Soil nutrients effects on the performance of durum wheat inoculated with entomopathogenic fungi

Adrián González-Guzmán,^{*} Daniel Sacristán Moraga, Antonio Rafael Sánchez-Rodríguez, Vidal Barrón, José Torrent and María Carmen del Campillo. Departamento de Agronomía, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba, Spain

* Correspondence to guzman_agg@hotmail.com

SUPPLEMENTARY MATERIAL

Materials and methods

Table S1	Page	2
Table S2	Page	4
Table S3	Page	5
Table S4	Page	6
Table S5	Page	7
Table S6	Page	8
Table S7	Page	8
Figure S1	Page	9
Figure S2	Page	10
Figure S3	Page	11
Figure S4	Page	12

Soil	Soil mass	HME	For	Exchan	geable c	ations		Clay fi	action	comp	osition	
	per pot	1 11011	rea	Ca	Mg	Na	Κ	S	V	С	Ι	Κ
	g		g kg-1	cmol _c k	g-1			%				
Non-calcareou	ıs soils											
2	300	0.979	19.2	8.4	2.00	0.25	0.38	0	0	0	72	28
4	465	0.992	13.5	2.4	0.34	0.08	0.2	0	29	0	26	45
8	260	0.943	35.9	39.5	3.20	0.35	0.75	0	14	0	39	47
Calcareous so	ils											
19	255	0.973	4.8		1.50	0.13	0.98	0	37	0	54	9
21	335	0.981	7.5		1.00	0.14	0.26	63	0	0	36	1
22	340	0.982	7.2		0.80	0.14	0.22	64	0	0	35	1
26	265	0.959	5.6		7.00	0.27	1.5	77	0	0	18	5
27	265	0.964	5.8		7.10	0.33	1.7	67	0	0	28	5
28	245	0.972	2.0		1.40	0.16	0.65	75	0	4	19	2
31	295	0.973	19.1		1.60	0.19	1.4	0	0	1	95	4
37	275	0.980	9.6		1.00	0.15	0.42	7	0	0	80	14
48	315	0.972	8.4		3.00	0.14	1.5	42	0	0	50	8

Table S1: Additional soil properties[‡] of the soils described in Sacristán et al. (2019)

[‡] HMF: Hygroscopic moisture factor; Fed: citrate/bicarbonate/dithionite-extractable Fe. S, Smectite; V, Vermiculite; C, Chlorite; I, Illite; K, Kaolinite.

Organic C (OC) was determined by rapid dichromate oxidation; particle size distribution by Gee and Bauder, (1986); pH by potentiometric measurement in a 1:2.5 w/v soil:water suspension; total calcium carbonate (CaCO₃) equivalent by van Wesemael, (1955); electrical conductivity (EC) in a 1:5 soil:water suspension with a conductivity meter; and cation exchange capacity (CEC) by extraction with 1 M NH4OAc buffered at pH 7. The different forms of iron (Fe) were extracted by Mehra and Jackson, (1960) and Schwertmann, (1964) and measured with the o-phenanthroline colorimetric method [6]. Micronutrients (Fe, Cu, Mn and Zn) were extracted with diethylenetriaminepentaacetic acid (DTPA) (Lindsay and Norvell, 1978) for measurement by atomic absorption spectrophotometry. Available soil P by Olsen et al. (1954) and phosphorus in the 0.01 M CaCl₂ was used as a proxy for P in the soil solution determined in a 1:10 w:v soil:solution suspension stirring it 30 min. and measured both with the method of Murphy and Riley (1962). Clay fraction composition was performed on oriented mounts (Mg saturation, Mg saturation/ ethylene glycol solvation, and K saturation treatments) examined by X-ray diffraction using a Bruker D8 ADVANCE instrument with monochromatic Cu K α radiation. Semiquantitative estimates of the proportions of different minerals were obtained by using the method of [10].

1. Sacristán, D.; González–Guzmán, A.; Barrón, V.; Torrent, J.; del Campillo, M.C. Phosphorus-induced zinc deficiency in wheat pot-grown on noncalcareous and calcareous soils of different properties. Arch. Agron. Soil Sci. 2019, 65, 208–223.

