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Abstract: Differently tilled faba bean cultivations, in particular, require a comprehensive study
of weed diversity, abundance, and seedbank due to the lack of experimental data. Therefore, in
2016–2018, field trials were conducted at Vytautas Magnus University on the basis of a long-term
tillage experiment. Conventional deep and shallow plowing, deep chiseling, shallow disking, and no-
tillage systems were investigated. According to the results of the investigations, the air temperature
and amount of precipitation during the vegetative season had a greater influence on the total number
of weeds (r = 0.538 and 0.833 p > 0.05) than the types of tillage systems investigated. However,
on average, a reduction in tillage intensity did not change the weed number, especially in disked
and not tilled plots. On average, the biomass of weeds varied little between the treatments (from
105.9 to 125.7 g m−2) and mainly depended on the volume of forecrop residues (rannual = −0.982
p ≤ 0.01 and rperennial = 0.890 p ≤ 0.05). Higher total weed seedbanks were found in the disked
(+43.0%) and not tilled (+21.6%) soils compared to deeply plowed ones. The weed seedbank was al-
most similarly distributed between the treatments, irrespective of the tillage depth and method used.

Keywords: conservation tillage; weed diversity; weed seedbank

1. Introduction

Conservation agriculture systems aim to minimize the soil tillage intensity in order
to ensure that there is a permanent layer of crop residues on the topsoil to diversify crop
rotation and optimize weed management [1,2]. Tillage reduction has positive aspects: it
saves time, protects the soil from erosion [3], saves machinery and fuel costs [4,5], improves
the soil quality, and decreases nutrient and pesticide leaching [4]. Germination and the
spread of weeds are most strongly influenced by the climatic and meteorological condi-
tions [6,7] (length of vegetative season, precipitation rate and distribution, air temperature,
and sum of active temperatures), on which soil moisture, oxygen, and the organic C content
depend. The vertical distribution of weed seeds also has as an impact [8] as the seeds of
different weed species require different amounts of light for germination [9,10]. Moreover,
germination conditions in the soil change as the water absorption of weed seeds increases
or decreases [11]. These changes depend on the tillage system or type of crop rotation
used [8,12–14]. It has been documented that the use of annual conventional deep plowing
mainly ensures a higher crop yield and reduces the weed density [15,16], while conser-
vation tillage technologies increase the abundance of annual weeds [14], and no-tillage
technologies are more conducive to the spread of perennial weed species [17,18], especially
under conditions of ineffective herbicide technology [19]. Weeds producing a lot of small
seeds have been found to predominate in areas where no-tillage system is used [20], while
the use of conservation tillage technologies leads to the domination of weeds with larger

Agronomy 2021, 11, 529. https://doi.org/10.3390/agronomy11030529 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-6170-5766
https://orcid.org/0000-0003-3772-4574
https://orcid.org/0000-0001-9339-769X
https://doi.org/10.3390/agronomy11030529
https://doi.org/10.3390/agronomy11030529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11030529
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy11030529?type=check_update&version=2


Agronomy 2021, 11, 529 2 of 17

seeds of later flowering phenology [21]. Short and early flowering weed species are typical
of deep tillage systems [22].

The spread of weeds also depends, to a large extent, on how many “fresh” weed
seeds enter the seedbank in the soil and on how big the bank is in general [23]. Some
researchers believe that tillage has a more pronounced effect on the weed seedbank size
and composition than crop rotation [24], while other researchers believe the opposite [25].
Tillage affects the soil weed seedbank by promoting the germination of some seeds and
even causing the extinction of other seeds [2,26]. Over time, seed germination can be
influenced by soil properties (aggregation and crust formation, penetration resistance, bulk
density, and others), which vary with depth; however, depth is not the most important
variable. Even in the topsoil, there are many micro sites that can become seedbeds for weeds
and have different moisture conditions, temperatures, and oxygen contents, thus, affecting
the seed bank [27]. Intensive surface tillage usually reduces weed seedbank located close to
the soil surface [1]. When plowing the soil, weed seeds are evenly distributed throughout
the entire plow layer, which makes it more difficult to control their quantity.

In most European countries, the cultivation area of faba bean has decreased compared
with the area that was present in 1981–1990 [28]. However, since 2015, the EU Greening
regulation has encouraged farmers to grow more legume crops. According to the data
from the farmland and crop declaration, faba beans accounted for about 2% of the total
crop area in Lithuania in 2019 [29]. In general, cereal crops are more competitive against
weeds than legumes. Faba beans are sensitive to shading, especially at the stage of pod
emergence [30]. However, there is a lack of information on the flora and abundance of
weeds in faba bean crops in north-eastern Europe. In addition, in Lithuania, it is at that time
that most inefficiently controlled weeds or those thriving in sparse crops (e.g., Chenopodium
album L., Persicaria lapathifolia L., Echinochloa crus galli (L.) P. Beauv., Cirsium arvense L.,
Sonchus arvensis L.) reach their maximum height and can start dominating in the crops.

This study hypothesizes that, under conditions of tillage intensity reduction and
minimal chemical weed control, the abundance and biomass of weeds will progressively
increase due to the low competitiveness of beans. Under reduced tillage and no-tillage
conditions, the accumulation of weed seedbank in the topsoil will be initiated. The objec-
tives of the research are to establish (a) the abundance and biomass of the most widespread
weeds; (b) the seedbank composition and distribution; and (c) the interactions among
meteorological conditions, forecrop residue volume, weed number and air-dried biomass,
and the weed seedbank in different primary tillage and no-tillage conditions during three
faba bean vegetative seasons. The experimental findings will increase our knowledge
about which of the factors—long-term tillage systems or meteorological conditions—has
a greater impact on weed flora and abundance in short-term investigations in faba bean
cultivations. Such information will help us more accurately predict crop weediness under
the increasingly volatile meteorological conditions caused by the climate change.

