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Abstract: Two indica inbred rice lines, IR64, a drought-sensitive, and Apo, a moderately
drought-tolerant genotype, were exposed to non- (control or unstressed) and water-stress treatments.
Leaf samples collected at an early flowering stage were sequenced by RNA-seq. Reads generated were
analyzed for differential expression (DE) implementing various models in baySeq to capture differences
in genome-wide transcriptional response under contrasting water regimes. IR64, the drought-sensitive
variety consistently exhibited a broader transcriptional response while Apo showed relatively
modest transcriptional changes under water-stress conditions across all models implemented. Gene
ontology (GO) and KEGG pathway analyses of genes revealed that IR64 showed enhancement of
functions associated with signal transduction, protein binding and receptor activity. Apo uniquely
showed significant enrichment of genes associated with an oxygen binding function and peroxisome
pathway. In general, IR64 exhibited more extensive molecular re-programming, presumably, a highly
energy-demanding route to deal with the abiotic stress. Several of these differentially expressed genes
(DEGs) were found to co-localize with QTL marker regions previously identified to be associated
with drought-yield response, thus, are the most promising candidate genes for further studies.

Keywords: RNA-seq; differential expression; rice; drought

1. Introduction

More than half of the world’s population depends on rice. Most of these people live in Asia,
where at least 90% of the world’s rice is produced and consumed [1]. Increasing production has been
the center of collaborative efforts and consortia to keep up with the global demands amidst changing
climatic conditions, dwindling arable lands, and an increasing world population.

Among the abiotic stresses, drought is considered the most important limitation to rice production
in rainfed lowlands and is estimated to affect at least 23M ha of rice area (20% of the total rice area)
in Asia [2]. Drought, together with poor soil conditions, limits upland rice yield in over 19M ha
representing 15% of the rice-growing area worldwide [3].

While rice is generally adapted to a well-watered or irrigated ecosystem, there are genetic
variations against drought that have been observed in traditional and modern varieties [4,5]. These
phenotypic variations provide the platform for biological investigation to shed hints on the underlying
genetic mechanisms of a drought response.
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The advent of modern approaches on genomics such as high-throughput sequencing has
revolutionized genetic and transcriptome analyses of important crops including rice. Most notably,
the 30K rice genome sequencing project provided a plethora of resource information on its genetic
variation, population structure and diversity [6].

Genome-wide expression analysis in response to either biotic or abiotic stress has been a subject
of a number of research studies for several years before now. Drought tolerance, for example,
has been extensively studied in rice (e.g., [7–9]). However, such a trait is challenging to work with
as it is controlled by many genes–with both small and large effects. Zhou et al. [9], for example,
demonstrated that the tolerance of several genotypes, e.g., N22 and Apo, was attributed to the
enhanced expression of several enzyme-encoding genes, while the susceptibility of IR64 was ascribed
to significant down-regulation of regulatory alleles.

Molecular markers, on the other hand, such as restriction fragment length polymorphism (RFLP),
simple sequence repeats (SSR) and single nucleotide polymorphism (SNP), help to track the genetic loci
controlling several traits through quantitative trait loci (QTL) mapping or genome-wide association
studies (GWAS). Once identified, the QTL can be selected for breeding programs using marker-assisted
selection (MAS) and other strategies. Several drought-response QTLs have been mapped in rice in a
number of studies [10–14], mostly employing indica × japonica parental lines where the majority of
the drought-tolerance traits were contributed by the japonica parent [14,15]. Recently, GWAS using
image-based traits has identified OsPP15 (LOC_Os01g62760, protein phosphatase) to be associated
with drought resistance [16].

In this study, Apo, a moderately drought-tolerant upland indica cultivar, and IR64, a drought-
susceptible lowland indica cultivar, were sequenced to identify their expression patterns after exposure
to both non- and water-stress conditions. These two genotypes are well known for their contrasting
sensitivity to drought at a vegetative stage under field conditions [17]. The use of two indica parents
offers advantages since indica × japonica lines are extensively studied where both ecotypes are grown in
entirely different environments; one allele may not be expressed in a particular ecosystem. Hence,
it is desirable to look for genetic variations within indica ecotypes with contrasting response against
drought conditions and map loci using the same lines. This approach would provide identification of
loci or causative regions, which respond to varying water regimes between two highly genetically
related inbred lines. Furthermore, indica accounts for more than 70% of the global rice production and
is widely cultivated in China and Southeast Asia [18]. Therefore, such a study will provide valuable
insights on the different molecular changes between indica inbred lines.

The present study generally aimed to identify DEGs between the two genotypes through
transcriptome analysis under two contrasting water regimes: normal vs. water-stress. Eventually,
we co-localized DEGs with previously identified drought-yield QTLs to shortlist potential candidate
genes for further studies.

2. Materials and Method

In this paper, we performed differential expression (DE) analysis between two inbred rice lines,
IR64 and Apo, using various models as described in baySeq [19,20]. The biological preparations of the
materials and the bioinformatics pipeline (see SI 1 for commands used) are described below.

