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Abstract: This study aimed to establish a machine learning (ML)-based rice blast predicting model
to decrease the appreciable losses based on short-term environment data. The average, highest and
lowest air temperature, average relative humidity, soil temperature and solar energy were selected
for model development. The developed multilayer perceptron (MLP), support vector machine
(SVM), Elman recurrent neural network (Elman RNN) and probabilistic neural network (PNN) were
evaluated by F-measures. Finally, a sensitivity analysis (SA) was conducted for the factor importance
assessment. The study result shows that the PNN performed best with the F-measure (β = 2) of 96.8%.
The SA was conducted in the PNN model resulting in the main effect period is 10 days before the
rice blast happened. The key factors found are minimum air temperature, followed by solar energy
and equaled sensitivity of average relative humidity, maximum air temperature and soil temperature.
The temperature phase lag in air and soil may cause a lower dew point and suitable for rice blast
pathogens growth. Through this study’s results, rice blast warnings can be issued 10 days in advance,
increasing the response time for farmers preparing related preventive measures, further reducing the
losses caused by rice blast.

Keywords: rice disease; precision agriculture; artificial neural networks (ANN); soil temperature;
confusion matrix; F-measure

1. Introduction

The impact of blast fungus (Magnaporthe oryzae syn. Pyricularia oryzae) is a global rice
(Oryza sativa L.) production issue [1]. The fungus has been found in at least 85 rice-growing
countries [2] and is a particular threat to food security in South Asia and Africa [3]. Rice
blast disease caused the loss of 157 million tons of rice worldwide between 1975 and 1990,
resulting in maximum possible losses corresponding to 30% of global rice production [4–6]
and annual food losses for 60 million people [1]. The cost of chemical control may exceed
approximately USD 70/ha/year [7]. In addition, blast fungus has been found to affect
not only rice but also barley (Hordeum vulgare) [8]. Due to the threat to food security
under and farmers’ income, blast fungus has been evaluated as the most destructive fungus
globally [9] and has been identified as one of the significant and omnipresent rice cultivation
constraints [10]. Fungal blast poses an especially severe threat to the tropical rice-growing
regions, which feed more than 33% of the global population [11]. Thus, growers have a
great need to determine when the disease will start, how severe an epidemic will be and
when they should apply fungicides [12].
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The rice blast pathogen develops in the nodes, leaves, collars, necks, panicles, seeds
and roots over the entire growth period [13,14]. Figure 1 shows the leaf and panicle
symptom of rice blast. The fungus subsequently invades the above-ground parts of the
rice plant and, in severe epidemics, large ellipsoid lesions can engulf the entire surface of a
leaf [15]. Based on the rice blast attack mechanism, it has been found that the damage is very
much influenced by environmental factors. The disease can survive throughout the year in
the air and can be severed during periods of low temperatures and high moisture; while
conidia do not germinate under direct sunlight, overcast conditions and dew encourage
blast spread [16]. Blast lesions occur in suitable weather, leading to increased blast incidence
and severity for 7 to 10 days [17]; their life cycle is 7 to 14 days [18–20], then destroying
plants within 15 to 20 days, causing yield losses of up to 100% [21]. Moreover, inappropriate
farming practices, e.g., excessive fertilizer [22], may lead to severe rice blast happening.
Although ongoing research is working to develop rice blast resistant varieties, it has been
found that the resistance is being lost and even vanishes within a few years [23].

Figure 1. The symptom of rice blast in (a) leaf and (b) panicle.