2. Materials and Methods
2.1. Site Description

Field investigation were conducted in 2016, 2017, and 2018 at the Experimental Sta-
tion of Vytautas Magnus University Agriculture Academy (Central Lithuania, 54◦52′ N,
23◦49′ E). The annual average air temperature at the experimental site is 6.7◦ C and the
precipitation rate is 590–625 mm. The length of the vegetative period is approximately
150–160 days with 350–450 mm of precipitation. The warmest and the wettest month is July.
The variation in meteorological conditions is very high between the growing seasons and
growth stages because of the uneven subarctic intermediate maritime-continental climate.

The investigations were performed as part of a long-term tillage experiment that has
been in progress since 1988. The no-tillage treatment condition was introduced in 2001. The
soil at the experimental site is silt loam (45.6% sand, 41.7% silt, 12.7% clay) Planosol [31],
that is, on average, neutral in reaction (pH 7.0), high in phosphorus (279 mg kg−1), and
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has medium proportions of potassium (151 mg kg−1), total nitrogen (0.144%), and hu-
mus (1.75%).

2.2. Experimental Treatments and Agronomic Practices

This experiment involved the creation of environmentally friendly agro-technologies
for sustainable (sin. conservation, integrated) agriculture. The first element of sustainability
is the use of plowless or no-till systems. Second, minimal chemical pests, diseases, and
weed control methods (integrated approach) are used. In these investigations, the use of
pesticides and mineral fertilizers was reduced twice as much as the levels that have been
recommended during the last three decades. Third, there was no removal of residues from
the top of the experimental plots.

The following five tillage treatments were implemented in autumn: (1) deep mold-
board plowing at a depth of 22–25 cm (control treatment, DP); (2) shallow moldboard
plowing at a depth of 12–15 cm (SP); (3) deep cultivation-chiseling at a depth of 25–30 cm
(DC); (4) shallow cultivation-disking at a depth of 10–12 cm (SC); and (5) no-tillage (direct
drilling, NT). The reason for choosing such tillage practices was to ascertain the influence
of the tillage intensity on soil nutrients, biological and physical properties, and its con-
servation. Also CO2 gas mitigation, weed abundance, yield, and quality of crops were
investigated with a long-term perspective, because arable soils degrade more and more
rapidly every year [32–34]. The common tillage practice in Lithuania is annual autumn
reversible plowing at the depth of up to 22–25 cm (DP), which is one of the most soil-
damaging tillage methods. More sustainable non-reversible tillage and no-till methods are
becoming popular but are still not practiced enough.

A four-course crop rotation method was used: winter oilseed rape–winter wheat–faba
bean–spring barley. The experiment was performed with four replications for each tillage
treatment, and a randomized complete block design (RCBD) was used. The size of each
experimental plot was 126 m2 (14 m × 9 m). The experimental data from the faba bean
plots (20 plots) are presented as the results of a single factor experiment.

After the harvesting of winter wheat, a forecrop of faba bean, all experimental plots,
except for the NT ones, were disked with a disc harrow. The plots were sprayed with
glyphosate in spring, before sowing. DP and SP plots were plowed with a plow with semi-
helix shellboards. Deep chiseling (DC) was performed with a ridge cultivator (chisel). SC
plots were repeatedly disked with a disc harrow. Faba bean was grown using a conventional
technology that has been comprehensively described by Romaneckas et al. [35]. Faba bean
was sown on 25 April, 2016; 8 May, 2017; and 24 April, 2018, when the topsoil had reached
physical maturity (decomposed into structural aggregates during pre-sowing tillage).
Local fertilization (NPK 7:16:32, 300 kg ha−1) was used during the sowing operation. The
distance between rows was 25 cm, the sowing rate was 200–220 kg ha−1 (40–45 seeds m−2),
the sowing depth was 5–6 cm, and the variety used was “Fuego”. Before sowing, the
sowing material was inoculated with a Rhizobium leguminosarum bacterial preparation
(approximately 200 mL of preparation for 100 kg of seeds). A single background application
of the herbicide Fenix 3.0 l ha−1 (a.i. aclonifen 600 g l−1) was used shortly after faba
bean sowing.

2.3. Methods

The forecrop (winter wheat) residue coverage on the soil top was evaluated by the line
transect method after the sowing of faba bean crops in spring. A 10 m measuring roulette
tape was used. The number of times that a marked line intersected with the residue stubble
every 10 cm (100 points per plot) was counted, and the results are expressed as percentages.

The weed species composition and weed density were evaluated at the beginning
(BBCH 25–27) and end (BBCH 75–79) [36] of the faba bean vegetative period in 10 randomly
selected spots for each plot. A set of 20x30 cm metal frames was used for this purpose. The
data was converted to m2. The same frames were used to establish the biomass of the weed
aerial part (g m−2) at the end of the faba bean vegetative period using the Stancevičius [37]
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method. Fresh biomass of weeds was dried under laboratory conditions. The air-dried
biomass is presented in this study.

The size of the weed seed bank in the soil was determined at the depths of 0–15 and
15–25 cm shortly after the primary tillage in the autumn for at least 10 spots per plot.
Soil samples were collected with an agrochemical auger, mixed, and a composite sample
was formed. The soil sample (100 g) was dried and sieved through a 0.25 mm sieve and
washed with running water until the soil particles were removed. Weed seeds and the
remaining part of the mineral soil were separated from the organic part by a saturated
saline solution [38].

2.4. Statistical Analysis

The experimental data were analyzed by one-way ANOVA, and the treatment effect
was estimated with the p test and the least significant difference (LSD). Sigma Stat and
SYSTAT software were employed. The data from weed studies that did not conform to a
normal distribution were transformed using the function (1) before statistical evaluation:

y = lg10 (x + 10) (1)

A correlation analysis was performed with STAT software. The analysis matrix in-
cluded data on the meteorological conditions, crop residue volume, weed seed germination,
weed number and air-dried biomass, and weed seedbank.

3. Results
3.1. Meteorological Conditions

The vegetative period in 2016 (except May) can be described as mainly warm and
more humid than the long-term (1974–2016) average (Figure 1). The precipitation rates in
May during the three experimental years was 2–6 times lower than usual. These conditions
adversely affected crop germination and development.