- Gee, G.W.; Bauder, J.W. Particle-size analysis. In *Methods of soil analysis*; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America, Madison: Madison, Wisconsin., 1986; pp. 383–412 ISBN 0891188118.
- 3. van Wesemael, J.C. De bepaling van het calciumcarbonaatgehalte van gronden. *Chem. Weekbl.* **1955**, *51*, 35–36.
- 4. Mehra, O.; Jackson, M. Iron oxide removal from soils and clays by a dithionitecitrate system buffered with sodium bicarbonate. In Proceedings of the 7th National Conference on Clays and Clay Minerals; Washington, D.C., 1960; pp. 317–327.
- 5. Schwertmann, U. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. *J. plant Nutr. soil Sci.* **1964**, *105*, 194–202.
- 6. Olson, R.V.; Ellis, J.R. Iron. In *Methods of Soil Analysis Part 2—Chemical and Microbiological Properties.*; Miller, R.H., Keeny, D.R., Eds.; Soil Science Society of America, USA.: Madison, WI, 1982; pp. 301–312.
- 7. Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. *Soil Sci. Soc. Am. J.* **1978**, *42*, 421–428.
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. No. 939 1954, 18.
- 9. Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. *Anal. Chim. Acta.* **1962**, *27*, 31–36.
- 10. Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. *Geol. Soc. Am. Bull.* **1965**, *76*, 803–832.

Soil code	Biomass			Nutrient	Nutrient uptake Grain nutrient concentration						Grai P/Zı	n n ratio										
	Grain yield	ADM§	Harvest	Р	К	Fe	Mn		Zn		Р		Κ		Fe		Mn		Zn			
	g		index	mg plan	t^1	µg plar	nt-1				mg	g-1			μg	g ⁻¹				_		
2	0.82 abcd	2.54 a	0.32 e	5.0 c	57 b	143 c	57	с	47	bcde	3.8	abc	5.5	b	46	bc	27	с	33	bcde	124	ab
4	0.50 cde	1.32 c	0.40 bcd	1.4 h	29 e	71 g	102	а	48	cde	2.5	cd	4.8	ef	57	bc	49	а	67	ab	40	ef
8	0.54 bcde	1.56 bc	0.34 de	1.9 fg	33 de	88 f	43	d	48	bcde	3.2	abc	5.2	bcd	48	bc	30	abc	61	ab	53	bcdef
19	0.82 ab	1.61 bc	0.51 a	2.1 ef	36 d	112 e	36	e	66	ab	2.3	cd	5.2	bcde	41	с	28	bc	53	ab	44	def
21	0.61 bcde	2.55 a	0.24 f	5.6 b	59 b	201 a	85	b	75	а	4.9	ab	5.5	b	60	ab	44	ab	65	a	77	abc
22	0.82 abc	1.92 ab	0.43 bc	2.3 ef	46 c	114 e	32	f	50	abcd	2.5	cd	4.9	cdef	44	bc	23	с	43	abcd	60	bcde
26	0.80 abcd	2.21 ab	0.35 de	2.8 d	58 b	159 b	25	g	60	abc	2.9	bc	4.9	cdef	50	bc	20	с	53	abc	61	bcde
27	0.53 de	1.16 c	0.45 ab	1.6 gh	33 de	87 f	16	h	26	ef	2.3	cd	7.7	а	51	abc	22	с	31	cde	82	abcd
28	0.48 e	1.27 с	0.38 cde	1.0 i	28 e	91 f	26	g	41	def	1.8	d	4.5	f	42	с	27	bc	55	а	32	f
31	0.37 e	2.00 ab	0.19 f	2.5 de	55 b	120 d	e 79	b	40	def	2.4	cd	5.4	bc	71	а	44	ab	54	abc	51	cdef
37	0.66 abcde	1.58 bc	0.40 bcd	1.9 fg	36 d	70 g	37	e	21	f	2.5	cd	4.8	def	42	с	30	abc	20	e	122	ab
48	1.05 a	2.73 a	0.38 cde	6.3 a	66 a	127 d	39	de	44	def	5.0	а	4.6	f	43	с	21	с	25	de	206	а

Table S2: One-way ANOVA or Kruskal–Wallis test and comparison of means [‡] for wheat biomass, nutrient uptake and grain nutrient concentration (mean value, *n* = 18) on the different soils at harvest.