2.1. Dry-Down Experiment

Seeds of the parental inbred lines were pre-germinated for five to seven days in petri plates with
sterilized filtered paper, moistened with distilled water. Germinated seeds were transferred in small
plastic boxes for one week after which they were transplanted in pots filled with approximately 10 kg
of soil mix (2 soil: 1 sand), adequately fertilized and grown under controlled conditions at Phytotron,
IRRI at 30 ◦C temperature with 70% relative humidity (Figure 1). Saturated soils in the pots were
covered with white plastic covers, with an opening in the middle to facilitate planting. Feeder pipes
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were inserted for watering the pots. One pre-germinated seed was transplanted per pot. All the pots
were maintained in a well-watered/ flooded condition.

 
 

by loosening the base stoppers and were weighed early the next morning to get the saturated weight. 

Stress was imposed by initiating soil dry down protocol starting 10 days before heading.  

Gradual dry down to 0.5 FTSW (fraction of transpirable soil water) was imposed and pots were 

maintained at this level until sampling [21–23]. No water was added back to the pot during dry down. 

All pots were weighed daily to account for volume of water lost and to ensure the stress level was 

reached. 

 

Figure 1. Using large pots, rice plants inside the IRRI phytotron were exposed to either well-watered or 

water-stressed conditions. Inset: punctured conical tubes served as feeder pipes on each pot to deposit 

water. 

In this study, non-stress or well-watered treatment served as the normal or control condition; 

water-stress or water-limiting condition as stressed treatment. These terms are used interchangeably in 

this paper. Furthermore, as a consequence of alternative splicing, several genes were identified to have 

one or more splice or transcript variants. Thus, genes are represented as gene models or isoforms as 

described in Michigan State University (MSU) Rice Genome Annotation located at 

http://rice.plantbiology.msu.edu/ [24].  

2.2. RNA Extraction 

At the end of the dry-down treatment, the flag leaf samples from each plant were collected 

between 0900 and 1100 and were immediately frozen using liquid N. RNA was extracted using the 

TRIzol method according to the instructions provided by the supplier (Invitrogen, San Diego, Calif., 

USA). RNA-seq libraries were prepared as described in Illumina’s standard protocol for RNA-seq using 

the parental (IR64 and Apo) RNA samples from each treatment (non- and water-stress). Libraries were 

sequenced on Illumina GAIIx, generating a 38-bp read size for our first biological rep; 90-base paired 

end (PE) reads, for the second rep. We tested whether there was significant effect of these dissimilar 

read sizes in our analysis by generating M (log ratio) and A (mean average) or MA plots.  

  

Figure 1. Using large pots, rice plants inside the IRRI phytotron were exposed to either well-watered
or water-stressed conditions. Inset: punctured conical tubes served as feeder pipes on each pot to
deposit water.

All pots were irrigated twice daily to maintain the soil at saturation. The day before the start of
progressive soil drying, soil in each pot was saturated. Stressed plants were allowed to drain overnight
by loosening the base stoppers and were weighed early the next morning to get the saturated weight.
Stress was imposed by initiating soil dry down protocol starting 10 days before heading.

Gradual dry down to 0.5 FTSW (fraction of transpirable soil water) was imposed and pots were
maintained at this level until sampling [21–23]. No water was added back to the pot during dry
down. All pots were weighed daily to account for volume of water lost and to ensure the stress level
was reached.

In this study, non-stress or well-watered treatment served as the normal or control condition;
water-stress or water-limiting condition as stressed treatment. These terms are used interchangeably
in this paper. Furthermore, as a consequence of alternative splicing, several genes were identified
to have one or more splice or transcript variants. Thus, genes are represented as gene models
or isoforms as described in Michigan State University (MSU) Rice Genome Annotation located at
http://rice.plantbiology.msu.edu/ [24].

2.2. RNA Extraction

At the end of the dry-down treatment, the flag leaf samples from each plant were collected
between 0900 and 1100 and were immediately frozen using liquid N. RNA was extracted using the
TRIzol method according to the instructions provided by the supplier (Invitrogen, San Diego, CA,
USA). RNA-seq libraries were prepared as described in Illumina’s standard protocol for RNA-seq
using the parental (IR64 and Apo) RNA samples from each treatment (non- and water-stress). Libraries

http://rice.plantbiology.msu.edu/
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were sequenced on Illumina GAIIx, generating a 38-bp read size for our first biological rep; 90-base
paired end (PE) reads, for the second rep. We tested whether there was significant effect of these
dissimilar read sizes in our analysis by generating M (log ratio) and A (mean average) or MA plots.

2.3. Pre-Processing

Quality checking of PE reads was performed using FASTQC [25]. Reports generated from
the FASTQC files indicated the absence of adapters, insignificant proportions of over-represented
sequences and high base-quality sequences (Q ≤ 20). Therefore, no further processing steps were made.
Reads were mapped via bowtie2 (parameters: –no-discordant) to the cDNA pseudomolecules of Oryza
sativa indica 93–11 and Shuhui498 and the MSU v7 and International Rice Genome Sequencing Project
(IRGSP) models of the japonica Nipponbare as the transcriptome references. Mapping was performed
to generate Binary Alignment/Map files using SAMtools [26] (parameter: view –b). These are binary
files which are compressed, thus, occupy smaller memory size and are easier for computers to work
with. Using the same tool, reads with low mapping quality were removed using a modest filtering
parameter (option: view –q 1). We then compared the percentage alignment of reads mapping to the
various transcriptome references.