During the 2017 vegetative period, the average air temperature was similar to or
slightly lower than the long-term average (Figure 1). Precipitation rates varied markedly
between the months. The beginning of the vegetative period was excessively humid, but
during other growth stages, the weather was dry, especially in May, July, and August. The
2018 vegetative period was warmer than usual. May and June were dry, but at the end
of the vegetative period, there was excess of moisture. In summary, the meteorological
parameters of the three growing seasons differed from one another and from the long-term
average conditions (since 1974). Under these conditions, it was difficult to predict the
spread of weeds and their influence on crop development and productivity.

3.2. Topsoil Residue Coverage

During the three experimental years, the topsoil coverage with winter wheat residues
varied from 0.3 to 82.8% in 2016, from 1.3 to 22.0% in 2017, and from 0.8 to 54.2% in
2018. The volumes of residues did not differ significantly between the plowing treatments
(Figure 2).

The differences between the control treatment (DP) and DC, SC, and NT were signifi-
cant at different probability levels. The highest topsoil coverage with winter wheat straw,
an average of 53%, was recorded for the NT plots, and this was nearly 60 times higher
than in the control treatment. This affected not only the physical, chemical, and biological
properties of the soil, but also the spread of weeds.
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Figure 1. Average air temperature (a) and precipitation rate (b) during faba bean growing seasons at
the Kaunas Meteorological Station in 2016–2018.
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Figure 2. The volume of fore crop residues in the topsoil of differently tilled soil after faba bean
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3.3. Weed Species Composition and Density

In our experiment, the predominant annual weed species were Echinochloa crus galli
(L.) P. Beauv., Fallopia convolvulus (L.) A. Löve, Persicaria lapathifolia L., Chenopodium album
L., Galeopsis tetrahit L., Sinapis arvensis L., Veronica arvensis L., etc. Among the perennial
weeds, the prevalent species were Taraxacum officinale F. H. Wigg., Plantago major L., Sonchus
arvensis L., Equisetum arvense L., Elytrigia repens L., and Cirsium arvense L. (Table S1).

In 2016, at the beginning of faba bean vegetative period (BBCH 25–27), there were
fewer annual weeds (27 and 54%) than in 2017 and 2018 because May was warm but drier
than usual. The different tillage methods generally did not have a significant impact on the
abundance of weeds, except in some isolated cases (Table 1, Table S2).

Table 1. Weed density (number m−2) at different faba bean growth stages, as influenced by the tillage
system in 2016–2018.

Weed Groups
Tillage Systems

DP SP DC SC NT

2016

BBCH 25–27

Annual 59.5ab 74.1a 71.2a 72.0a 50.8b
Perennial 4.5b 6.6b 14.1b 19.5ab 34.5a **

Total 64.1a 80.7a 85.4a 91.6a 85.4a

BBCH 75–79

Annual 35.8a 36.6a 24.1a 38.7a 25.4a
Perennial 0.8b 3.3b 12.5ab 16.2ab 30.4a *

Total 36.6a 39.9a 36.6a 54.9a 55.8a

2017

BBCH 25–27

Annual 104.6a 97.5a 103.7a 119.1a 20.9b **
Perennial 2.9a 5.4a 3.3a 4.5a 4.1a

Total 107.5a 102.9a 107.0a 123.6a 25.0b **

BBCH 75–79

Annual 27.9a 17.0a 18.7a 17.6a 17.9a
Perennial 2.5a 4.6a 2.9a 1.2a 5.4a

Total 30.4a 21.6a 21.6a 18.8a 23.3a

2018

BBCH 25–27
Annual 103.7b 130.4b 132.9b 117.3b 226.6a *

Perennial 2.9b 14.2ab 9.5 ab 25.4a * 19.6 ab
Total 106.6b 144.6b 142.4b 142.7b 246.2a *

BBCH 75–79

Annual 45.8b 40.0b 42.5b 39.1b 62.3 *a
Perennial 0.8b 12.9a * 10.0ab 8.4ab 19.5a *

Total 46.6b 52.9b 52.5b 47.5b 80.8a *
DP—deep plowing (control treatment), SP—shallow plowing, DC—deep cultivation, SC—shallow cultivation,
NT—no-tillage (direct drilling). * significant difference at 0.01 < p ≤ 0.05, ** at 0.001 < p ≤ 0.01. p > 0.05 indicates
no significant difference compared with DP. Different letters indicate significant differences between all treatments
at p ≤ 0.05.

A significant 3.7-fold reduction in the number of E. crus galli was identified in the no-
tillage (NT) plots compared with the control (DP). In the SP plots, the number of S. arvensis
plants was significantly higher (by 7.6-fold) than in the DP plots (Table S2).

Similar annual weed species predominated at the beginning (BBCH 25–27) and at
the end of the faba bean vegetative period (BBCH 75–79) (Table 1). The different tillage
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methods generally did not have a significant effect on the number of annual weeds, but
their number was almost twice as low as at the beginning of the growing season. As an
exception, the NT plots were found to have the significantly highest number of P. lapathifolia
plants (11.2 weeds m−2) than the DP plots (Table S2).

At the beginning of the faba bean vegetative period, P. major was the most common
perennial weed in all tillage systems (Table S2). As the tillage intensity decreased, the
number of perennial weeds consistently increased, and in the NT plots, there were signifi-
cantly more (7.7-fold) than in the DP plots (Table 1). The number of perennial weeds in
the NT plots was the highest, but only the number of C. arvense and E. arvense plants were
significantly higher than in the other tillage systems (Table S2). At the end of the vegetative
period (BBCH 75–79), the numbers of perennial weeds in the experimental plots were
similar, but they differed between the tillage systems in a similar way to at the beginning
of the vegetative period (Table 1). The most prevalent weed species were C. arvense and
P. major (Table S2).

Overall, in 2016, the use of different tillage practices did not have a significant effect
on the total number of all weeds at either the beginning or end of the vegetative stage
(BBCH 75–79); however, at the beginning of the vegetative period, the number of weeds
was almost twice as high as at the end of the growing season. DP plots tended to have the
lowest total number of all observed weed species. Annual weeds predominated; therefore,
their influence on the total number of weeds was significant (r = 0.940 *).

