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Abstract: In this study, an integrated flexible gas sensor was developed based on a polymer/multi-
walled carbon nanotube composite film by using Bluetooth wireless communication/interface
technology. Polymer/multi-walled carbon nanotube composite films were deposited over a polyimide
flexible substrate for building a gas sensor array by using a drop-casting method. Sensor response
was acquired through interdigitated electrodes and multi-channel sensor boards, which were linked
to a Bluetooth wireless transceiver. Additionally, a double-spiral-shaped heater was built into
the backside of the gas sensor array as a thermostat to protect it from the influence of ambient
temperature. Multi-channel sensing responses were read on a display screen via a smartphone
application (app). The advantages of this system include light weight, low cost, highly integrated
sensors, wireless telecommunication, and real-time functioning. Thus, it is a promising candidate for
deployment in a wearable gas-sensing system used to study air pollution.

Keywords: polymer/multi-walled carbon nanotube composites; wearable device; wireless device;
air pollution

1. Introduction

Air pollution is a global issue that seriously impacts humans and the environment. According to
the World Health Organization (WHO) 2016 air quality model reports, more than 90% of the world’s
population breathes air that is polluted beyond the limits specified by WHO [1]. The most common
pollutants in air are carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), particulate matter
(PM), and volatile organic compounds (VOCs). Specifically, CO is generated when carbon-containing
materials are burnt. A major source of CO is the combustion of fossil fuels in vehicles [2]. Additionally,
SO2 is produced mainly by the oxidation of sulfur-containing materials. Combustion of fossil fuels
in power plants and refinery facilities is a major source of SO2. Bad O3 is associated with chemical
reactions between oxides of nitrogen (NOx) and VOCs. It is produced when pollutants are emitted by
cars, power plants, industrial boilers, and refinery plants in the presence of sunlight [1]. Man-made
sources of PM2.5 and PM0.1 particles dominate the total concentration of pollutants. Emissions of
PM2.5 and PM0.1 particles can be ascribed mainly to vehicular exhaust, road dust, and forest fires [3,4].
Principal sources of VOCs include paints, paint strippers and other solvents, wood preservatives,
aerosol sprays, cleansers and disinfectants, moth repellents and air fresheners, and building materials
and furnishings [5].

Furthermore, VOCs are typically defined as compounds with an initial boiling point that is
less than or equal to 250 ◦C at the standard atmospheric pressure of 101.3 kPa. Various toxic
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VOCs exert a toll on the environment and cause respiratory diseases. Based on their chemical
structures, VOCs are categorized into several types, including alkanes, aromatic hydrocarbons, olefins,
halogenated hydrocarbons, esters, aldehydes, and ketones. Individuals facing long-term exposure to
100 ppb formaldehyde could develop nasal cancer [6]. Benzene may also cause acute myeloid leukemia
(acute non-lymphocytic leukemia) [7]. A few studies provide strong evidence that toluene affects
the central nervous system (CNS) [8]. To evaluate the concentration of toxic VOCs, several precision
methods and instruments have been designed and examined. They include gas chromatography
(GC) [9], high-pressure liquid chromatography (LC) [10], the gas chromatography–mass spectrometry
(GC–MS) coupled method [11], ion mobility spectroscopy [12], atomic emission detection (AED) [13],
and Fourier transform infrared (FTIR) spectroscopy [14]. Most of these methods provide high
sensitivity and high reliability. Their major disadvantages include high costs, time-consuming
processes, and requirement for advanced techniques.

