current of 10 µM PO at −0.77 V in the
presence and absence of interfering substances. The results showed a 50-fold excess of PT, MC, IC, and
p-NP over PO hardly causes the significant change of peak current of PO, in which the peak current
ratio only slightly varied from 0.93 to 1.06 (see Supplementary Materials Table S1), which indicated
that the imprinted PATP/AuNPs/SPCE showed higher recognition selectivity for PO than for other
structurally similar chemicals. Therefore, the imprinting procedure not only increases the sensitivity of
the modified electrode, but also enhances its selectivity towards PO.

3.5. Reproducibility and Stability

The reproducibility of the developed imprinted sensor was determined by comparing the DPV
responses of ten sensors prepared in parallel under the same conditions towards 10 µM PO in acetate
buffer solutions. A relative standard deviation (RSD) of 1.53% was obtained, indicating a good
reproducibility in the sensor fabrication. When not in use, the sensor can be put in a plastic casket
filled with nitrogen and stored at 4 ◦C. No obvious deterioration in the response of the sensor towards
PO was determined in the first 10-day storage. After a month in storage, the electrode showing a ca.
10% decrease in the PO signal, and a 16% decrease after three months in storage. The obtained results
indicate that the developed sensor possesses excellent stability.

3.6. Real Sample Analysis

To investigate the feasibility of the imprinted PATP/AuNPs/SPCE for practical applications,
apple and cabbage samples were used for the quantitative analysis by the developed sensor. None of
these real samples had electrochemical responses when analyzed by using the developed imprinted
sensor. It is assumed that there is no PO in the samples, or the concentration of PO is too low to be
detected. Thus, the recovery experiments were performed by adding known concentrations of PO into
the samples. The samples were then spiked with different levels of PO. Table 1 clearly demonstrates
that the performance of the imprinted PATP/AuNPs/SPCE for the detection of PO is not greatly
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affected by PO in different samples. The average recoveries range between 95.2% and 103.2%, with
less than 3.1% RSD (n = 6). The presented results demonstrate that the proposed method can be a
promising approach for PO determination in real samples. The proposed sensor was compared with
other published methods [29–38] and the data is shown in Table 2. The results reveal that the proposed
sensor in this work possesses competitive advantages over other reported sensors, especially the
broader linear range with a high fitting degree. The boarder linear range performance of the imprinted
film demonstrates it has a high binding capacity towards PO, which is one of the biggest concerns for
a PO sensor, and it exhibits its superiority in detecting PO.

Table 1. The determination results of PO in real samples (n = 6).

Sample Spiked/µM Found/µM Recovery (%) RSD (%)

Apple
0.5 0.487 97.4 1.7

1.0 0.963 96.3 2.2

5.0 5.162 103.2 2.8

Cabbage
0.5 0.476 95.2 2.3

1.0 1.024 102.4 2.6

5.0 4.932 98.6 3.1

Table 2. Performance comparison of the imprinted PATP/AuNPs/SPCE sensor in this work and other
reported sensors for determining PO.

Sensor Linearity (M) LOD (M) Ref.

AChE/Au NPs–MWNTs/GCE 1 × 10−10–7 × 10−9 1 × 10−9 [29]

AChE/CPE 3 × 10−9–8.3 × 10−9 3 × 10−9 [30]

AChE/PB/SPCE 5 × 10−8–6.3 × 10−5 3.6 × 10−8 [31]

BuChE/PBNPs/SPCE 7 × 10−9–3.6 × 10−8 3.6 × 10−9 [32]

OPH/micro-ITIES/PDMS 5×10−7–1 × 10−4 5 × 10−7 [33]

OPH/SWNTs/GCE 5 × 10−7–8.5 × 10−6 1 × 10−8 [34]

OPH/CPE 2 × 10−8–1.8 × 10−7 2 × 10−8 [35]

Pt and Ir NPs/BDD − 2 × 10−7 [36]

Bi/Gr/GCE 5 × 10−9–4.0 × 10−8 2 × 10−9 [37]

MIP/CPE 3.8 × 10−9–7.5 × 10−7 1.0 × 10−9 [38]

sensor in this work 1 × 10−8–1 × 10-4 1 × 10−9

AChE-Acetylcholinesterase; M(S)WNTs—Multiwalled (Single-walled) carbon nanotubes; GCE-Glassy carbon
electrode; CPE–Carbon paste electrode; PB–Prussian blue; BuChE–Butyrylcholinesterase; ITIES-Immiscible
liquid/liquid electrolyte solutions; OPH–Organophosphorus hydrolase; PDMS–polydimethylsiloxane; BDD–Boron
doped diamond.

4. Conclusions

A novel molecularly imprinting strategy, combining surface molecularly imprinting and
self-assembly directed electro-polymerization for the sensitive electrochemical sensing of PO was
developed. The proposed method relies on the π–donor–acceptor and hydrogen bond interactions
between PO, ATP, and ATP–AuNPs. The tailor-made cavities formed in the imprinted film showed
good selectivity and affinity toward PO. The selectivity, reproducibility, and stability of the MIP sensor
are satisfactory. The good sensitivity, affinity, and selectivity of the sensor is attributed to the following
reasons: on the one hand, the employment of the AuNPs inner layer as a high-conductive, nanostructured,
imprinted substrate enlarges the electro-active surface area; on the other hand, the surface imprinting
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of the template and the functional, monomer, self-assembly directed electro-polymerization increases
the quantity of the template molecule in the unit area, and creates the imprinted materials with a high
ratio of effective imprinted sites. Therefore, this novel, facile strategy reported herein can be further
expected to fabricate various molecular imprinted polymers for detecting the pesticide residuals and
other environmentally deleterious chemicals.

Supplementary Materials: Supplementary materials are available online at www.mdpi.com/2073-4360/9/
8/359/s1. A pdf file containing the following: Section 1. Optimization of parameters for preparing the
imprinted PATP/AuNPs/SPCE; Figure S1: SEM images of AuNPs deposited at different potentials; Figure S2.
Cyclic voltammograms for the electropolymerization of PATP at the ATP-modified AuNPs–SPCE surface in
HAc-NaAc (pH 5.0) solution containing 5 mM ATP; Figure S3. Calibration curves corresponding to the analysis
of (a) PO and (b) PT by the imprinted PATP/AuNPs/SPCE; Table S1. Competitive selectivity of PO imprinted
PATP/AuNPs/SPCE toward several structurally similar interferentials.
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