In 2017, at the beginning of the vegetative period (BBCH 25–27), NT plots had sig-
nificantly lower numbers of all annual weeds (about five times lower) than other plots
(Table 1). Similar trends persisted in the overall prevalence of annual weeds at both the
beginning and end of the vegetative period, but the differences were not significant at
the end of the vegetative stage. The differences were mainly caused by the abundance of
E. crus galli and F. convolvulus weeds (Table S2).

Having investigated the abundance of perennial weeds, it was found in 2017 that,
unlike in 2016 and 2018, there were fewer perennial weeds (by about 3–4 times), and tillage
systems did not have a significant effect on the abundance of weeds at either the beginning
or end of the vegetative period (Table 1). At the end of the vegetative stage, only P. major
was significantly affected by deep cultivation (DC).

The analysis of the total weed incidence in 2017 revealed that, at the beginning of the
vegetative period, NT plots had a significantly lower number of weeds than the other plots
(Table 1). At the end of the vegetative season, the number of weeds in the plots levelled off
and the differences became small.

Summarized data from the year 2017 show that there were more weeds at the begin-
ning of the vegetative period than in 2016 (about 27%) because it was wetter. During this
period, NT plots had significantly fewer weeds than other plots; however, there were no
differences at the end of the vegetative season. Nevertheless, in the plowless and NT plots,
there were fewer weeds than in the control plots.

In 2018, the beginning of the vegetative period was warmer than in 2016 and 2017,
which was conducive to the spread of weeds, particularly annual ones (Table 1). Unlike in
2016 and 2017, in the NT plots, there was a significantly higher number of annual weeds
at the beginning of the vegetative period. The trend was similar in otherwise tilled plots.
C. album, E. crus galli, and P. lapathifolia were the predominant species (Table S2). By the
end of the vegetative stage, compared to the beginning, the number of annual weeds had
decreased by 2–4 times, especially in the NT plots (Table 1).

At the beginning of vegetative season, the lowest number of perennial weeds was
found in the control plots (DP), while the greatest number of weeds was recorded in the
SC plots, but this was only significant in comparison with the DP plots (Table 1). The
significant difference was due to the high incidence of C. arvense in the SC plots (Table S2).
At the end of the vegetative period, the number of perennial weeds slightly decreased
compared with at the beginning of the vegetative period, and the NT plots had significantly
the highest weed number, but this was only significant in comparison with the control
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plots. The difference was determined due to the highest incidence of P. major (Table S2).
The number of perennial weeds in SP plots was also higher in the SP plots than in the
DP plots.

In 2018, the largest densities (p < 0.01) of all weeds, occurring at both the beginning
(1.7–2.3 times) and end (1.5–1.7 times) of the vegetative period, were recorded in the NT
plots. The situation was different than in the previous experimental years, where the
number of weeds had levelled off by the end of the vegetative period. This was due to
higher air temperatures in the second half of the vegetative stage.

3.4. Weed Biomass

In 2016, at the end of the vegetative period, E. crus galli weeds were found to have
the highest air-dried biomass as their incidence in the plots was the highest (Table S3).
Annual weed species did not significantly differ in the terms of biomass (Table 2); only
more pronounced, isolated differences were observed (e.g., P. lapathifolia in the NT plots)
(Table S3).

Table 2. Air-dried biomass (g m−2) of the aerial part of weeds at faba bean BBCH 75–79 growth
stages as influenced by the tillage system in 2016–2018.

Weed Groups
Tillage Systems

DP SP DC SC NT

2016

Annual 104.5a 77.3ab 71.8ab 64.2ab 47.9b *
Perennial 1.0a 4.3a 28.1ab 19.9ab 93.6b *

Total 105.5a 81.6a 100.0a 84.1a 141.5a

2017

Annual 34.4a 34.0a 34.7a 36.7a 21.2a
Perennial 1.3a 8.2a 6.4a 2.5a 9.6a

Total 35.7a 42.2a 41.1a 39.2a 30.8a

2018

Annual 203.2a 154.6a 155.5a 159.7a 185.9a
Perennial 0.6b 39.4ab 63.7a * 45.8ab 18.9ab

Total 203.8a 194.0a 219.2a 205.5a 204.8a
DP—deep plowing (control treatment), SP—shallow plowing, DC—deep cultivation, SC—shallow cultivation,
NT—no-tillage (direct drilling). * significant difference at 0.01< p≤ 0.05. p > 0.05 indicates no significant difference
compared with DP. Different letters indicate significant differences between all treatments at p ≤ 0.05.

On average, the NT plots had significantly less biomass than the other plots—nearly
twice as low as in the DP plots, although the density did not differ significantly between
the treatments.

The biomass of perennial weeds was significantly higher in the NT plots compared
with other plots, being approx. 5–94 times higher than in other treatments (Table 2).
C. arvense (NT) and P. major accounted for the largest proportion in the total dry biomass
of weeds (Table S3). Overall, in 2016, the use of different tillage systems did not have a
significant effect on the total biomass of all weed species; although, in the NT plots, the
weed biomass was about 25% higher than in the DP plots and 42% higher than in the SP
plots. A strong relationship (r = 0.951 *) was found between the density and biomass of
perennial weeds.

In 2017, none of the reduced tillage systems significantly affected the biomass of
species of annual and perennial weeds (Table 2). The highest biomass was counted for
the annual weeds E. crus galli, F. convolvulus, and the perennial weed E. repens, although
the incidence was low (Table S3). A strong correlation was found between the number
of annual weeds at the beginning of the vegetative period and their air-dried biomass
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(r = 0.999 **). The total biomass of weeds of all species varied from 30.8 to 42.2 g m−2 and
was 3–4 times lower than in 2016. In 2017, the weed number was nearly twice as low.

In 2018, there was a greater biomass of weeds (twice as much, on average, compared
with 2016 and four times higher than in 2017) than in previous experimental years. The use
of different tillage systems generally did not have a significant effect on the total biomass
of annual weeds (Table 2). More weed species were distinguished by having a higher
biomass than in the previous experimental years. This included C. album, E. crus galli,
and P. lapathifolia (Table S3). Of the perennial weed species, P. major produced the greatest
biomass, particularly in the DC plots, where its biomass was significantly the highest.
While summarizing the biomass data of all weed species, it was found that different tillage
systems did not have a significant effect.