Considering the severity of rice blast effects on rice production, many researchers
have developed rice blast forecasting models for early warning. Katsantonis, et al. [24]
reviewed 52 rice blast forecasting models and concluded that the parameters applied (with
frequencies) included air temperature (T, 67.3%), relative humidity (RH, 57.7%), rainfall
(55.8%), leaf wetness (34.6%), sunlight (30.8%), wind speed (30.8%) and dewpoint (15.4%).
The variables most often combined were air temperature (T) and relative humidity (RH).
Moreover, under the growth mechanism of the rice blast pathogen, the disease occurrence
has been found to be positively related to soil temperature (TS). Hemi and Abe [25] used
a modified Wisconsin soil temperature tank for a rice blast experiment in the seeding
stage, considering the effect of TS. Incidence of rice blast at 20 ◦C, 24 ◦C, 28 ◦C and
32 ◦C was 33.95%, 17.28%, 17.85% and 13.70%, respectively. Abe [26] found that rice blast
incidence was lowest in seedlings grown at TS of 27.8 ◦C with highest in those grown
at 20 ◦C A similar finding from Hemi, et al. [27] showed that the rice blast incidence
after the booting stage with TS of 20 ◦C to 29 ◦C and 18 ◦C to 24 ◦C was 28.46% and
56.02%, respectively. Hashioka [28] reported that resistance increases with the rise of both
air and soil temperatures. The ratio of carbon to nitrogen in the leaves is increased in
proportion to the rise in temperature. Suzuki [29] inoculated the panicles of two resistant
and two susceptible rice varieties grown at low and normal soil temperatures. Disease
development in all plants in the low temperature series was 75 to 100%, whereas at the
normal temperature, it was 0 to 13.3% for the resistant and 20 to 33.3% for susceptible
varieties. These forecasting models could be used to identify which years are conducive and
whether fungicide application would be cost-effective or risky under those conditions. Both
empirical and explanatory simulation models via regression analysis have been developed
for rice blast prediction in many countries [24]. However, due to climate change affects the
rice field environment variate intensely, the conventional prediction model might lose the
predicting accuracy [30].

In recent years, a few researchers have considered the rice blast mechanism to be a
nonlinear system and have adopted machine learning (ML), especially artificial neural net-
works (ANNs), known as sophisticated problem-solving algorithms, for the development
of rice blast forecasting models. This approach was first explored by Kaundal, Kapoor and
Raghava [12]. The researchers collected 5 years of data on rice blast events and weekly
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weather data (from 2000 to 2004) in India for the development of a long-term forecasting
model, including “cross-location” and “cross-year” scenarios. The model included multiple
regression (REG), the backpropagation neural network (BPNN), generalized regression
neural network (GRNN) and support vector machines (SVM). Approximately 80% of data
were used for model training and validation, the remaining 20% for model testing. The
average correlation coefficients (r) between observed and modeled rice blast happening
probability in REG, BPNN, GRNN and SVM were 0.48, 0.56, 0.66 and 0.74 for the cross-
location model and 0.50, 0.60, 0.70 and 0.77 for the cross-year model, respectively. In the
factor importance analysis, rainfall was most influential in predicting the disease, followed
by rainy days/week, minimum RH (RHmin), maximum RH (RHmax), minimum T (Tmin)
and maximum T (Tmax). Mojerlou, et al. [31] applied weather data including precipitation,
daily Tmin, Tmax, RHmin, RH max and duration of sunny hours from 2006 to 2008 for rice
blast spore population forecasting in Iran. A multilayer perceptron (MLP) was employed
for model development. In total, 80% of the data were used for model training and valida-
tion and 20% of the testing data. The highest coefficient of determination (R2) obtained was
0.552. The results indicate that RH and T were the most important meteorological factors
and form a suitable base for predicting the spore population, according to the findings
of Calvero, et al. [32]. Kim, Roh and Kim [14] applied a long short-term memory (LSTM)
recurrent neural network (RNN) to establish an early rice blast event forecasting model
for four regions in Korea. Climatic data, including T, RH and sunlight, were obtained in
June and July from 2003 to 2016 during the rice blast data collection period. This study
used 70% of the training data, 10% for validation and 20% for testing. An early (1 year)
rice blast model was developed. The highest accuracy and F1-score was 79.4%. Nettleton,
et al. [33] compared 4 models (two role-based, called YOSHINO and WARM, the other
two for ML were M5RULES and LSTM RNN) for rice blast disease prediction. The inputs
for the ANN models included daily Tmin, Tmax, RH and leaf wetness. The result showed
that the LSTM RNN achieved the highest averaged r (0.7). The authors indicated that
these 4 models exhibit significant signals during the early warning period, with a similar
performance level.

Compare the traditional REG model, these ML-based rice blast predicting models,
e.g., BPNN, GRNN, SVM, RNN, have developed a reliable forecasting result, according
to relative environment factors, such as temperature, relative humidity and sunlight.
However, regarding soil temperature, it has been found that it affects the blast pathogen
growth and spread; in addition, the blast occurrence is known to relate to soil conditions,
which is yet to be seen in relevant applied research. Therefore, this study considered the
influence of Ts as one of the variables for forecasting model development and discuss the
effect mechanism.

