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Abstract: The aim of the study was to determine the effect of fertilization with various doses of ash
from biomass combustion (balanced to the amount of K2O introduced into the soil) on the growth of
representatives of soil microorganisms, i.e., diatoms. In a one-factor field experiment (control, NPK,
100, 200, 300, 400, 500 kg/ha), soil samples were collected from the 0–5 cm layer of podzolic soil
under the cultivation of winter oilseed rape (Brassica napus L. var. napus) at the end of August 2019
and 2020. The biomass combustion ash used for soil fertilization was characterized by an alkaline
reaction (pH = 12.83 ± 0.68) and high levels of basic macroelements required for proper plant growth
and development. The particle size distribution in each plot was identified as loamy silt (pgl). Before
the experiment (autumn 2018), the soil exhibited an acidic reaction (pHH2O = 5.8), low conductivity
(EC = 68 µS), and 19.09% moisture at the 0–5 cm level. In total, 23 diatom species were identified
in the material collected from the topsoil in all variants of the experiment. Hantzschia amphioxys,
Mayamaea atomus, Mayamaea permitis, Nitzschia pusilla, Pinnularia obscura, Pinnularia schoenfelderi, and
Stauroneis thermicola were the most abundant populations.

Keywords: biomass ashes; terrestrial diatoms; fertilization; algae; field experiment

1. Introduction

The growing use and processing of wood has led to the generation of waste products,
e.g., woodchips used for energy production, and increased production of wood ash [1,2].
Wood ash is often regarded as a waste product. It retains most of the main minerals neces-
sary for plant nutrition, except nitrogen, and has liming properties due to the high content
of metal oxides and hydroxides [3,4]. Ashes are a source of plant nutrients (macro- and
microelements) and can be regarded as a substitute for calcium fertilizers. Their deacidify-
ing properties are associated with their high concentrations of calcium and magnesium
carbonate [5–7]. Zając [7] determined the content of valuable nutrients in ash from biomass
combustion. As indicated by previous research [8–11], higher doses of ash may exert a
deacidifying effect and improve the physicochemical properties of light soils. However,
a high ash content does not always indicate effective deacidification, which depends on
many factors, e.g., ash properties (granularity, hydration, particle size distribution, water
solubility, etc.) and the buffering capacity of soils. The addition of ashes into soils requires
careful determination of their optimal dose to avoid damage to the biological soil structure.
Importantly, biomass ashes may contain substantial amounts of trace elements and heavy
metals, which are not always desirable in the soil environment [7].

Soil ecosystems are characterized by unstable environmental conditions. Large fluctu-
ations in moisture and temperature, as well as human activity such as plowing at high soil
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moisture levels or the use of fertilizers and plant protection agents, may exert an adverse
effect. The maintenance of biodiversity is essential for the sustenance of the ecological func-
tions and processes that ensure soil fertility and productivity of agricultural ecosystems.
One of the indicators of biodiversity is the presence of both prokaryotic and eukaryotic
soil algae, which constitute a very important group of soil microorganisms. Most algae
are cosmopolitan organisms; they are mostly represented by the following: Green algae,
cyanobacteria, diatoms, xanthophytes, and, less frequently, euglenids or red algae [12–22].
Soil algae are the primary producers of organic substances and are a source of food for
heterotrophic soil organisms.

Similarly to aquatic diatom species, terrestrial diatoms are sensitive to many environ-
mental factors, e.g., pH, anthropic disturbances, soil moisture, and biogen concentrations.
However, in contrast to the autecological preferences of aquatic diatoms for several im-
portant variables, such preferences of many terrestrial diatom species are not well known.
This suggests that their potential as biological indicators is still poorly understood [23].
So far, there have only been a few investigations involving a sufficiently large number of
samples to determine the ecological preferences of individual species [23–25].

The aim of the present study was to determine the impact of short-term fertilization
with biomass combustion ashes on diatom assemblages present on the soil surface.