3.5. Weed Seedbank

In our experiment, the weed seedbank was abundant, and in individual years and
differently tilled plots, this amounted up to 222,000 seeds m−2 or 2.22 million seeds ha−1

in the arable layer.
In 2016, seeds of C. album, E. crus galli, F. convolvulus, and S. arvensis predominated

in the soil, as the incidence of these weeds was high in the faba bean crop (Table S4). In
the topsoil (0–15 cm), the SC plots were found to significantly have the greatest number
of annual weed seeds, and this had a significant effect on the differences in the number
of seeds of all weed species (Table 3). The number of perennial weed seeds did not differ
significantly. The lowest numbers of seeds of all weed species were found in the topsoil
layer of the NT plots compared with the DP and SP plots.

In contrast to the upper layer, greater differences in weed seed numbers were found
in the deeper (15–25 cm) soil layer. With a decreasing tillage intensity, the number of
incorporated weed seeds decreased and was significantly the highest in the DP plots.
C. album weeds had the greatest effect on these findings (Table S4).

The number of C. album seeds was from 2.1 to 4.9 times lower in the reduced tillage
and NT plots (Table S4). More perennial weed seeds were found in the bottom layer of the
plow layer (Table 3). The highest numbers of perennial weed seeds (11.9 and 11.6 times)
were found in the SC and NT plots. Of the perennial weeds, the seeds of J. bufonius were
most abundant, although their density in the faba bean crop was relatively low. This meant
that J. bufonius seeds could remain undestroyed in the soil for a longer time (Table S4).

In 2017, like in 2016, the lowest number (p < 0.01) of annual weed seeds was recorded
in the upper layer of the plow layer of the NT plots, while the highest seed number was
found in the SC plots (Table 3). Unlike in 2016, with a decreasing tillage intensity, the
number of perennial weed seeds consistently increased but did not reach the limit of
significant difference. Like in 2016, significantly the highest number of seeds of all weed
species was found in the SC plots.

In the 15–25 cm soil layer, significantly, the highest number of annual weeds was
found in the SP plots; it was about three times higher than in the NT plots. Similar to
2016, with a decreasing of tillage intensity, the number of perennial weed seeds increased;
however, the highest weed seed number was found in the SC plots, not in the NT plots.
J. bufonius predominated with the highest density in the SC and NT plots (Table S4). These
weed species develop best in the soils with elevated moisture, and in SC and NT plots, the
moisture content was usually the greatest (data not shown).

In the deeper section of the plow layer, there were more seeds of all weed species than
in the upper layer. In reduced tillage systems, the soil generally had more weed seeds (by
1.3 to 40.0 times) (Table 3).

In 2018, there were more weed seeds in the plow layer than in the previous years of the
experiment, because the total weediness of the crop was also higher. Unlike in the previous
years of the investigations, the average number of weed seeds mainly did not differ
significantly between the plots of the tillage treatments (Table 3). No significant differences
were identified when comparing the data with the control treatment (DP). Significant
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differences were only found in single cases between the weed species: S. arvensis, C. album,
and E. crus galli (Table S4). Like in the previous years of the experiment, there were fewer
weeds in the upper soil layer than in the bottom layer.

Table 3. Weed seedbank (thousand weed seeds m−2) in different soil layers, as influenced by the
tillage system in 2016–2018.

Weed Groups
Tillage Systems

DP SP DC SC NT

2016

0–15 cm

Annual 64.5b 65.1b 77.7ab 88.4a ** 63.0b
Perennial 6.3a 6.3a 12.0a 4.2a 6.8a

Total 70.8b 71.4b 89.7a * 92.6a * 69.8b

15–25 cm

Annual 133.8a 85.7b * 37.6c *** 28.0c *** 42.0bc ***
Perennial 9.7b 31.5b 44.6b 115.5a *** 112.8a ***

Total 143.5a 117.2b * 82.2c * 143.5a 154.8a

2017

0–15 cm

Annual 55.1a 44.6ab 45.6ab 64.5a 30.9b *
Perennial 1.5a 3.1a 7.8a 6.8a 8.4a

Total 56.6b 47.7bc 53.4b 71.3a * 39.3c *

15–25 cm

Annual 55.2b 94.5a * 47.2b 48.1b 29.7b
Perennial 0.8b 17.5b 26.5b 174.1a ** 114.6ab

Total 56.0d 112.0bc 73.7cd 222.1a * 144.3b *

2018

0–15 cm

Annual 77.7a 92.4a 112.8a 107.6a 91.3a
Perennial 1.5a 0.0a 4.2a 0.0a 0.0a

Total 79.2c 92.4bc 117.0a * 107.6ab 91.3bc

15–25 cm

Annual 96.2a 151.3a 89.2a 149.6a 167.1a
Perennial 47.2a 12.2a 37.6a 0.0a 1.7a

Total 143.4a 163.6a 126.8a 149.6a 168.8a
DP–deep plowing (control treatment), SP—shallow plowing, DC—deep cultivation, SC—shallow cultivation,
NT—no-tillage (direct drilling). * significant difference at 0.01 < p ≤ 0.05, ** at 0.001 < p ≤ 0.01, *** at p ≤ 0.001.
p > 0.05 indicates no significant difference compared with DP. Different letters indicate significant differences
between all treatments at p ≤ 0.05.

With a decreasing tillage intensity, the distribution of weed seeds in the plowed layer
was similar (p > 0.05) (Figure 3).

Summarizing the data of the three years of experimentation, it can be concluded that,
on average, the highest number of seeds of all weed species was found in the SC plots and
NT plots, but these differences were small compared with the other treatments where the
number of weed seeds varied within the range of 180.9–201.4 thousand seeds m−2.
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Figure 3. Weed seedbank distribution between soil layers. DP–deep plowing (control treatment),
SP–shallow plowing, DC–deep cultivation, SC–shallow cultivation, NT–no-tillage (direct drilling).
p > 0.05.