This study aims to develop a reasonable and reliable rice blast forecasting model
based on the mechanism of rice blast pathogen growth and spread using ML techniques.
Accordingly, the objectives were as follows:

(1) Based on rice blast pathogen growth and spread mechanisms, to determine short-term
environment data for establishing models.

(2) To employ ML as rice blast forecasting models and to assess model performance by
confusion matrix.

(3) Conduct sensitivity analysis on high performance ML model, to evaluate the impor-
tant rice blast influence factors.

To achieve the aims of this study, firstly, regional weather data and rice blast event
were collected. Secondly, the collected data were applied to selected ML algorithms for
rice blast event forecasting model development. In the third step, the performances of
each model were evaluated to find the best-fit model. Finally, the sensitivity analysis was
conducted in highest performance model to identify the relative importance from each
input to the model.
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2. Materials and Methods
2.1. Study Area

In Taiwan, Yuin-Lin, Chia-Yi and Tai-Nan (YCN) counties contribute towards 41.4% of
rice production out of 22 counties, with 37.6% of the area planted in rice in two crop seasons
(Table 1). These three counties are located in a 250,000 ha alluvial plain in Southern Taiwan
(Figure 2), with a similar meteorological environment. In total, three weather stations
were selected to represent the regional weather. The monthly T, RH, sunlight hours and
rainfall are 23.7 ◦C, 78.9%, 176.98 h and 144.69 mm, respectively. Based on the published
observations [34], the average rice blast rate (infected area divide total paddy area) in the
YCN area was 48.67% from 2009 to 2013 (Table 2).

Table 1. The planting area and yield in the study area.

County
Paddy Rice

Planting Area Harvest Amount

Ha % Ton %

Yuin-Lin 44,834 16.6% 268,965 18.8%
Chia-Yi 32,725 12.1% 190,636 13.3%
Tai-Nan 24,076 8.9% 131,156 9.2%

Sum. 101,636 37.6% 590,757 41.4%

Taiwan 270,068 100.0% 1,428,251 100.0%

Figure 2. Map showing the location of the Yuin-Chia-Nan (YCN) area.
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Table 2. The rice blast incidence in the YCN area [34].

Year Rice Blast Rate (%)

2009 42.55%
2010 28.28%
2011 37.39%
2012 59.42%
2013 75.72%

Avg. 48.67%

2.2. Data Collection

This study used environmental data for 10 days (D10) and 10 days to 20 days (D20)
with corresponding rice blast events in the YCN area to develop rice blast forecasting mod-
els. The data were published in the columns for farming activities, agro-meteorology and
disasters in the Agro-Meteorological Bulletin (AMB) by the Central Weather Bureau [35],
Taiwan, including 10-day climatic summaries (such as for T, RH and rainfall) and agricul-
tural disaster warnings (for rice blast and other diseases), published every 10 days.

2.2.1. Rice Blast Data

The AMB text file provided in the open government data for rice blast decision-making
information was collected for the period between the years 2004 and 2019. However, the
rice blast events were in text form; thus, the semantic keyword of “YCN area” and “rice
blast” were extracted and “infected” and “not infected” were classified as the variable for
identifying rice blast events.

2.2.2. Weather Data

Daily Tmax, Tmin and Tavg, averaged RH (RHavg) and total sunlight energy (SE) were
used for model development. Moreover, according to the mechanism of rice blast pathogen
growth and spread, rice blast occurrence is known to relate to soil; therefore, Ts was selected
for one of the model input. These data were observed by Yuin-Lin station, Yi-Chu station
(Chia-Yi station) and the livestock research institute (Tai-Nan station) of the Council of
Agriculture, Taiwan (Figure 2).

2.3. Machine Learning (ML)

ML techniques, especially ANNs and SVM, have been employed for rice blast fore-
casting and have acquired satisfactory performance. This study used NeuroSolution 7.1
software from NeuroDimension, Inc (Gainesville, FL, USA) to develop the ANN and SVM
rice blast models. Moreover, data normalization was conducted for the preventative pur-
pose of overcoming errors associated with extreme values. In addition, this procedure
was able to randomize the data with stochastic statistics to understand the relative degree
of change in the database. Therefore, in this study, data normalization was processed by
Equations (1) and (2) for Tmax, Tmin, Tavg, RHavg, SE and TS, in the range of 0 to 1.

xnorm =
x − xmin

xmax − xmin
(1)

x = xnorm × (xmax − xmin) + xmin (2)

where xnorm is the dimensionless normalized x variable; x is the observed data vector; xmin
is the minimum value of the variable and xmax is the maximum value of the variable.