2. Materials and Methods

The field experiment was established in autumn 2018 in Korzenica (Podkarpackie
Province, Jarosław County, GPS coordinates: 500.02’.16.3N, 220.55’.06.4E). The experiment
was set up in the arable layer (0–27 cm) of podzolic soil with the particle size distribution of
loamy silt (Working Group WBR 2006). The one-factor experiment consisted of cultivation
of winter oilseed rape (Brassica napus L. var. napus), cultivar Mandril (Syngenta). In this
field experiment, a compact strip was divided into 7 sub-blocks, each with an area of 162 m2,
where different fertilization variants were applied. Each variant in the experiment was
applied in three replicates. The fieldwork was started in the autumn of 2018. A conventional
mineral fertilizer NPK and an unconventional fertilizer, i.e., ash from combustion of
biomass (willow Salix viminalis L.), were used in the experiment. The biomass ash doses
were balanced to the amount of potassium introduced into the soil. In all experiment
variants, constant nitrogen (81.3 kg N ha−1) and phosphorus (34 kg P ha−1) mineral
fertilization were applied.

The fertilization of the winter rape plants at the following levels was the
experimental factor:

- Control—no K2O fertilization;
- NPK K2O in mineral fertilizers (127 kg K2O ha−1);
- 100 kg K2O ha−1 in ash (0.5 t ha−1 of ash in bulk weight);
- 200 kg K2O ha−1 in ash (1.0 t ha−1 of ash in bulk weight);
- 300 kg K2O ha−1 in ash (1.5 t ha−1 of ash in bulk weight);
- 400 kg K2O ha−1 in ash (2.0 t ha−1 of ash in bulk weight);
- 500 kg K2O ha−1 in ash (2.5 t ha−1 of ash in bulk weight).

The fertilization was applied before sowing. The doses and dates of application are
presented in Table 1.

Composition of biomass ash used in the experiment for fertilization of winter oilseed
rape on podzolic soil was presented in Table 2.
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Table 1. Fertilizers used in the field experiment in 2018–2021.

Fertilizer-Trade Name
Amount of Pure

Component in 100 kg of
the Fertilizer

Dose (kg/L per 1 ha)
Date of Application

Fertilizer Pure Component

Biomass combustion ash
1.63 %P (3,73 kg P), 19.4%
K (23.37 kg K), 4.96% Mg

(8.222 kg Mg)

Varied depending on the experimental
variant

30 August 2018
29 August 2019
25 August 2020

Monoammonium phosphate (MAP)
NH4H2PO4 (12%N-NH4, 52% P2O5, 22.7% P)

22.7 kg P
150

34 30 August 2018 (all variants)
29 August 2019 (all variants)
25 August 2020 (all variants)12 kg N 18

Potassium salt (60%) 60 kg K 175 105
30 August 2018 (NPK variant only)
29 August 2019 (NPK variant only)
28 August 2020 (NPK variant only)

RSM ® 32% N (aqueous solution of
urea-ammonium nitrate, density 1.32

kg/dcm3)
42.2 kg N (32 × 1.32) 150 63.3

4 March 2019
10 March 2020
15 March 2021

Table 2. Composition of biomass ash used in the experiment for fertilization of winter oilseed rape
on podzolic soil.

pH H2O EC µS·cm−1 Ca (mg kg−1) K (mg kg−1) Na (mg kg−1) P (mg kg−1)

12.82 8.81 145,081 129,617 1452 9244

Soil was sampled at a depth of 0–5 cm from the arable layer before the experiment
in the autumn of 2018 and in each experimental year after plant harvest (at the end of
August). The following physicochemical properties were determined in the soil samples
after drying and sieving through a sieve with a 2 mm mesh diameter. Soil reaction was
measured with the potentiometric method using an HI-4221 pH meter (Hanna Instruments,
Nusfalau, Romania) at a soil-to-solution ratio of 1:2.5. Soil electrolytic conductivity (EC),
which is a measure of soil salinity, was determined with the conductometric method using
an HI-2316 EC meter (Hanna Instruments, Nusfalau, Romania) at a soil-to-solution ratio of
1:5. Soil moisture was measured with the drying-weighing method after soil sampling in
Kopecki cylinders.