[‡]When differences were significant, the LSD (ANOVA) or Dunn's (Kruskal–Wallis) post-hoc test was performed, different letters denoting significant differences between soils. The Kruskal–Wallis test was applied to biomass, grain nutrient concentration and P/Zn ratio in grain because the variance homoscedasticity condition was not fulfilled . [§]Aerial dry matter

	Biomass		Plant nutrien	it uptake						
Treatment	Grain yield	Straw	Р	Κ	Mg	Ca	Na	Fe	Mn	Zn
	g		mg plant-1				µg plant⁻¹			
Control	0.64 ± 0.04	0.88 ± 0.05	1.83 ± 0.11	36.3 ± 1.9	3.11 ± 0.18	3.34 ± 0.24	475 ± 41	99 ± 2	32.1 ± 3.3	43.9 ± 2.9
B. bassiana	0.63 ± 0.04	0.92 ± 0.06	1.75 ± 0.13	36.1 ± 1.9	3.26 ± 0.19	3.27 ± 0.21	486 ± 43	102 ± 3	32.2 ± 3.3	44.9 ± 2.8
$P_{ m FT}$ ‡	0.888	0.916	0.415	0.778	0.158	0.706	0.057	0.250	0.766	0.546
$P_{ m interaction}$	+	+	0.867	0.002	0.818	+	0.002	0.517	0.255	0.653
Control	0.61 ± 0.03	1.08 ± 0.08	2.59 ± 0.28	39.9 ± 2.1	3.62 ± 0.23	4.34 ± 0.39	506 ± 36	114 ± 7	43.0 ± 4.5	46.9 ± 3.3
M. brunneum	0.59 ± 0.03	1.08 ± 0.09	2.27 ± 0.23	43.6 ± 3.1	3.63 ± 0.25	3.94 ± 0.30	515 ± 42	111 ± 7	42.9 ± 4.6	46.8 ± 3.7
$P_{ m FT}$	0.688	0.605	0.474	0.118	0.453	0.500	0.112	0.418	0.664	0.355
$P_{ m interaction}$	+	+	0.310	0.048	0.556	0.281	0.079	0.256	0.072	0.279

Table S3: Factorial ANOVA (soil × fungal treatment) and Kruskall–Wallis test (\dagger , when data failed to fulfill the criteria for parametric analysis) for grain yield, straw and nutrient uptake of durum wheat plants grown on GSGYI < 15.[§] Significant differences (P < 0.05) are in boldface.

⁺Absence of *P* for the interaction means that the variance fulfilled neither the homoscedasticity nor the normality condition, so a Kruskal–Wallis test was used instead. ^sGroup of soils in which the increase in grain yield was lower than 15% (Soils 19, 22, 27, 28 and 31, *n* = 30, with *B. bassiana*; and Soils 19, 21, 22, 27, 28, 31 and 37, *n* = 42, with *M. brunneum*).

[‡]Only the probability values (*P*) for the fungal treatment (*P*_{FT}) and the soil × fungal treatment interaction (*P*_{interaction}) are shown because those for the factor soil (*P*_{soil}) were all significant (*P* < 0.05).