Wearable devices with integrated wireless technology have the potential to integrate an end-user
with the Internet of Things, and offer healthcare and long-term, real-time information for personal
measurement [15]. The features of wearable devices include light weight, low cost, highly integrated
sensors, and wireless telecommunication. Several different types of miniaturized gas sensors have
been investigated, such as electrochemical sensors [16], electrochemical sensors of surface acoustic
wave (SAW) devices [17,18], quartz crystal microbalances (QCM) [19,20], and chemiresistive gas
sensors [21–26]. Polymer/MWCNT composite sensors correspond to chemiresistive-type gas sensors
owing to their unique electrical, physical, and chemical properties that facilitate the development
of sensitive devices for use in wearable gas-sensing applications. Gas sensors using conducting
polymers as the sensing layer show excellent response in wearable device applications at room
temperature [27–29]. However, the range of ambient temperature varies greatly. For instance,
the difference in ambient temperature between summer and winter is 20–30 ◦C, and the climate patterns
of the northern and the southern hemispheres are opposite. The influence of ambient temperature
restricts the application of a wearable polymer-based gas sensor system. The effects of temperature
on polymer/MWCNT composite gas sensors have been investigated in our previous study [30,31].
To solve this problem, thermal treatment is a straightforward method used to decrease the influence of
ambient temperature on polymer/MWCNT composite gas sensors. In previous studies, three different
polymers, namely, polyethylene oxide (PEO), ethylcellulose (EC) and polyvinylpyrrolidone (PVP),
were selected to manufacture a flexible polymer/MWCNT composite sensing films for gas sensor
array that was exposed to 1.5% ethanol at different operating temperatures. The response of each
polymer/MWCNT composite film indicated that higher operating temperature could mitigate the
influence of ambient temperature but reduce the response. Review of the data from the previous
experiments led to a program to improve the flexible polymer/MWCNT composite gas sensor array
for the possibility of wearable device application. Improvement considerations include the selection of
polymers for high gas selectivity, the suitable operating temperature to immune ambient temperature
influence, and methods of data transmission.

In this study, poly (α-methylstyrene) (PMS) was conducted primarily on increasing gas selectivity
in the sensor array. The suitable operating temperature was considered with power consumption and
heating–cooling profile. This study also focused on the development of a stand-alone wearable and
wireless gas-sensing system based on a Bluetooth module. The polymer/MWCNT composite gas
sensor was accompanied the smartphone applications were programmed in the Android environment.
To verify the feasibility of recognizing the selectivity of different gases, the sensor array was exposed
to various gases, including ammonia, nitrogen dioxide, and toluene vapors. The resulting sensor array
response patterns show that the system has good selectivity to the target gas. The real-time sensing
and to display the sensor response were demonstrated on a smartphone.
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2. Materials and Methods

The sensing film was prepared drop-casting to form the bilayer sensor structure of the
gas sensor array. Four different polymers were selected, namely, ethylcellulose (200697,
SIGMA-ALDRICH, St. Louis, MO, USA), polyethylene oxide (43678, Alfa Aesar, Haverhill, MA, USA),
poly(α-methylstyrene) (81516, SIGMA-ALDRICH, St. Louis, MO, USA), and polyvinylpyrrolidone
(PVP 10, SIGMA-ALDRICH, St. Louis, MO, USA). Figure 1a–d show the morphology of a selected
polymer that was examined using a scanning electron microscope (SEM) (NOVA NANO SEM 450,
FEI Co., Hillsboro, OR, USA) operated at an accelerating voltage of 10 kV.
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The MWCNTs used in this study have outer diameters ranging from 2 to 6 nm and lengths of 10
to 12 µm, and they were purchased from XinNano Materials, Inc, Taoyuan, Taiwan. Figure 2 shows the
FTIR spectra of the MWCNTs. The nature of the chemical bonds formed was recorded via FTIR spectra
(PERKIN ELMER Spectrum GX, Waltham, MA, USA) in the range of 4000–400 cm−1 for investigation
purposes. Figure 2 shows the characteristic peaks of MWNT at 1488.2 cm−1 (–COOH), 1635.6 cm−1

(C=C), and 2735.1 cm−1 (bonded OH in carboxylic acid).
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The drop-casting method was implemented to fabricate the polymer/MWCNT composite films.
The fabrication process has been described in a preliminary study [31], and it is presented briefly here
as follows:

(1) Approximately 2 µL of MWCNT (60 ppm) is first dropped on the interdigitated electrode by
using a microjet.

(2) The solvent is evaporated, and the MWCNT film is furnished for 6 h at 70 ◦C.
(3) Approximately 2 µL solution of the selected polymers is dropped on the MWCNT layer by using

a microjet.
(4) The solvent is evaporated completely, and the selected polymer film is furnished for 24 h at 60 ◦C.
(5) After performing the aforementioned casting steps, the resistance of each sensor is confirmed to

limit the value within 1–50 kΩ.