The impact of the biomass combustion ashes on the selected physicochemical proper-
ties of the podzolic soil was analyzed using STATISTICA 13.3 software (StatSoft, Tulsa OK
Oklahoma, USA). One-way analysis of variance (ANOVA) was performed using the Tukey
HSD multiple comparison test to identify homogeneous groups (p < 0.05).

Diatom Processing

Soil samples for diatom analysis were taken from a layer of 0–5 cm and transferred to
Petri dishes. The samples were digested in a mixture of concentrated sulfuric acid (H2SO4)
and potassium dichromate (K2Cr2O7) to obtain clean diatom frustules. To remove the
sulfochromic mixture, the material was centrifuged at 2500 rpm with distilled water several
times until the chromic mixture was completely removed. Excess inorganic matter within
the soil was removed by sedimentation. Cleaned diatom valves were placed onto coverslips
and left to dry. When the material was completely dry, the coverslips with diatoms were
mounted in synthetic Pleurax resin, ZBE Kraków, Poland (refractive index: 1.75).

Diatoms were identified and counted under an LM Carl Zeiss Axio Imager A2
equipped with a 100× Plan Apochromatic objective with differential interference con-
trast (DIC) for oil immersion. Diatom images were captured with a Zeiss AxioCam ICc5
camera (Jena, Germany). They were counted to 400 valves by scanning transects across
the coverslip. The identification of diatom species was based on studies conducted by
Krammer [26], Hofmann et al. [14] and Levkov et al. [27].

3. Results and Discussion

The meteorological conditions prevailing during the experiment, i.e., the mean air
temperature and precipitation totals are presented in Table 3. The total annual precipitation
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in 2019 was 34.3 mm lower than in 2020. In August, i.e., the month of collection of the soil
samples, the total monthly precipitation was 14.8 mm in 2019 and only 7.3 mm in 2020.
Such low precipitation rates exert a limiting effect on the growth of diatom communities;
they prefer moist habitats and, as autotrophic organisms, colonize the soil surface, which is
characterized by the quickest water loss.

Table 3. Weather conditions in 2018/2019 and 2020 provided by the Meteorological Station of the
University of Rzeszów.

Temperature in ◦C Precipitation in mm

2018

Month
Ten-Day Period

Mean
Ten-Day Period

Total
I II III I II III

IX 17.5 17.0 15.3 16.6 60.6 7.9 15.3 83.8
X 9.6 11.2 8.9 8.4 4.8 0.0 34.8 39.6
XI 10.2 3.3 −1.5 4.0 1.4 10.6 4.9 16.9
XII −0.3 −2.0 1.97 −0.13 16.7 7.7 24.5 48.9

2019

I −4.4 −1.4 −3.7 −3.16 18.0 14.2 7.6 39.8
II 1.3 3.4 1.5 2.1 4.8 3.1 5.7 13.6
III 4.7 4.0 4.9 4.5 4.8 14.3 4.0 23.1
IV 8.6 7.0 13.3 9.6 2.7 2.5 48.3 5.5
V 9.2 14.2 16.1 13.1 31.6 32.0 50.3 113.9
VI 19.0 22.7 21.1 20.9 3.7 18.1 4.1 25.9
VII 17.1 16.0 21.5 18.2 5.2 18.1 25.3 48.6
VIII 22.2 18.6 20.3 20.37 1.2 0.0 6.3 14.8
IX 16.6 13.9 14.8 15.1 2.1 0.5 18.3 20.9
X 14.5 8.3 12 11.6 13.5 28.2 11.6 53.3
XI 13.1 9.1 10.2 10.8 21.5 32.6 24.2 78.3
XII 7.7 5.4 0.9 4.6 5.6 3.8 6.4 15.8