2.4. Read Count Quantification

Read count quantification after transcriptome mapping was performed using Salmon on
alignment-based mode (options: –biasCorrect –useErrorModel) [27]. The annotations (“Name”)
and the number of reads (“NumReads”) columns generated by Salmon were extracted and a count
data matrix was created using R (v3.6.1; in Linux environment) [28].

2.5. Data Filtering and Normalization

Isoforms with low expression values (nearly zero row sums) in the data matrix were removed
to decrease memory and increase calculation speed. Normalization of datasets based on library size
was performed to make the data from different replicates and treatments more comparable. Library
scaling factor was calculated using Trimmed Means of M-values (TMM) [29]. MA plots with Loess
curves were created (SI 2) to determine whether normalization was effective. Loess curves indicated
an adequate normalization procedure in our datasets.

Prior to DE analysis, Spearman’s coefficient of correlations was calculated, and histograms and
summary statistics before and after removal of low read counts were generated. Between Pearson
and Spearman methods, we preferred the latter, a non-parametric rank-based metric, well-suited for
non-normal distributions to calculate the coefficient of correlations since Pearson is heavily influenced
by outliers, and RNAseq data is heavily skewed [30]. Additionally, Spearman was shown to perform
best among tested correlation methods for identifying differential correlation [31].

In summary, we implemented several statistical filtering measures and parameters to minimize
artifacts in identifying DEGs: (i) reads with low-mapping quality were removed, (ii) isoforms (i.e., rows)
with low read counts in the data matrix were filtered out, (iii) datasets were normalized with respect
to library size, (iv) Spearman’s coefficient of correlation between replicates of the same sample were
very high (0.94 and 0.95), and (v) in case of the dissimilar read sizes (i.e., 38- and 90-bp), tight and
symmetrical MA plots were obtained.

2.6. Differential Expression Analysis

BaySeq was used to test DE following the instructions described in the paper by Hardcastle and
Kelly [19] and as described in the vignettes [20,32]. Pairwise DE analysis was performed between
samples exposed to non- and water-stress conditions for each genotype (i.e., Apo control vs. Apo
stress; IR64 control vs. IR64 stress), to determine the effect of the treatment (water stress) to each of
the genotypes.
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DE using more complex models was also determined to capture: (1) genes that do not change
between the conditions nor vary between genotypes: we called it non-differential expression or NDE
(IR64 non-stress, IR64 stress, Apo non-stress, Apo stress). Here, we assumed that all the samples
belonged to the same group; (2) overall variations between IR64 and Apo due to their genotypic
differences, across treatments: genotype DE or GDE (IR64 non-stress, IR64 stress vs. Apo non-stress,
Apo stress). These are genes that differ between the two cultivars, under both treatments; (3) differences
that arise between the two genotypes due to the stress: we called this drought DE or DDE, a three-way
DE analysis (IR64 non-stress, Apo non-stress vs. IR64 stress vs. Apo stress). This captures variations
between the two genotypes as a consequence of their exposure to water stress; and (4) residual
differences among groups or RDE (IR64 non-stress vs. IR64 stress vs. Apo non-stress vs. Apo stress).
These are differences across genotypes and treatments. See SI 2 for additional baySeq R commands
and their explanations.

Bayseq [19,20] estimates posterior likelihoods of differential gene expression. For pairwise DE,
the average of two replicates was obtained for each treatment and expression ratios were calculated
as treatment/control (T/C) plus a pseudo-count of 1 to avoid 0 denominators. Log (base 2) ratio
or fold-change (FC) was then computed. In the DE analysis between samples exposed to non-
and water-stress treatments of the same genotype, an isoform (or a transcript variant) is said to
be differentially expressed if it exhibits |log2FC| ≥ 1, false discovery rate (FDR) p-value correction
< 0.05 [33], and an absolute value difference > 10 as was previously implemented [34].

For DE analysis using the other models described above (NDE, GDE, DDE, RDE), a gene is
differentially expressed if it exhibits FDR-corrected p-value < 0.05. No residual differences (RDE) were
detected in this study.

We used AgriGO [35,36] to perform Gene Ontology (GO) enrichment analysis located at http:
//systemsbiology.cau.edu.cn/agriGOv2/ [37], implementing Singular Enrichment Analysis (SEA) with
O. sativa Rice MSU7.0 nonTE transcript ID as the reference background. A Venn diagram was also
generated using InteractiVenn (http://www.interactivenn.net/) [38] to show overlaps among DEGs.