2.3.1. Multilayer Perceptron (MLP)

The multilayer perceptron is a traditional and classic ANN model. The structure is
composed of the input layer, hidden layer and output layer. Typically, the MLP model
consists of a backpropagation algorithm for error adjustment, also called BPNN which
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was established by Rumelhart et al. in 1986 [36]. The layers of nodes whose input and
output are seen only by other nodes are termed hidden layers. The connection weights are
computed utilizing a learning algorithm. In this study, a single hidden layer was conducted
with an optimized perceptron element. The Levenberg Marquardt gradient search method
is used with the batch update. In total, there were 1000 epochs, with a learning rate of 0.001
and an early stopping callback to prevent overfitting.

2.3.2. Support Vector Machines (SVM)

The support vector machine was proposed by Vapnik [37] based on the combination of
the principle of structural risk minimization and the statistics of the Vapnik–Chervonenkis
(VC) dimension theory. The advantages of SVM include target classification and pattern
recognition. The output is a hyperplane that separates the classes of a given problem
instance. A nonlinear algorithm can be applied by transforming input X into higher
dimensional feature space through a nonlinear mapping Φ(X) and then applying standard
linear SVM over features Φ(X). The function can be expressed as a linear combination
of inner products with data points XNs, defined as kernel function K(X, XNs), which
defines the inner products (Φ(X), Φ(XNs)) in some feature space [38]. The main logic
can be summarized in two points. First, for the case of linear inseparability, a nonlinear
algorithm is used to map the linearly inseparable sample to the high-dimensional feature
space. It may cause a linear algorithm in high-dimensional feature space to perform linear
analysis on the nonlinear characteristics of the sample. Second, based on structural risk
minimization, the feature space develops the optimal segmentation hyperplane within it,
achieving global optimization. In this study, the radius basis function (RBF) was selected
as the kernel function, penalty parameter C and the kernel function’s parameter γ for the
SVM were determined through the grid-search algorithm. A grid search tries the values
of each parameter across the specified search range using geometric steps. If the model’s
fit improves, the search center moves to the new point and the process is repeated. If no
improvement is found, the step size is reduced and the search is tried again. The learning
rate is 0.01 and epochs are 1000; the gradient search method is momentum.

2.3.3. Recurrent Neural Networks (RNN)

Recurrent neural networks can describe temporal dynamic behavior because an RNN
varies the states of its network so that it can accept a broader range of time series structural
input. The temporal memory is implied in the interconnected input layer and the hidden
layer. Due to their infinite memory depth, a relationship through time, as well as through
the input space, could be found [39]. RNNs have already revealed their capability for rice
blast forecasting [14,33]. In this study, the Elman RNN [40] is conducted with momentum
gradient search method and batch update. In total, 1000 epochs with a learning rate of
0.001 were used with four perceptron elements.

2.3.4. Probabilistic Neural Network (PNN)

The PNN is a feedforward neural network, which was introduced by Specht [41].
The network is composed of four sub-network layers, including the input layer, pattern
layer, summation layer and decision layer [42]. Euclidean distance (ED) was used for the
evaluation of differences between input vectors and training datasets. If the ED is small,
the Gaussian function will be closer to 1. The pattern for the summation layer represents
the classification information of the training data. Each class is the sum of the weighted
input vectors. Bayes’ theorem was applied to calculate the probability of the final output.
The PNN is related to the Parzen window-based probability density function estimator,
which can be broken up into a large number of simple processes implemented into classes
in the summation layer [43]. The epoch is 3 and the perceptron element is 236 in this study.
It is different from other ML algorithms due to the model characteristics.
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2.4. Model Performance Assessment