Total 501.5

2020

I 0.5 2.3 1.4 1.4 3.9 0.1 7.9 11.8
II 2.7 4.7 4 3.8 23.7 8.2 21.5 53.3
III 5.3 7.2 2.9 5.1 15.0 2.9 2.0 19.8
IV 7.9 8.5 11.2 9.2 0.0 4.7 5.3 10.0
V 11.1 11.1 11.7 11.3 25.3 24.4 33.6 83.3
VI 15.9 19.0 19.5 18.1 20.2 22.6 120.0 162.9
VII 19.9 17.1 19.3 18.8 10.2 8.5 0.2 18.9
VIII 20.2 19.5 20.1 19.9 0.2 0.1 7.0 7.3
IX 15.7 14.7 14.5 15.0 4.2 0.0 39.3 43.5
X 13.8 8.3 11.1 11.1 16.8 30.4 7.1 54.3
XI 12.9 8.5 10.5 10.6 17.5 29.8 8.1 55.4
XII 7.5 6.4 1.0 5.0 7.4 2.3 5.6 15.3

Total 535.8
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3.1. Soil pH

Soil pH is one of the most important determinants of soil processes and the growth
of micro- and macro-organisms. Before the experiment, the soil had an acidic pH of 5.83.
Changes in the pH value in the 0–5 cm layer of the podzolic soil are shown in Figure 1. In
both 2019 and 2020, the lowest pH values were recorded in the soil variant to which only
NPK mineral fertilization was applied. In the ash-fertilized variants, the pH values did
not differ significantly in 2019, whereas the highest pH values in 2020 were found in the
variants treated with 200 and 300 kg K2O/ha. Nevertheless, the application of biomass
combustion ashes did not increase the reaction in any variant. It was also observed that the
pH values were higher in the first year of the experiment, but declined in the following
year in all the variants. The high pH value of ashes does not always correspond to their
deacidification ability, which depends on many factors, e.g., ash properties (granularity,
hydration, particle size distribution, water solubility, etc.) and soil buffering capacity.
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3.2. Salinity

The content of various salts in soil can be determined indirectly by measuring their
content in the soil solution based on ionic conductivity, known as electrolytic conductivity
(EC). The increase in salinity in the analyzed podzolic soil was induced by the application
of both NPK mineral fertilization and biomass combustion ashes (Figure 2). In the first
study year, the application of combustion ashes did not increase the salinity of the soil
in the 0–5 cm layer. Except for the variant treated with 200 kg K2O/ha of ash, the high-
est EC values were recorded in the control and the NPK-fertilized variant. A different
tendency was observed in the second study year, as the application of ashes at a dose
of 200 kg K2O ha−1 and higher significantly increased the soil salinity value. Despite the
increase in the mean EC values induced by NPK and ash fertilization, the salt concentration
in the soil solution was within the range tolerated by all plant species.
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3.3. Soil Moisture

Soil moisture primarily depends on weather conditions, and, in particular, on the level
of precipitation or hydration, and on the type of soil and agrotechnical treatments. As
mentioned earlier, the experiment was conducted in the field, hence the close relationship
with weather conditions. The years 2018, 2019, and 2020 were characterized by low total
annual precipitation (Figure 3). August, i.e., the month when the samples were collected,
was dry in both study years, as indicated by the percentage of soil water content. The
various doses of ash fertilization did not increase the water retention capacity of the
analyzed podzolic soil.
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3.4. Terrestrial Diatoms

In the analyzed assemblages, the most numerous populations were formed by the follow-
ing: Hantzschia amphioxys (up to 58%), Mayamaea atomus (up to 36.5%), Mayamaea permitis (up
to 38.2%), Nitzschia pusilla (up to 27.9%), Pinnularia obscura (up to 39.7%), Pinnularia schoenfelderi
(up to 15.6%), and Stauroneis thermicola (up to 41.8%).