Kyoto Encyclopedia of Genes and Genomes (KEGG) [39] analysis was further performed to
determine molecular interactions and relational networks among DEGs. Located at https://www.
genome.jp/kaas-bin/ [40], the tool implements BLAST search program against the reference Oryza
sativa japonica (RefSeq and RAPDB) as reference databases.

2.7. Co-Localization Analysis

A co-localization step was performed by aligning the positions of DEGs (described above) to
previously identified SSR markers known to be involved with yield under drought in populations with
the same parental background (IR64/Apo): F3:5 [41] and F2:3 [12]. The population tail ends (highest and
lowest yield) of IR64/Apo F3:5 Recombinant Inbred Lines (RILs) were selectively genotyped using SSR
markers then we identified regions associated with drought-yield response [41]. On a separate study,
Venuprasad et al. [12] identified markers responding to selection under water-limiting conditions using
IR64/Apo F2:3 RIL population. These SSR marker regions were anchored in the indica genome and
their locations were estimated using Ensembl [42]. Using the same tool, their proximity with DEGs
could be estimated. SSR markers were provided in a previous study [43]. Several genes were found to
co-localize with the QTL markers at a physical distance of at most 240 kb, the estimated equivalent of
1 cM. The application ICIMapping [44] was used to generate the map based on Cornell and IRMI.

3. Results and Discussion

Two genotypes with contrasting response against drought—(i) IR64, a moderately
drought-susceptible genotype [45], and (ii) Apo (IR55423-01), a moderately tolerant variety [46]—were
exposed to well-watered (non-stress) and drought conditions (water-stress). Leaf samples were
collected after treatment during the flowering stage, the most sensitive stage affecting grain yield [47,48],

http://systemsbiology.cau.edu.cn/agriGOv2/
http://systemsbiology.cau.edu.cn/agriGOv2/
http://www.interactivenn.net/
https://www.genome.jp/kaas-bin/
https://www.genome.jp/kaas-bin/
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then were sequenced for RNA-seq. We generated 58,715,576 and 107,027,567 reads from all libraries in
rep 1 and 2, respectively, with a grand total read count of 166 million (Table 1).

Table 1. Number of reads generated from each sample replicate from both IR64 and Apo and their
overall alignment rates against the MSU v7.

Treatment Genotype
Rep 1 Rep 2

Number of
Reads

% Overall
Alignment Rates

Number of
Reads

% Overall
Alignment Rates

Control
(Non-stressed)

APO 16,037,800 82.77 26,626,256 89.69
IR64 16,083,456 83.72 25,871,136 83.73

Stressed
APO 13,338,980 84.44 26,821,175 89.49
IR64 13,255,340 71.46 27,709,000 76.82

Total 58,715,576 107,027,567

3.1. Read Mapping

Reads were mapped to the transcriptome references of the indica lines 93–11 [49] (Ensembl
release 36) and Shuhui498 (“Shuhui” in this paper) [50]. Likewise, reads were mapped to the cDNA
references of the japonica lines, Nipponbare, using MSU v7 [51] and the IRGSP (2005) [52] models,
via bowtie2 [53] (see Supplementary Information (SI) 1 for complete commands used). Mapping
to multiple transcriptome assemblies aims to determine which reference sequence yields the best
percentage alignment.

Initial mapping of three sample libraries against the 93-11 cDNA showed an average of 52%
alignment rate (data not shown) against the other three transcriptome references. Among the reference
assemblies, MSU v7 and Shuhui showed the best alignment rates (83%; shown in Table 1 and Table S1,
respectively). Details of alignments including multiple aligned reads using MSU v7 is shown in
Table S2. However, between MSU v7 and Shuhui, we preferred the former reference for further
analysis to be consistent with our previous studies on allelic imbalance in hybrids [41] and regulatory
divergence [54]. However, results using Shuhui, an indica like our materials, are sporadically presented
below and are comprehensively discussed in the Supplementary Discussion for comparative purposes.

3.2. MA Plots and Spearman’s Coefficient of Correlations

The sequencing protocol generated 38– and 90–basepair read sizes for replicates 1 and 2,
respectively. To determine whether there was an impact of these varying sizes on the succeeding
analysis, MA plots (where M is the difference in log expression values and A is the average [55])
with Loess curve [56,57] were created between IR64 reps 1 and 2 and between Apo reps 1 and 2.
Results showed that MA plots indicated tight and symmetrical data points (at M = 0) with centered
Loess curves suggesting that there is no significant variability between the two replicates of the same
genotype (Figure S1). Hence, it is reasonable to suppose that there is no influence of the dissimilar read
sizes in the succeeding DE analysis.

Using MSU v7 transcriptome reference, Spearman’s coefficient of correlations using normalized
read counts between replicates showed 0.93 and 0.94 in IR64 control and stress treatments, respectively
(Figure 2). Similarly, Apo showed 0.95 between replicates under both non- and water-stress treatments.
These results indicate a high level of reproducibility between replicates of the same genotype.
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Figure 2. Matrix indicating Spearman’s coefficient of correlations among sample replicates using
normalized read counts. (Legend: I, IR64; A, Apo; C, control or non-stress; S, water-stress treatment.
Numbers succeeding each letter indicates replicate number. Bottom figure shows color scale bar).