3. Gas-Sensing System Design

3.1. Flexible Gas Sensor Array

The flexible polymer/MWCNT composite gas sensor was based on the flexible printed circuit
(FPC) industry technology offers several advantages, including cost effectiveness, light weight,
and flexibility, which is essential given its potential for integration in wearable consumer products.
The gas sensor array comprised four different types of polymer/MWCNT composite sensing films
and a platinum resistance temperature detector (RTD) arranged in a 3 × 3 matrix pattern. When the
polymer concentration was higher than 1 wt %, the polymer was slightly sticky and would not easily
form a uniform sensing film via drop-casting. When the polymer concentration was lower than 1 wt %,
it was difficult to form a complete polymer film above the MWCNT surface. Therefore, the selected
polymers were used at a concentration of 1 wt %. The sensor name and the relative element numbers
are presented in Table 1. Each type of sensor was arranged in one of the rows in the matrix.

Table 1. Details of polymers in sensor array.

Sensor Name Sensing Film Element Number

PVP1 1 wt % PVP/MWCNT 3,1
PVP2 1 wt % PVP/MWCNT 2,1
PEO1 1 wt % PEO/MWCNT 1,1
PEO2 1 wt % PEO/MWCNT 3,2
EC1 1 wt % EC/MWCNT 1,2
EC2 1 wt % EC/MWCNT 3,3

PMS1 1 wt % PMS/MWCNT 2,3
PMS2 1 wt % PMS/MWCNT 1,3

* Resistance Temperature Detector (RTD) 2,2

Ambient temperature variation is one of the several variables that pose critical problems
in reducing the sensitivity of the sensor. A previous study demonstrated that higher operating
temperature reduces sensor response [31]. To protect the polymer/MWCNT composite gas sensor
array from the influence of temperature, it was equipped with a heater composed of stainless steel
(SUS304, thickness 50 µm) to provide a thermostat operating temperature. The heater was designed
in a double-spiral shape with an area of 20 × 20 mm2. A suitable operating temperature was set and
monitored by using a platinum RTD. The interdigitated electrode was composed of copper measuring
35 µm in thickness and having a finger gap size of 200 µm. The configuration of the flexible gas sensor
array is shown in Figure 3.
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Figure 3. Configuration of flexible gas sensor array: (a) Front photograph of gas sensor
array; (b) Reverse side photograph of heater embedded with RTD sensor; (c) Photograph of
interdigitated electrodes.

3.2. Gas-Sensing System Architecture

Figure 4 shows a functional block diagram of the proposed wireless and wearable gas-sensing
system. Odor was introduced into the gas chamber when the micropump was driven, and the
polymer/MWCNT composite films were operated at the thermostat temperature. The polymer
film swelled up slightly when the odor was introduced; then, the odor molecules could penetrate
into the polymer through the interface pores on the MWCNT surface. The conductivity of the
MWCNTs changed owing to charge transfer between the electron-donating/electron-withdrawing
molecules [32–34]. This led to a change in the distance between the MWCNTs. The change
in the resistance of the sensor was measured using sensor interface circuitry and translated to
an analog-to-digital converter with a 32-bit microcontroller. The data was transmitted to a smartphone
or tablet via wireless Bluetooth communication. The sensor response of each polymer displayed on
the smartphone application (app) was normalized and presented as a bar chart.
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Figure 4. System block diagram of wearable and wireless gas-sensing system.

The system was powered by a single alkaline battery of desired capacity with a nominal voltage
of 9 V. Figure 5 shows the proposed wearable and wireless gas-sensing system.

Bluetooth wireless technology is widely used to substitute traditional cable-linked electronic
devices [27,35–37]. With respect to the proposed system, a Bluetooth module, sensor interface circuitry,
and microcontroller (ARM Cortex-M4F, Texas Instruments, Dallas, TX, USA) were integrated into
a wireless sensor readout module board for wearable applications, as shown in Figure 6. A Bluetooth®

4.2 Low Energy (BLE) module from Microchip (RN4871-VRM118) was used as the Bluetooth transmitter
to acquire and transmit the sensor data to a smartphone.
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3.3. Smartphone Application

Figure 7 shows the smartphone app with a user-friendly interface for data display. The app was
programmed in the Android environment to accompany the proposed gas-sensing system.
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The operation procedures of the smartphone app are as follows:

(1) The user turns on the gas-sensing system, and the application establishes a secure Bluetooth
connection with the gas-sensing system.