Most of the 23 taxa of diatoms identified during the study represented a group
of neutrophilic species (9 species), while the other group comprised species with still
unknown preferences for a specific pH value (7 species) (Table 4, Figure 4). Acidophilic and
alkaliphilic diatoms were represented by only a few species. However, the percentage share
of the individual ecological groups in the analyzed assemblages was significantly different.
The largest share in the assemblages was found for alkaliphilic and neutrophilic species,
while acidophilic species and species with unknown preferences never exceeded 2%.

Currently, approximately 250 diatom taxa are considered as species with an ability to
grow in terrestrial habitats. However, most studies of terrestrial diatoms are focused on
areas of Europe and polar regions [23]. Therefore, it can be expected that the real number
of terrestrial species is substantially higher, which seems to have been confirmed recently
by taxonomic investigations covering both Europe [28–31] and tropical zones [32–37].

Table 4 shows the identified taxa with their pH preferences, as proposed by Van
Dam et al. [38]. Importantly, Van Dam et al. [38] compiled these preferences of diatoms
living in aquatic environments. No such classification has been proposed for terrestrial
environments to date. A key issue is that species colonizing aquatic environments may
exhibit different preferences in the soil environment. It can be assumed that diatoms
have high adaptability to environmental conditions (reaction), as indicated by the present
results. Taxa that prefer an alkaline environment, according to the classification proposed
by Van Dam et al. [38], were found on slightly acidic soil. Nevertheless, Mayamaea permitis,
M. atomus, Hantzschia amphioxys, Pinnularia obscura, and Stauroneis thermicola were the most
frequent taxa in the community, which may indicate their considerably higher tolerance to
environmental pH variation. Similarly, other studies [23] have confirmed that the optimum
reaction value for the aforementioned taxa in terrestrial environments is slightly below
pH 7. Of note, these taxa are some of the most frequently identified species in various
natural and agricultural types of soil [20,39].

It is also worth emphasizing that two species of the genus Microcostatus (M. aerophilus
and M. dexterii) were noted in the analyzed material. Both of these species have been
described as new to science in recent years [22,31]; therefore, each report of their presence
contributes to better understanding their ecological preferences and distribution.

Until recently, soil moisture was regarded as the main factor exerting an impact on
communities of terrestrial diatoms. However, studies conducted by Foets [40,41] have
shown that soil moisture does not influence the composition of the community, but is a
key determinant of the absolute numbers of diatoms [42]. This was evidently confirmed
by the number of diatoms identified in 2019, which was characterized by slightly higher
soil moisture. In 2019, 18 taxa in the group representing the range from 15 to 30% were
identified in the experimental variants, whereas 16 taxa were determined in 2020 at a
lower moisture level. In their research, Foets et al. [23] have shown that diatoms grow
well in terrestrial communities with at least a 20% soil moisture content. In the present
field experiment, the maximum moisture content did not exceed 13.4%, due to the low
precipitation rates in both years. The low soil moisture was probably the main cause of
the low number of taxa (23) identified in this study. It seems that natural factors, such as
rainfall and the humidity of agricultural soil, have a much greater impact on soil diatom
assemblages than agricultural practices.
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Table 4. List of identified taxa together with the percentage share in the assemblage and pH requirements (according to Van Dam et al., 1994). C—control (without fertilization), NPK K2O
in mineral fertilizers, 100–100 kg K2O ha−1 in ash (0.5 t ha−1 of ash in bulk weight), 200–200 kg K2O ha−1 in ash (1.0 t ha−1 of ash in bulk weight), 300−300 kg K2O ha−1 in ash (1.5 t ha−1

of ash in bulk weight), 400−400 kg K2O ha−1 in ash (2.0 t ha−1 of ash in bulk weight), 500−500 kg K2O ha−1 in ash (2.5 t ha−1 of ash in bulk weight).