3.3. Pairwise DE (PDE) Between Treatments of the Same Genotype

Samples exposed to non- and water-stress conditions were analyzed for PDE (i.e., IR64 control
vs. IR64 stress; Apo control vs. Apo stress) to determine the effect of the treatment in each genotype.
Before testing for PDE, read counts were normalized with respect to library size. MA plots with Loess
curves were, likewise, generated to visualize whether our normalization procedure was effective.
Results showed symmetrical MA plots with “centered” Loess curves in our analyses, indicating that
the normalization procedure was effective (Figure S2).

In the IR64 samples, 170 genes were found to be differentially expressed (Figure 3; Table S3).
Of these, 36 (21.2%) and 134 (78.8%) are down- and up-regulated, respectively, under water-stress
conditions (|log2FC| > 1, FDR < 0.05). Two of the genes repressed under water-limiting conditions
encode for a nucleotide-binding site leucine-rich repeat (NBS-LRR), which is known to be involved in
disease resistance, and a brassinosteroid insensitive 1-associated receptor kinase which was recently
found to play a role in plant growth and defense [58] (complete list is shown in Table S3). On the
other hand, genes up-regulated under water-stress include zinc finger, MYB, NAC, late embryogenesis
abundant protein, and a bZIP protein, most of which are transcription factors (TFs). Such molecules
were known to play crucial roles during drought stress (reviewed in [59]).

In Apo, four genes showed significant DE between non- and water-stress conditions (Figure 3;
Table S4). Of these, one gene, a transposon is repressed, while three genes which include dehydrin,
HSF-type DNA-binding protein and an expressed protein are induced under stress conditions.
These three up-regulated genes in Apo were also found to be induced in the susceptible cultivar,
IR64 (Figure 3a) suggestive of their crucial roles in water-limiting conditions. Apparently, dehydrin
is up-regulated in both IR64 and Apo which are known to contribute in the acquisition of drought
and cold tolerance (reviewed in [60]). On the other hand, TFs were found to be induced in the
drought-sensitive IR64 but not in Apo using Shuhui as the reference assembly (see Supplementary
Discussion). No GO terms were enriched in the pairwise analysis.
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Figure 3. (a) Number of up- and down-regulated genes in each genotype. IR64, a relatively
drought-susceptible cultivar induces and suppresses a wider number of genes as compared to Apo.
(b) Analysis of DE showed that there are 170 and 4 genes differentially expressed in IR64 and Apo,
respectively. Three of these genes were found to be commonly differentially expressed and are all
up-regulated in both cultivars.

Results using Shuhui and MSU v7 assemblies consistently suggest that there is a major difference
in the number of genes responding to changes in environmental conditions between IR64 and
Apo. IR64, the drought-intolerant but high-yielding variety, exhibited a wider transcriptional
response when exposed to water-stress conditions, while Apo, the drought-tolerant genotype,
showed modest expression changes. These findings potentially demonstrate that Apo is relatively
transcriptionally stable under stressful conditions. Our results align with a previous study on jute [61].
The drought-susceptible species (Corchorus capsularis L.) showed a higher number of DEGs (794) as
compared to the drought-tolerant species (Corchorus olitorius L.; 39) in response to a Polyethylene
Glycol (PEG)-induced drought stress.

3.4. Differences Due to Genotypic Background across Treatments

We tested for DE between genotypes using a different model to capture differences between the
two parental inbred lines across the environmental conditions (“genotype differential expression” or
GDE; see SI 2 and Materials and Method). Analysis showed that there were 729 up-regulated genes in
Apo but were down-regulated in IR64 (at FDR < 0.05; Table S5). On the other hand, 828 genes were
significantly up-regulated in IR64 but were down-regulated in Apo.

3.4.1. GO Enrichment Analysis

Biological Process. GO analysis provides information on the potential functions of genes. Using
AgriGO [35,36], analysis revealed that both genotypes showed up-regulation of several genes enriched
in response to stress, cell death, and protein modification process (biological process; FDR < 0.05;
Figure 4). Between the two genotypes, IR64 induces a wider suite of genes (112 genes) associated with
response to stress, as compared to Apo (82; FDR < 0.05; Figure 4).
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Figure 4. Graphical representation of GO enrichment analysis of up-regulated genes associated with
biological process in Apo (a) and IR64 (b).

Both varieties commonly induce genes which encode for disease resistance protein, NBS-LRR,
and nucleotide-binding—APAF-1, R proteins, and CED-4 (NB-ARC) associated with cell death,
one of the most frequently enriched biological processes. However, Apo uniquely encodes for
AP2 (LOC_Os09g11480), Leucine Rich Repeat (LRR; LOC_Os04g26350 and LOC_Os06g16450) and
heat-shock protein (LOC_Os08g32130) enriched in cell death, which are not found in IR64. On the
other hand, IR64 showed the DE of genes associated with response to biotic stimulus and signal
transduction, the most frequently enriched biological processes, which are not enriched in Apo
(Figures 4b and 6). Some of the genes associated with signal transduction encode for receptor-like
protein kinases (12 genes), LRR (4 genes), NBS-LRR disease resistance protein (2 genes), receptor kinase
(2 genes) and a serine/threonine-protein kinase receptor precursor.
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Molecular Function. GO analysis using AgriGO of the up-regulated genes in both genotypes
showed common significant enrichment (FDR < 0.05) of genes associated with kinase activity and
nucleotide binding (Figures 5 and 6).
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Figure 5. Graphical representation of GO enrichment analysis in up-regulated genes associated with
molecular functions in Apo (a) and IR64 (b).