4. Discussion
4.1. Topsoil Residue Coverage

In the experiment, the greatest level of topsoil coverage with forecrop straw was found
in the NT plots (Figure 2). This affected the abundance of weeds. Our finding agrees with
that reported by Buchanan et al. [39], who showed that winter wheat crop residues had a
reduced weed density by up to 50%. Cover crops growing has a similar effect as forecrop
residues [40]. An analysis of our research data showed a moderate negative correlation
between the volume of forecrop residue coverage in the topsoil and the number of weeds at
the beginning of the faba bean vegetative period (BBCH 25–27). Forecrop residues limited
the germination of annual weeds (r = −0.784) and biomass accumulation (r = −0.748).
Conversely, a thicker residue cover, which formed due to the more favorable heat and
moisture regime, promoted the spread of perennial weeds at both the beginning of the
vegetative period (r = 0.923 *) and at the end (r = 0.905 *) and increased their biomass
(r = 0.982 **). Similarly, in our earlier investigations, we found a strong correlation between
the total air-dried biomass of living mulches, which acted as continuous soil coverage
during the maize vegetative stage, and the air-dried biomass of annual, perennial, and total
weeds [41].

4.2. Weeds Species Composition and Density

The studies of weed flora showed that the 12 main weed species that compete with
faba bean in Southern Europe are the broadleaved species Anthemis arvensis L., C. album,
Papaver rhoeas L., S. arvensis, Fumaria officinalis L., Veronica spp., Lamium amplexicaule L.,
and C. arvense and the grass species Avena sterilis L., Phalaris spp., Lolium rigidum Gaud.,
and Alopecurus myosuroides Huds. [42,43]. Lithuanian winters differ in terms of the lowest
temperature reached (average January air temperature is approx. –5.4◦ C) compared with
the average in southern Europe, resulting in fewer annual fallow/winter weed species
being present (Table S1). Lolium spp., Alopecurus spp., and Papaver spp. are rare species. On
the other hand, most of the annual winter weeds emerge in the autumn before primary
tillage. In Lithuania, faba bean crops are sown in spring. Thus, the remaining weeds are
destroyed again. In our experiment, in addition to the above-mentioned weeds (C. album,
S. arvensis, Veronica spp., and C. arvense) [42,43], the predominant annual weed species
were E. crus galli, F. convolvulus, P. lapathifolia, and G. tetrahit. The prevalent perennial
species were T. officinale, P. major, S. arvensis, E. arvense, E. repens. Shahzad et al. [44] showed
that different tillage systems have marked effects on the total density of broadleaved and
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grass weeds and that an NT system is more conducive to the spread of weeds. According
to the group of researchers, tillage had a significant effect on the composition of weed
communities and their functional properties in different crop cultivations [21,45,46]. Al-
moussawi et al. [14] found that the use of reduced tillage increased the abundance of
annual weed species, including Viola arvensis and Fumaria officinalis, but investigations of
other scientists [3,45,47] highlighted the increase of perennials. Carter and Ivany [48] have
found that the weed species diversity presented when DP system was used was lower
compared with when shallow tillage and NT were used, which is partly consistent with
the results of our investigations. The following species were predominant: Gnaphalium
uliginosum L., Ranunculus repens L., and C. album. However, other scientists found less clear
trends [45,49]. Thomas et al. [50] suggested that perennial species (C. avense and S. arvensis)
and annual species (e.g., Setaria viridis) generally predominate with the use of NT systems.
These findings agree with those reported by other researchers [17,18,51].

In a study by Stancevičius et al. [52], it was found that when traditional deep plowing
was replaced by a shallow plowing or deep and shallow loosening, weed seeds and
vegetative reproductive organs became closer to the soil surface and germinated and
regenerated faster, resulting in increased weed infestation in the crop stand. The incidences
of perennial vegetatively propagating weeds (E. repens, S. arvensis) and small-seeded
annual weeds (Poa annua L., Tripleurospermum perforatum (Meat), and Stellaria media L.)
were particularly high. Colbach et al. [8] have documented that surface tillage, which
leaves seeds on the soil surface, increases the weed density, while heavy-seeded weeds
predominate in plowed soil. Conversely, Hernández Plaza et al. [20] have reported that
weeds containing a lot of small seeds predominated when NT system is used.

Armengot et al. [53] and Légère et al. [45] pointed out that non-inversion tillage may
increase weed infestation; however, this tendency depends on the type of crop and varies
in time. In our experiment, in 2016 and 2017, the use of different tillage practices did not
have a significant effect on the total number of all weeds present at both the beginning
and end of the growing season, except for in single cases (Table 1 and Table S2). Similarly,
Santín-Montanyá et al. [54] found that the weed density in a wheat stand differed between
years, but the differences were not significant. In 2018, the highest numbers of all weeds
were recorded at both the beginning and end of the vegetative stage in the NT plots.

Summarizing the three experimental years, it can be stated that the meteorolog-
ical conditions had a greater impact on weed abundance than the type of tillage sys-
tems used. Hossain et al. [46] also highlighted the significant impact of year conditions.
Alarcón Víllora et al. [6] suggested that climate has the most important influence on weed
seed emergence. Alarcón Víllora et al. [7] have corroborated our findings in a 9-year
experiment in a cereal–legume crop rotation. Environmental variability was found to be
more important than the type of tillage system applied for determining the weed species
diversity and density. Less common weed species were more strongly affected by tillage
than dominant species, which were the same with all tillage systems. The correlation
analysis of our experimental results obtained over the 2016–2018 period showed strong
relationships between the mean daily temperature (x) and the density of weeds of all
species at the beginning (r = 0.978 **) and end (r = 0.538) of the vegetative period and
also between the amount of precipitation and the density of weeds of all species at the
beginning (r = 0.770) and end (r = 0.833) of the vegetative period. Different weed species
responded differently to climatic factors, the effect being weaker on annual weeds than
on perennial weeds. The perennial weed P. major was found to be particularly sensitive
to the changing meteorological conditions. Its spread was more abundant under warmer
(r = 0.689) and wetter (r = 0.984 **) conditions. This effect was also observed at the end of
the vegetative stage (r = 0.667 and 0.967 **). Therefore, in the warmer and wetter year, 2018,
the density of weeds was, on average, almost twice as high as in previous years (Table 1).
The density of weeds during the vegetative period decreased by 2–3 times, and in most
cases, the differences between the treatments were small, except for in 2018, when the
number of weeds in the NT plots remained significantly higher than in the DP plots. The
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species composition of weeds did not differ considerably between the experimental years,
with E. crus galli, F. convolvulus, and P. major being the most prevalent species (Table S2).
Although the density of weeds in the faba bean crops decreased, correlations were found
between the numbers of annual and perennial weeds and the total weed densities at the
beginning and end of the vegetative period (r = 0.411, 0.997 **, and 0.636). For some weed
species, the correlation was more pronounced, and in most cases, it was significant, e.g.,
for E. crus galli (r = 0.879 *), F. convolvulus (r = 0.924 *), P. lapathifolia (r = 0.826), C. arvense
(r = 0.889 *), and P. major (r = 0.920 *).