(2) The heater remains stable at the operating temperature (30 s). Subsequently, the app receives
a stream of sensor data under the normal condition in real time from the gas-sensing system,
as shown in Figure 7a.
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(3) A real-time bar chart graph of the normalized values with respect to the selected polymers for
sensing activities is constructed and displayed in the app, as shown in Figure 7b. The sensor
response data are refreshed at intervals of 1 s. Table 2 presents the polymer/MWCNT composite
sensors and the relative bar chart channel numbers (from left to right).

(4) The app continuously logs sensor response for 10 min. After the subjects complete the task,
the app clears the data and resets to step (2) for a new cycle.

(5) These data and graphs are stored on the device and uploaded to cloud servers online.

Table 2. Details of polymer/MWCNT composite sensors in smartphone app.

Channel No. 1 2 3 4 5 6 7 8

Sensor Name PVP1 PVP2 PEO1 PEO2 EC1 EC2 PMS1 PMS2

4. Results and Discussion

4.1. Heater Performance

To protect the polymer/MWCNT composite gas sensor array from the influence of ambient
temperature variation, a heater was embedded in the flexible gas sensor array as a thermostat.
The operating temperature range of the heater as a function of applied voltage (5–12 V) in the flexible
gas sensor array is shown in Figure 8.
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To validate the heater design, a steady-state electro-thermal simulation was conducted via finite
element analysis in ANSYS to realize the thermal distribution. Figure 9a clearly shows the central
heating area in the gas sensor array when the temperature is fixed to 40 ◦C. Temperature uniformity
over the heated area size of the heater corresponds approximately to 18,181 µm × 16,666 µm, as shown
in Figure 9a. Additionally, the heater was used in a thermal image camera (Thermoteknix Systems Ltd,
MIRICLE 307K-25, Cambridge, UK) to measure the thermal distribution. The results of the infrared
thermal image are consistent with the results of the ANSYS simulation.
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4.2. Thermal Stability

An efficient method for protection from the influence of ambient temperature allowed for
sustained use of the polymer/MWCNT composite sensing film at a suitable operating temperature.
The effect of heating on the resistance of the polymer/MWCNT composite sensing film was examined
using a heating–cooling cyclic protocol [38]. Figure 10 shows the heating–cooling profile of the
polymer/MWCNT composite sensing film. The temperature of the heating–cooling profile was in the
range of 27–86–28 ◦C. The resistances of the PEO/MWCNT and the EC/MWCNT composite films
suffered from drift when compared with those of the remaining two polymers. Therefore, with respect
to operation of the gas sensor array, the temperature was set to 40 ◦C to reduce the influence of ambient
temperature. The heater embedded in the sensor array consumed approximately 210 mW at 40 ◦C.
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4.3. Sensing Performance

The sensor response of the polymer/MWCNT composite gas sensor array was evaluated by
measuring the change in its resistance upon exposure to an analyte (target gas) and nitrogen (N2,
99.99%, background gas). The flow rates of both the target gas and the background gas were
controlled to under 350 mL/min by using a mass flow controller. The experimental setup used
in the measurements is shown in Figure 11. Sensor responses were acquired by using the sensor
interface circuitry and then transmitted to a smartphone via the Bluetooth module. The smartphone
app calculated the collected data and then divided the relative change in the resistance of the
polymer/MWCNT composite films by the baseline resistance. Finally, a bar chart of the normalized
resistance changes (∆R/R%) was displayed in real time on the smartphone.
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Figure 11. Experimental setup of sensing response system.

The gas detection process included several steps. First, nitrogen gas was introduced into the
reaction chamber for 10 min to obtain a reference resistance baseline. Simultaneously, the flexible
polymer/MWCNT composite gas sensor array was heated to an operating temperature of 40 ◦C.
Subsequently, the target gas was introduced into the reaction chamber for 5 min. The polymer films
swelled because they adsorbed the gas molecules [39–42]. The conductivity of the MWCNTs changed
owing to charge transfer between the electron-donating/electron-withdrawing molecules [32–34].
After the target gas reacted with the gas sensor array, nitrogen gas was introduced for 10 min to
enable desorption from the polymer film. In this work, three target gases were employed, namely,
ammonia (NH3), nitrogen dioxide (NO2), and toluene (C7H8). We used high concentrations of NH3

and NO2 to understand the characteristics of the MWCNTs. To further understand the response of the
polymer/MWCNT composite gas sensor to VOCs, we used low concentrations of toluene for testing.