Interestingly, Apo exhibits up-regulation of 16 genes distributed across its genome, all of which
encode for cytochrome P450 associated with oxygen binding activity (FDR < 0.05) (Figures 5a and 6).
These genes are either not expressed or down-regulated in the drought-susceptible, IR64. Cytochrome
P450 has been recently found to augment tolerance against drought stress in transgenic tobacco [62].
This information sheds hints that Apo is capable of scavenging reactive oxygen species (ROS), which
may impose cellular damage and even death if not kept under control for a prolonged period of
drought stress (reviewed in [63]).
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components).

Additionally, GO enrichment analysis showed that genes associated with protein binding and
receptor activity were the most frequently enriched molecular functions of the GDE genes which are
unique in IR64; hence not enriched in Apo (at FDR < 0.05; Figure 6). Some of the genes enriched in
receptor activities include NBS-LRR disease resistance protein (LOC_Os02g38392, LOC_Os11g10760),
LRR (LOC_Os09g15850), LRR receptor kinase (LOC_Os03g48890), serine/threonine-protein kinase
(LOC_Os05g42210), 26S proteasome regulatory subunit S5A (LOC_Os10g05180). These genes are
commonly induced during stress conditions.

3.4.2. KEGG Pathway Analysis of GDE Genes

ROS scavenging pathways. The accumulation of ROS during stressful conditions may cause damage
against essential macromolecules and even death of plant cells. Plants, being sessile, have evolved
important metabolic pathways to scavenge harmful ROS which include phenylpropanoid biosynthesis
and peroxisome pathway (reviewed in [64,65]).

In the drought-susceptible IR64, four significantly differentially expressed isoforms were found
to be involved in phenylpropanoid biosynthesis using KEGG pathway analysis. These included
LOC_Os07g47990 (peroxidase precursor), LOC_Os02g26810 (cytochrome P450), LOC_Os05g30350
(beta-glucosidase), and LOC_Os08g34790 (AMP-binding domain).

Apo, on the other hand, showed significant up-regulation of four genes involved in both metabolic
pathways. These included LOC_Os12g35890 (FAD-dependent oxidoreductase domain-containing
protein) and LOC_Os01g53060 (peroxisomal membrane protein) of the peroxisome pathway;
LOC_Os01g36240 (peroxidase precursor) and LOC_Os08g43040 (transferase family protein/ shikimate
O-hydroxycinnamoyltransferase) of the phenylpropanoid biosynthesis.

Hormones. Hormones such as abscisic acid (ABA), auxin and jasmonic acids (JAs) play key
roles in responding to both biotic and abiotic stresses (reviewed in [66]). Using KEGG pathway
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analysis, the drought-susceptible IR64 was found to induce LOC_Os03g08320 (jasmonate ZIM
domain-containing protein) and indole acetic acid (IAA) synthetase (LOC_Os07g40290), both of
which are associated with plant hormone signal transduction. Apo, on the other hand induces
LOC_Os01g28450 (pathogenesis-related protein/SCP-like extracellular protein) which has been known
to participate in a drought and salt response ([67]).

Transcription factors (TFs). Two genes significantly differentially expressed in IR64 were found
to encode for MYB (LOC_Os01g50110) and MADS box (LOC_Os01g66030). Apo, on the other
hand, induced genes including LOC_Os04g04390 (RFA1; replication factor A1/ retrotransposon),
LOC_Os06g50510.1 (homeobox-leucine zipper protein), LOC_Os08g42600.2 (retinoblastoma-like
protein 1) and LOC_Os08g38990.1 (WRKY).

Comparatively, Shuhui and MSU v7 as transcriptome references both suggest that IR64 was
found to have a wider repertoire of DEGs relative to Apo (see Supplementary Discussion). A similar
study performed between two maize inbred lines with contrasting response to drought exposed to
varying levels of stress (drought and well-watered) revealed that TFs enhance tolerance to drought [68].
Moreover, the sensitive line showed a greater number of genes (2558 genes) responding to drought
against the tolerant line (555 genes). These findings were consistent with our study in which the
drought-intolerant line exhibited a wider dynamic transcriptional response over the drought-tolerant
genotype. These studies [61,68], including this paper, suggest that drought-intolerant varieties are
highly responsive or are more vulnerable while drought-tolerant are sturdier against drought stress at
the transcriptional level.