4.3. Weed Biomass

In our experiment, the air-dried biomass of weeds was high because the faba bean
seed rate was slightly too low, as we were limited by the technical capabilities of the drill.
Similarly, Alba et al. [55] concluded that, with an increased lentil sowing rate, it would be
possible to reduce the weed biomass by up to 16%.

In our experiment, the total weed biomass was not significantly affected by the
different tillage systems investigated (Table 2 and Table S3). However, in 2016, in the NT
plots, the total weed biomass was about 25% higher than in the DP plots and 42% higher
than in the SP plots. Similarly, in a study by Matloob et al. [56], the lowest weed biomass
was found in the DP system, but this effect was not significant. This result is in agreement
with a study by Hernández Plaza et al. [20], which found that the weed biomass in the
NT plots was lower than in plowed and plowless plots. Similarly, Samarajeewa et al. [57]
found that the weed biomass in a soy stand that was exposed to no-tillage treatment was
higher than in reduced tillage or plowed plots. Susha et al. [58] also found a reduction (by
14.0%) of total weed biomass in wheat crop.

The data averages over the period 2016–2018 suggest that the air-dried biomass of
all weed species is barely affected by the air temperature and precipitation rate of the
vegetative period, but for individual weed groups or species, this influence was found
to be marked. With an increasing air temperature and precipitation rate, the biomass of
annual weeds decreased (r = –0.869 and –0.689), while that of perennial weeds increased
(r = 0.445 and 0.458). This effect was even greater in P. major (r = 0.667 and 0.967 **).

The abundance of plant residues of the forecrop, in contrast to the air temperature
and amount of precipitation, was found to be the key parameter that had a considerable
effect on weed biomass. With the increasing of amount of plant residues on the topsoil,
the biomass of annual weeds decreased (r = –0.748). On the contrary, this had significant
positive effects (r = 0.903 * and 0.996 **) on the weeds E. crus galli and P. lapathifolia. The
abundance of forecrop residues also increased the biomass of perennial weeds, and the
biomass of total weeds (r = 0.982 ** and 0.890 *). The effect on the perennial weed C. arvense
was profound and significant (r = 0.996 **).

4.4. Weed Seedbank

In our experiment, C. album, E. crus galli, and S. arvensis were the most widespread, and
the seeds of these species were predominant in the seedbank in the soil (Table S4). Similarly,
Wei et al. [59] found that the aboveground part of weeds had the greatest effect on the
weed seedbank. The correlation analysis of our experimental results showed a moderate
relationship (r = 0.583) between the number of annual weeds present at the beginning
of vegetative stage (BBCH 25–27) and the seedbank of annual weeds in the 0–15 cm soil
layer, although this relationship was stronger and more significant (r = 0.919 *) for E. crus
galli. Similar relationships were found between the number of weeds of all species and
the seedbank at the beginning (r = 0.620) and at the end (BBCH 75–79) (r = 0.660) of the
vegetative period. The abundance of perennial weeds at the end of the vegetative stage
considerably influenced their seedbank in the 15–25 cm soil layer (r = 0.874).

One of the most important measures in reducing weed incidence in crop fields is soil
protection against infestation with weed seeds. The quality of weed control depends largely
on the ability to limit the entry of new weed seeds into the soil [23]. In our experiment, in
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most cases, the highest concentration of seeds of all weed species was found in the SC plots,
but the difference was not always significant compared with the other treatments (Table 3,
Figure 3). This is in contrast to the findings of Hernández Plaza et al. [20], which suggested
that the number of weed seeds present when NT system was used was higher than when
DP and CT (conservation tillage) treatments were used. Similarly, after 14 years of research,
Buhler et al. [60] found that a larger and more diverse weed population was present in the
sustainably tilled plots compared with the conventionally tilled plots. Weeds producing
many small seeds predominate when NT system is used [20], and those producing larger
seeds and with later flowering phenology predominate when DP practice is used [21].
Otherwise, plowing distributes weed seeds into deeper soil layers. Large seeds have higher
sprouting energy and greater success in emerging from deeper layers than the small ones.
This is why weeds with large seeds dominate in plowed soils (Gardarin et al. 2009) [61].
In contrast, Fried et al. [22] found that early-flowering weed species with small weed
seeds predominate when the soil is tilled at a greater depth. In addition, Fenner and
Thompson [62] and Peco et al. [63] suggested that small weed seeds persist longer in the
soil than many large ones. However, investigations of Armengot et al. [21] do not support
this relationship.

In our experiment, contrary to what was assumed in the hypothesis, even with a
decreasing tillage intensity, the distribution of weed seeds in the plow layer changed little.
Contrarily, Scherner et al. [13] found that plowless tillage initiated numerous weed seeds
distribution in the upper (0–5 and 5–10 cm) soil layers and less in the 10–20 cm layer. In
plowed soil, the distribution of seeds was more even. Similar conclusions were also made
by many other researchers [14,17,18,21,64]. We suggest that, under the NT conditions, small
weed seeds enter the deeper soil layers and remain there for a long time, especially with
periods of higher rainfall after drier periods at the end of the faba bean vegetative period
when the seeds of most annual weeds ripen. The correlation analysis of the experimental
data showed a moderate correlation (r = 0.716) between the amount of rainfall present
during the vegetative period and the abundance of the seedbank of annual weeds in the
0–15 cm soil layer. For the weed F. convolvulus, this relationship was the most pronounced
and significant (r = 0.932 *).