Figure 12 shows the repeatability test of the sensor response in the presence of both 1000 ppm
NH3 and 1000 ppm NO2.
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Figure 12. Repeatability test of gas sensor array using different gases. (a) Response of the gas sensor
array to 1000 ppm NH3; (b) Response of the gas sensor array to 1000 ppm NO2.

Based on the results of the repeatability test, the MWCNTs possess p-type semiconductor
characteristics when exposed to two different target gases. The response changed when electron
donor (NH3) or acceptor (NO2) gas molecules were introduced to the polymer/MWCNT composite
gas sensor array. NH3 gas donates electrons to the surface of the MWCNTs, thus decreasing the
number of positive holes in the MWCNTs and increasing the resistivity of the MWCNTs. In contrast to
NH3, NO2 withdraws electrons from the surface of the MWCNTs and decreases their resistivity [33,34].
The different responses of the polymer/MWCNT composite sensing layer showed that the adsorption
of gas molecules and the subsequent swelling of the polymer caused the charge transfer to change to
varying degrees.

Figure 13 shows the results of the sensor response repeatability test in the presence of 10 ppm
toluene (C7H8). Although the PVP/MWCNT and EC/MWCNT sensors did not exhibit any response to
10 ppm toluene, the PEO/MWCNT and the PMS/MWCNT sensors exhibited a more obvious response
under the same experimental conditions.
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The change of resistance of the PEO/MWCNT sensor can be ascribed to two possible mechanisms:
one is weak interaction between toluene molecules and MWCNTs and the other is swelling of the
PEO [40]. In the case of the PMS/MWCNT sensors, it may be because the functional group of toluene
is similar to that of PMS, so toluene is easily adsorbed by PMS, which induces a higher response than
that of other polymer/MWCNT sensors. Based on to the response of the polymer/MWCNT composite
gas sensor array to toluene gas, the sensor array was used to construct a toluene vapor pattern to
ensure good selectivity.

4.4. Smartphone App Communication

A wearable and wireless gas-sensing system based on a Bluetooth wireless module design
indicates the feasibility of recognizing the behavior of a polymer/MWCNT composite sensor array.
Figure 14 shows screenshots obtained from the proposed system apps after heating the array to the
operating temperature. When the system was heated to the operating temperature, all sensors in the
system exhibited strong negative responses.

Figure 15 shows the response patterns of the polymer/MWCNT composite gas sensor array under
different conditions, including ammonia, nitrogen dioxide, and toluene. When the system was exposed
to electron donor (NH3) and acceptor (NO2) gaseous molecules, the response patterns were opposite
owing to the p-type semiconductor characteristics of the MWCNTs. When the system was exposed to
toluene, the PEO/MWCNT and PMS/MWCNT arrays sensed a response, while PMS/MWCNT arrays
revealed slightly response owing to baseline drift.
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Figure 15. Screenshot of sensor response pattern to different operating conditions: (a) exposure to 
1000 ppm ammonia; (b) exposure to 1000 ppm nitrogen dioxide; (c) exposure to 10 ppm toluene. 

5. Conclusions 

In this study, we fabricated a flexible polymer/MWCNT composite sensor array based on FPC 
technologies and the drop-casting method. A heater was embedded in the flexible gas sensor array 
to serve as a thermostat to protect it from the influence of ambient temperature. Four different 
polymers were used to manufacture eight sensors for sensing ammonia, nitrogen dioxide, and 
toluene vapors. Bluetooth technology was used to achieve real-time sensing and to display the sensor 
response on a smartphone. A future study will involve principal component analysis for responsive 
pattern recognition. The proposed system is a promising candidate for deployment in a wearable gas-
sensing system used to study air pollution. 
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Figure 15. Screenshot of sensor response pattern to different operating conditions: (a) exposure to
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5. Conclusions

In this study, we fabricated a flexible polymer/MWCNT composite sensor array based on FPC
technologies and the drop-casting method. A heater was embedded in the flexible gas sensor array to
serve as a thermostat to protect it from the influence of ambient temperature. Four different polymers
were used to manufacture eight sensors for sensing ammonia, nitrogen dioxide, and toluene vapors.
Bluetooth technology was used to achieve real-time sensing and to display the sensor response on
a smartphone. A future study will involve principal component analysis for responsive pattern
recognition. The proposed system is a promising candidate for deployment in a wearable gas-sensing
system used to study air pollution.
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