0	Plant nutrient up	otake			Grain nutrient concentration					
Treatment	Mg	Ca	Fe	Mn	Mg	Ca	Fe	Mn		
	mg plant ⁻¹		µg plant⁻¹		g kg ⁻¹	mg kg ^{_1}				
Control	5.10 ± 0.31	4.67 ± 0.37	128 ± 8	57.9 ± 5.5	2.34 ± 0.07	210 ± 7	51.8 ± 2.3	33.6 ± 2.3		
B. bassiana	4.95 ± 0.31	4.10 ± 0.25	123 ± 7	53.4 ± 4.4	2.09 ± 0.06	214 ± 6	47.6 ± 2.0	29.4 ± 2.1		
$P_{ m FT}$ ‡	0.452	0.107	0.914	0.212	0.008	0.661	0.146	0.051		
$P_{ m interaction}$	0.604	0.169	0.076	0.344	+	0.188	0.828	0.944		
Control	5.18 ± 0.38	3.71 ± 0.19	117 ± 6	52.3 ± 6.6	2.32 ± 0.08	201 ± 7	51.1 ± 2.8	29.9 ± 2.7		
M. brunneum	4.98 ± 0.39	3.66 ± 0.23	121 ± 8	54.8 ± 7.1	2.19 ± 0.08	189 ± 4	46.2 ± 3.0	30.4 ± 4.0		
$P_{ m FT}$ §	0.146	0.88	0.092	0.711	0.491	0.037	0.193	0.973		
$P_{ m interaction}$	0.755	0.299	0.108	0.996	0.678	0.017	0.976	0.889		

Table S4: Factorial ANOVAs for nutrient uptake and grain nutrient concentration (mean \pm standard error) with soil and fungal treatment as factors for the GSGYI > 15. Significant differences (P < 0.05) are in boldface.

+Absence of *P* for the interaction means that the variance fulfilled neither the homoscedasticity nor the normality condition, so a Kruskal–Wallis test was used instead.

[§] Group of soils in which grain yield increased by more than 15% (Soils 2, 4, 8, 21, 26, 37 and 48, *n* = 42, with *B. bassiana*; and Soils 2, 4, 8, 26 and 48, *n* = 30, with *M. brunneum*).

[‡]Only the probability values (*P*) for the fungal treatment (P_{FT}) and the soil × fungal treatment interaction ($P_{interaction}$) are shown because those for the factor soil (P_{soil}) were all significant (P < 0.05).

Treatment	Р	K	Mg	Ca	Na	Fe	Mn	Zn	Grain P/Zn ratio
	mg kg-1			µg kg-1					
Control	2.40 ± 0.17	5.55 ± 0.29	1.96 ± 0.08	212 ± 6	46.9 ± 3.3	45.7 ± 2.4	27.5 ± 1.7	44.2 ± 2.9	62.3 ± 7.6
B. bassiana	2.07 ± 0.11	5.52 ± 0.30	2.03 ± 0.09	217 ± 6	44.8 ± 2.8	48.7 ± 1.9	26.3 ± 1.3	46.9 ± 2.2	48.3 ± 4.1
$P_{ m FT}$ ‡	0.333	0.626	0.286	0.806	0.185	0.328	0.334	0.146	0.615
$P_{ m interaction}$	+	0.141	0.683	+	+	0.799	0.711	0.361	+
Control	2.97 ± 0.23	5.38 ± 0.23	2.07 ± 0.07	223 ± 6	45.6 ± 2.4	47.9 ± 2.1	31.7 ± 1.8	46.6 ± 3.2	73.3 ± 7.0
M. brunneum	2.59 ± 0.17	5.44 ± 0.16	2.04 ± 0.09	216 ± 6	45.9 ± 2.7	49.7 ± 2.7	29.6 ± 1.5	47.9 ± 2.9	61.9 ± 6.3
$P_{ m FT}$	0.24	0.098	0.947	0.551	0.99	0.334	0.077	0.812	0.157
$P_{ m interaction}$	0.685	0.029	0.424	+	+	0.454	0.321	+	+

Table S5: Factorial ANOVA (soil × fungus) and Kruskall–Wallis test (†, when data failed to fulfill the ANOVA criteria) for grain nutrient concentration in the GSGYI < 15.[§] Significant differences (P < 0.05) are in boldface.

⁺Absence of *P* for the interaction means that the variance fulfilled neither the homoscedasticity nor the normality condition was fulfilled, so a Kruskal–Wallis test was used instead.