3.5. Differences Due to Drought (G × E) Using 3-Way DE Model

Expression variation that arises due to the interactions between genotypes and environment
(G × E) can be detected. Using a different model in baySeq (drought differential expression or DDE;
see SI 2), genes responding to contrasting water treatments between the two genotypes could be
identified. We used a three-way DE model to detect these types of genes with comparative components
including: IR64 and Apo under non-stress vs. IR64 under stress vs. Apo under stress conditions
(see Figure 7 for additional information).

Using this model, 39 genes were dominantly expressed by IR64/Apo non-stress, which were
expressed in descending order by the other groups (i.e., IR64/Apo non-stress > IR64 stress >

Apo stress or IR64/Apo non-stress > Apo stress > IR64 stress) (see Table S6). LOC_Os04g41510.1
(serine/threonine-protein kinase), for example, were expressed at 1050, 466 and 189 (average normalized
read counts) by IR64/Apo non-stress, Apo stress and IR64 stress, respectively (FDR < 0.05); hence,
in descending order of expression levels, IR64/Apo non-stress > Apo stress > IR64 stress.

These 39 genes were enriched in kinase activities (molecular functions; FDR < 0.05) and cellular
process (biological process; FDR < 0.05) (Figure 7). As these are expressed under normal conditions, these
are constitutively transcribed in both genotypes. Kinases play important functions in phosphorylating
compounds involved in signaling pathways. Some of the genes found enriched in this group include
LOC_Os03g50325.1 (phosphatidylinositol 4-kinase), LOC_Os07g18240.1 (lectin-like receptor kinase),
LOC_Os07g45070.1 (FAT domain-containing protein), LOC_Os04g41510.1 (serine/threonine-protein
kinase), and LOC_Os06g12590.2 (protein kinase).

Further results reveal six genes significantly up-regulated in Apo under drought conditions
compared to the other groups (FDR < 0.05; Table S6) (Figure 7). Hence, a relatively modest number of
genes are significantly induced in Apo under a water-stress regime. These genes include cytochrome
(LOC_Os11g29720.1), MYB (LOC_Os06g51260.2), DNA-binding protein (LOC_Os02g47560.1),
regulator of ribonuclease (LOC_Os02g52450.1), expressed (LOC_Os05g11428.1) and Proton-dependent
Oligopeptide Transporter or POT (LOC_Os11g18110.1) (Table S6). Some of these genes, like cytochromes
which participate in ROS scavenging and MYB transcription factors, were known to engage in
water-stress conditions. No genes under “Apo stress” group were enriched in any of the GO domains
or terms.
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Figure 7. Central pie chart: number of up-regulated genes in each group in the three-way DE, drought
differential expression (DDE) model. Notably, a huge proportion of genes are induced in IR64 under
stress conditions. Also included are graphical representations of GO enrichment analysis of genes
up-regulated in IR64 under stress condition (left) and IR64 and Apo under non-stress treatment (right).

On the other hand, 155 genes were significantly up-regulated in IR64 under water-stress conditions
relative to the other groups (see Table S6) further demonstrating that IR64 consistently exhibits a
higher transcriptional response when exposed to drought conditions. Examples of IR64 genes
responding to the stress (G × E genes) include auxin-induced protein, dehydrins, cytochromes,
LEA proteins, stress-responsive protein and known TFs (see Table S6). KEGG pathway analysis further
confirms the participation of TFs, six of which were detected: LOC_Os01g46970 (plant G-box-binding
factor), LOC_Os08g36790 (ABA responsive element binding factor; bZIP TF), LOC_Os01g10320
(HD-ZIP; homeobox-leucine zipper protein), LOC_Os01g39020 (HSFF; heat shock transcription factor),
LOC_Os04g42950 (MYB transcription factor) and LOC_Os03g48970 (NFYA; nuclear transcription
factor Y, alpha).

GO analysis showed significant enrichment of up-regulated genes associated with “response
to stress” (36 genes; FDR < 0.05; Figure 7) suggesting the induction of drought-response
molecules. Notably, several of these genes encode for proteins known to participate in a
stress response: LRR (LOC_Os01g06890), ethylene-responsive TF (LOC_Os04g32620), thioredoxin
(LOC_Os04g44830), LOC_Os04g45810 (homeobox associated leucine zipper), universal stress
proteins (LOC_Os01g32780, LOC_Os01g63010, LOC_Os02g47840, and LOC_Os05g07810), bZIP TF
(LOC_Os08g36790), and dehydrins (LOC_Os11g26780 and LOC_Os11g26790).

Results using Shuhui and MSU v7 demonstrated that there were more IR64 genes responding to
water stress including TFs which were not found in Apo (see Supplementary Discussion and Table S14
for Shuhui).