To summarize, the unstable meteorological conditions caused by the climate change
have a greater impact on weed abundance and seedbank distribution in the soil than
long-term sustainable tillage practices. This suggests that the use of weed control strategies
for sustainable farming systems may need to be quickly reviewed.

5. Conclusions

On average, a reduction in tillage intensity was associated with a slight increase in
the weed density and biomass in faba bean plots, especially in disked and not-tilled plots.
The volume of forecrop residues was found to be the key parameter of tillage practice
that affected the weed biomass. In plowless or not-tilled plots with a higher volume of
residues on the topsoil, the biomass of annual weeds decreased and that of perennial
weeds increased.

On average, more weed seeds were found in the soil of disked and not-tilled plots
compared with deeply plowed ones. The weed seedbank in the soil was almost evenly
distributed between the layers (0–15 cm and 15–25 cm), and contrary to expectations, it did
not differ significantly between the tillage systems.

In summary, the short-term meteorological conditions present during the three years
of investigations had a greater impact on weed abundance and seedbank distribution than
the use of long-term sustainable tillage practices.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/3/529/s1, Table S1: The list of weed species in the experiment. Table S2: Density (number m−2)
of the most widespread weeds at different faba bean growth stages, as influenced by the tillage
system in 2016–2018. Table S3: Air-dried biomass (g m−2) of aerial part of the most widespread
weeds at faba bean BBCH 75–79 growth stages as influenced by the tillage system in 2016–2018.
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Table S4: The most widespread weed seedbank (thousand weed seeds m−2) in different soil layers,
as influenced by the tillage system in 2016–2018.
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52. Stancevičius, A.; Špokienė, N.; Jodaugienė, D.; Trečiokas, K.; Raudonius. Impact of reduced soil tillage on crop weedinesss. Proc.
Lith. Acad. Agric. 2002, 55, 50–58, (In Lithuanian with English summary).

53. Armengot, L.; Berner, A.; Blanco-Moreno, J.M. Xavier Sans, F. Long-term feasibility of reduced tillage in organic farming. Agron.
Sustain. Dev. 2015, 35, 339–346. [CrossRef]

54. Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walterb, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and
fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 2013, 48, 43–49. [CrossRef]

55. Alba, O.S.; Syrovy, L.D.; Duddu, H.S.N.; Shirtliffe, S.J. Increased seeding rate and multiple methods of mechanical weed control
reduce weed biomass in a poorly competitive organic crop. Field Crop. Res. 2020, 245, 1–9. [CrossRef]

56. Matloob, A.; Khaliq, A.; Tanveer, A.; Hussain, S.; Aslam, F.; Chauhan, B.S. Weed dynamics as influenced by tillage system, sowing
time and weed competition duration in dry-seeded rice. Crop Prot. 2015, 71, 25–38. [CrossRef]

57. Samarajeewa, K.B.D.P.; Horiuchi, T.; Oba, S. Finger millet (Eleucine corocana L. Gaertn.) as a cover crop on weed control, growth
and yield of soybean under different tillage systems. Soil Till. Res. 2006, 90, 93–99. [CrossRef]

58. Susha, V.S.; Das, T.K.; Nath, C.P.; Pandey, R.; Paul, S.; Ghosh, S. Impacts of tillage and herbicide mixture on weed interference,
agronomic productivity and profitability of a maize—Wheat system in the North-western Indo-Gangetic Plains. Field Crop. Res.
2018, 219, 180–191. [CrossRef]

59. Wei, S.H.; Qiang, S.; Ma, B.; Wei, J.G. Soil weed seedbank and integrated weed management. Soils 2005, 37, 121–128, (In Chinese
with English abstract).

60. Buhler, D.D.; Stoltenberg, D.E.; Becker, R.L.; Gunsolus, J.L. Perennial weed populations after 14 years of variable tillage and
cropping practices. Weed Sci. 1994, 43, 205–209. [CrossRef]

61. Gardarin, A.; Durr, C.; Colbach, N. Which model species for weed seedbank and emergence studies? A review. Weed Res. 2009,
49, 117–130. [CrossRef]

62. Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005.
63. Peco, B.; Traba, J.; Levassor, C.; Sánchez, A.M.; Azcárate, F.M. Seed size, shape and persistence in dry Mediterranean grass and

scrublands. Seed Sci. Res. 2003, 13, 87–93. [CrossRef]
64. Koning, L.A.; De Mol, F.; Gerowitt, B. Effects of management by glyphosate or tillage on the weed vegetation in a field experiment.

Soil Till. Res. 2019, 186, 79–86. [CrossRef]

http://doi.org/10.1016/j.cropro.2020.105334
http://doi.org/10.1111/j.1475-2743.2006.00082.x
http://doi.org/10.1016/j.still.2005.08.002
http://doi.org/10.1016/j.agee.2010.11.016
http://doi.org/10.1614/WS-04-010R1
http://doi.org/10.1046/j.1439-037X.2001.00458.x
http://doi.org/10.1007/s13593-014-0249-y
http://doi.org/10.1016/j.eja.2013.02.006
http://doi.org/10.1016/j.fcr.2019.107648
http://doi.org/10.1016/j.cropro.2015.01.009
http://doi.org/10.1016/j.still.2005.08.018
http://doi.org/10.1016/j.fcr.2018.02.003
http://doi.org/10.1017/S0043174500080280
http://doi.org/10.1111/j.1365-3180.2008.00683.x
http://doi.org/10.1079/SSR2002127
http://doi.org/10.1016/j.still.2018.10.012

	Introduction 
	Materials and Methods 
	Site Description 
	Experimental Treatments and Agronomic Practices 
	Methods 
	Statistical Analysis 

	Results 
	Meteorological Conditions 
	Topsoil Residue Coverage 
	Weed Species Composition and Density 
	Weed Biomass 
	Weed Seedbank 

	Discussion 
	Topsoil Residue Coverage 
	Weeds Species Composition and Density 
	Weed Biomass 
	Weed Seedbank 

	Conclusions 
	References