[§]Group of soils in which grain yield increased by less than 15% (Soils 19, 22, 27, 28 and 31, *n* = 30, with *B. bassiana*; and Soils 19, 21, 22, 27, 28, 31 and 37, *n* = 42, with *M. brunneum*).

[‡]Only the probability values (*P*) for the fungal treatment (*P*_{FT}) and the soil × fungal treatment interaction (*P*_{interaction}) are shown because those for the factor soil (*P*_{soil}) were all significant (*P* < 0.05).

- 0	()							
Treatment	Р	K	Mg	Ca	Na	Fe	Mn	Zn
	mg plant-1				µg plant⁻¹			
Control	2.99 ± 0.25	41.9 ± 1.7	4.24 ± 0.23	4.08 ± 0.25	735 ± 89	115 ± 5	46.7 ± 3.8	48.6 ± 2.1
Bb	2.69 ± 0.22	44.2 ± 1.9	4.22 ± 0.22	3.73 ± 0.18	832 ± 10	114 ± 5	44.2 ± 3.2	47.5 ± 1.8
Р	0.053	0.205	0.969	0.286	0.136	0.677	0.221	0.337
Mb	2.83 ± 0.24	46.9 ± 2.5	4.19 ± 0.23	3.83 ± 0.21	801 ± 110	116 ± 6	47.8 ± 4.0	47.8 ± 2.2
Р	0.572	0.081	0.757	0.574	0.106	0.214	0.874	0.870

Table S6: Paired *t*-test for nutrient uptake (mean \pm SE) of fungus-treated plants against non-inoculated plants (*n* = 72) at harvest (102 DAS). Significant P values (*P* < 0.05) are in **boldface**.

Table S7: Paired *t*-test for grain nutrient concentration (mean \pm SE) of fungus-treated plants against non-inoculated plants (*n* = 72) at harvest (102 DAS). Significant P values (*P* < 0.05) are in boldface.

Treatment	Р	К	Ca	Mg	Na	Fe	Mn	Zn	Grain P / Zn ratio
	mg kg ^{_1}				µg kg⁻¹				
Control	3.29 ± 0.18	5.08 ± 0.15	212 ± 5	2.17 ± 0.06	49 ± 2	49.2 ± 1.7	31.0 ± 1.5	48.4 ± 2.8	83.9
Bb	2.70 ± 0.15	5.26 ± 0.16	216 ± 4	2.06 ± 0.06	51.3 ± 2.85	48.1 ± 1.4	28.1 ± 1.3	44.4 ± 2.2	72.4
Р	0.002	0.175	0.417	0.105	0.689	0.265	0.004	0.126	0.066
Mb	2.98 ± 0.16	5.26 ± 0.11	205 ± 4	2.11 ± 63.1	49.5 ± 2.4	48.2 ± 2.0	29.9 ± 1.9	47.3 ± 2.7	78.2
Р	0.012	0.115	0.369	0.249	0.888	0.322	0.19	0.715	0.205

Figure S1: Time course of plant height (mean \pm standard error, n = 6) in plants inoculated with *B. bassiana* and non-inoculated (Control) plants grown on Soils 28 and 37. Significant (P < 0.05) differences are marked with an asterisk

Figure S2: Nature of soil × fungal treatment interaction in K uptake by plants on soils pertaining to the GSGYI > 15 (those where grain yield was increased by more than 15%) inoculated with *B. bassiana*. Significant (P < 0.05) differences are marked with an asterisk

Figure S3: Nature of soil × fungal treatment interaction in K and Na uptake by plants on soils pertaining to the GSGYI < 15 (those where grain yield was increased by less than 15%) inoculated with *B. bassiana* (A and B) or *M. brunneum* (C and D). Significant (*P* <0.05) differences are marked with an asterisk

Figure S4: Nutrient availability (Fe and Cu) in soils before (*x* axis) and after (*y* axis) crop, showing the different values for Control (white circles), *B. bassiana* (black circles) and *M. brunneum* (black squares).