Taxa
2019 2020

pH Requirements
C NPK 100 200 300 400 500 C NPK 100 200 300 400 500

Hantzschia abundans
Lange-Bertalot neutrophilic

Hantzschia amphioxys
(Ehrenberg) Grunow neutrophilic

Humidophila contenta
(Grunow) R.L.Lowe alkaliphilic

Luticola aff. Acidoclinata
Lange-Bertalot unknown

Luticola pulchra
(McCall) Levkov et al. unknown

Luticola aff. Vesnae
Levkov et al. unknown

Mayamaea atomus
(Kützing) Lange-Bertalot alkaliphilic

Mayamaea fossalis
(Krasske) Lange-Bertalot neutrophilic

Mayamaea permitis
(Hustedt) K.Bruder & Medlin alkaliphilic

Microcostatus aerophilus
Stanek-Tarkowska et al. unknown

Microcostatus dexteri
Stanek-Tarkowska et al. unknown

Nitzschia frustulum
(Kützing) Grunow alkaliphilic

Nitzschia pusilla
Grunow neutrophilic

Pinnularia borealis
Ehrenberg neutrophilic



Agronomy 2021, 11, 2422 9 of 12

Table 4. Cont.

Taxa
2019 2020

pH Requirements
C NPK 100 200 300 400 500 C NPK 100 200 300 400 500

Pinnularia obscura
Krasske neutrophilic

Pinnularia schoenfelderi
Krammer neutrophilic

Pinnularia sinistra
Krammer acidophilic

Placoneis hambergii
(Hustedt) Bruder acidophilic

Sellaphora atomoides
(Grunow) Wetzel et al. unknown

Sellaphora nana
(Hustedt) Lange-Bertalot et al. acidophilic

Stauroneis borrichii
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Currently, approximately 250 diatom taxa are considered as species with an ability 
to grow in terrestrial habitats. However, most studies of terrestrial diatoms are focused 
on areas of Europe and polar regions [23]. Therefore, it can be expected that the real num-
ber of terrestrial species is substantially higher, which seems to have been confirmed re-
cently by taxonomic investigations covering both Europe [28–31] and tropical zones [32–
37].  
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Figure 4. Dominant and some selected diatom taxa observed during the study: (A,B) Hantzschia amphioxys (Ehrenberg)
Grunow; (C–E) Nitzschia pusilla Grunow; (F–H) Stauroneis thermicola (J.B. Petersen) J.W.G. Lund; (I,J) Pinnularia obscura
Krasske; (K,L) Pinnularia schoenfelderi Krammer; (M–Q) Mayamaea atomus (Kützing) Lange-Bertalot; (R–T) Mayamaea
permitis (Hustedt) K. Bruder and Medlin; (U) resting form of unidentified Mayamaea sp.; (V,W) Sellaphora nana (Hustedt)
Lange-Bertalot, Cavacini, Tagliaventi and Alfinito; (X) Microcostatus aerophilus Stanek-Tarkowska, Noga, C.E. Wetzel
and Ector.

4. Conclusions

The years 2018, 2019, and 2020 were characterized by low total annual precipitation.
August, i.e., the month of soil sampling, was dry in both study years, as indicated by
the percentage of water content determined in the soil. The doses of ash fertilization did
increase the water retention capacity of the podzolic soil.

The pH values in all the combustion ash-fertilized variants did not differ significantly
in 2019, whereas the highest pH values in 2020 were found in the variants fertilized with
200 and 300 kg K2O ha−1. The application of biomass combustion ashes did not increase
the reaction in any experimental variant. The pH values in all the variants were higher in
the first year of the experiment and decreased in the following year.

Despite the increase in the mean EC values induced by NPK and ash fertilization,
compared with the control, the salt concentration in the soil solution was within the range
tolerated by all plant species. The application of increasing doses of biomass combustion
ash did not increase soil salinity.

Despite the availability of a considerable number of studies on diatoms in terres-
trial environments, only a few papers address the ecological preferences of these species.
Therefore, there is a need to explore the flora of terrestrial diatoms in natural habitats and
areas exposed to constant anthropopressure associated with agricultural activity. Profound
knowledge of their preferences and tolerance of environmental parameters may facilitate
their future use as potential environmental indicators in different research fields.
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