3.6. Several DEGs Co-Localize with Drought-Yield QTLs

In our previous study [41], we identified regions in the rice genome which were associated with a
drought response using selective genotyping. These marker regions, along with drought-yield QTLs
identified by Venuprasad et al. [12], were co-localized with genes differentially expressed (described
above). Interestingly, several genes were found to align with drought-yield QTL regions located in
chromosomes 1, 2, 3, 6, 8 and 12 (Figure 8). These genes are, therefore, the most interesting candidates
for further studies on drought response in rice.
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In chromosome 1, an aggregation of DEGs were found to collocate with markers RM11943/RM6333.
This region is also associated with yield under drought in N22/IR64 population [70]. One of the most
interesting DEGs in this region encodes for a chlorophyll a/b binding protein (LOC_Os01g64960).
Its participation in drought tolerance has been reported in Arabidopsis [71].

A polygalacturonase-encoding gene (LOC_Os02g15690) is closely associated with RM71 in
chromosome 2. On the other hand, an aminotransferase (LOC_Os03g01600) and a retrotransposon
(LOC_Os03g01670) align with RM3387; a kinesin (LOC_Os03g53920) with RM520, all in chromosome 3.

In chromosome 6, a gene encoding for a protein of unknown function (LOC_Os06g06550) is
tightly linked with RM510. On the other hand, a suite of genes are aligned with the marker region
RM256/RM80 in chromosome 8, the most interesting of which include transposon (LOC_Os08g38110),
transcription factor BIM2 (LOC_Os08g38210), WRKY (LOC_Os08g38990), and heat shock protein
(LOC_Os08g39140). Finally, a disease resistance gene (LOC_Os12g29290) co-localizes with RM511 in
chromosome 12.

The combination of two approaches—RNA-seq and QTL mapping with co-localization analysis—is
a powerful strategy to identify potential segments involved in drought response. Further studies,
however, to dissect the participation of these shortlisted candidate genes, including cytochromes,
on drought response are highly recommended.

4. Summary and Conclusions

Using RNA-seq, the whole transcript population of IR64 and Apo were sequenced after exposure
to two contrasting water regimes. We implemented a bowtie–salmon–bayseq pipeline to identify
DEGs. Several filtering parameters were employed to reduce the influence of artifacts on our data
analysis. We also showed that using two different transcriptome reference sequences (MSU v7 and
Shuhui) can have an impact on the downstream analysis such as the number and variety of identified
DEGs. Therefore, decisions on which reference assembly to be used should be taken into consideration
for analysis on RNA-seq.

Taken together, our results suggest that IR64 and Apo have varying strategies of dealing with
the stress. IR64 demonstrated a more extensive molecular reprogramming, presumably, a more
energy-demanding route. Signaling pathways including ABA, jasmonic acid, and ethylene which
interact with ROS were shown to be highly activated in IR64. ROS, which accumulates during abiotic
stress such as drought conditions, are also responsible for signal transduction, receptor activity and cell
signaling which are highly enriched in IR64 but not in Apo. Both genotypes, enabled programmed cell
death in order to survive, which may eventually cause yield losses. Apo, on the other hand, showed
enhancement of functions associated with oxygen binding and peroxisome pathway. Further studies
to dissect these attributes of Apo is highly recommended.

Our results also showed several DEGs aligning with previous studies on drought-yield QTLs. These
are most interesting candidates for further investigations on rice improvement on drought tolerance.
Further validation procedures using different approaches (besides RNA-seq) are also recommended.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/5/621/s1,
SI 1. Commands used for the bioinformatics pipeline; SI 2. Commands used for DE using baySeq (R in Linux);
Figure S1. To visualize if normalization procedure was adequate, MA plots with Loess curves were generated
between IR64 reps 1 and 2 (left) and between Apo rep 1 and 2 (right). Blue line shows Loess curves; yellow, lines
of symmetry at M = 0; Figure S2. MA plots with Loess curves were generated for IR64 control vs IR64 stress
(left) and Apo control vs Apo stress (right). Legend similar to Figure S1. Table S1. Percentage alignment rates
of the reads mapping to the MSU, IRGSP, and Shuhui mRNA pseudomolecules; Table S2. Complete report of
bowtie2 on mapped and unmapped reads using the MSU v7 reference sequence. Table S3. List of DEGs in IR64
exposed under non- and water-stress conditions using MSU v7 as transcriptome reference sequence; Table S4. List
of DEGs in Apo exposed under non- and water-stress conditions using MSU v7; Table S5. List of DEGs between
IR64 and Apo using Genotypic Differential Expression (GDE) model and MSU v7 as transcriptome reference
sequence; Table S6. List of DEGs between IR64 and Apo using Drought Differential Expression (DDE) model and
MSU v7 transcriptome reference sequence; Table S7. List of DEGs in IR64 exposed under non- and water-stress
conditions using Shuhui as transcriptome reference sequence; Table S8. List of DEGs in Apo exposed under
non- and water-stress conditions using Shuhui; Table S9. List of DEGs between IR64 and Apo under non-stress
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conditions using Shuhui; Table S10. List of DEGs between IR64 and Apo under water-stress conditions using
Shuhui; Table S11. List of DEGs between IR64 and Apo using Genotypic Differential Expression (GDE) model
and Shuhui as transcriptome reference sequence; Table S12. List of DEGs between IR64 and Apo using Drought
Differential Expression (DDE) model and Shuhui as transcriptome reference sequence.
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