Referring to Pan and He [44], Jiang, et al. [45], Burgos-Artizzu, et al. [46], Gan, et al. [47],
Majeed, et al. [48], Zhao, et al. [49], Zhang, et al. [50], Majeed, et al. [51], model performance
assessment included confusion matrix (Table 3), accuracy, precision, recall and F-measure
as the evaluation indices for result assessment in the model testing phase. These indices are
described in Equations (3)–(6). The accuracy is defined as the ratio of correctly predicted
rice blast events (TP + TN) by the total rice blast events (TP + TN + FP + FN), which means
that how often is the classifier correct. The precision is the ratio of correct positive rice blast
events (TP) to the total predicted rice blast events (TP + FP), which represents how often is
it correct when the rice blast events have been predicted. The recall is the ratio of correct
positive rice blast events (TP) to the total correct predictions (TP + FN), which means that
how often does the classifier predict correct rice blast events on all correct predictions.
Finally, the F-measure is weighted (β) by recall and, precision based on the occurrence
importance evaluation, it estimates one of precision or recall more than the other. If β = 1,
equal weight is given to recall and precision, termed F1-score; β = 2 (F2-score) indicates
that recall is twice as important as the accuracy; and β = 0.5 (F0.5-score) signifies that the
accuracy is twice as important as the recall.

Accuracy (%) =
TP + TN

TP + TN + FP + FN
(3)

Precision (%) =
TP

TP + FP
(4)

Recall (%) =
TP

TP + FN
(5)

F − measure (%) =
(

1 + β2
)
× Precision × Recall

β2 × Precision + Recall
(6)

where TP is true positive, TN is false negative, FP is false positive and TN is true negative,
respectively, based on the rice blast forecasting results; β is a weight factor which assumes
nonnegative value. The weight of recall increases as the value of β increases.

Table 3. Illustration of the confusion matrix.

Predicted Rice Blast

Positive Negative

Actual rice blast
True True positive (TP) False negative (FN)
False False positive (FP) True negative (TN)

2.5. Sensitivity Analysis

Sensitivity analysis (SA) is a tool to assess the relative importance of model inputs
based on the rice blast events happening probability from model output. The highest
performance model is selected for sensitivity analysis to find the inputs contribution to
the model. By referring to the SA procedure of Jha and Sahoo [52] and Hsieh, et al. [53],
Equation (7) behaves as follows. When the change resulting from an input is small, that
input is less sensitive in the model; on the contrary, when changes are significant, the input
is highly sensitive.

Sk =
∑

p
p=1 ∑n

n=1
(
yip − yip

)
σk

2 (7)

where Sk is the sensitivity index for input k, yip is the ith output obtained with the fixed
weights for the p pattern, n is the number of network outputs, p is the number of patterns
and σk

2 is variance of the input k.
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3. Results and Discussion

The study results, including the treatment data, model performance assessment and
sensitivity analysis of the selected model, are presented and discussed in the following sections.

3.1. Data Treatment

Totally 177 AMB data were pared with unmissed weather data from each weather
station in YCN area [35], which contains 31 infected rice blast events and 146 noninfected
events. The imbalance dataset will bias and towards the majority class [54]; therefore, the
random under-sampling (RUS) method was confirmed to improve model performance
with respect to parameters such as recall, precision, F-measure and the FP rate of the ANN
classifier [55]. Yap, Rani, Rahman, Fong, Khairudin and Abdullah [54] applied random
oversampling (ROS), RUS, bagging and boosting to handle imbalanced datasets, then
noted that ROS and RUS work well for improving classification of the imbalanced dataset
in ML algorithms. Thus, this study used the RUS method to reduce the sample number of
“not infected” data from 146 to 31. Independent sample t-test was conducted to verify the
difference between whole dataset and the dataset after RUS was significant or not under
p-value of 0.05. The result shows that, after RUS processing, no significant differences were
found from the original dataset both in D10 and D20 (Table 4).

Table 4. Dataset differences significance test by independent sample t-test.

Variables Stations
D10 D20

p-Value Significance * p-Value Significance *

Tmin

YL 0.9130 - 0.8784 -
CY 0.9212 - 0.9332 -
TN 0.8189 - 0.8353 -

Tmax

YL 0.8385 - 0.8384 -
CY 0.7311 - 0.8691 -
TN 0.9371 - 0.8472 -

Tavg

YL 0.7802 - 0.9516 -
CY 0.9714 - 0.9145 -
TN 0.9316 - 0.8134 -

TS

YL 0.8702 - 0.3495 -
CY 0.7992 - 0.9077 -
TN 0.7836 - 0.8992 -

RHavg

YL 0.9807 - 0.4614 -
CY 0.2147 - 0.3983 -
TN 0.5544 - 0.5282 -

SE
YL 0.7527 - 0.8487 -
CY 0.9685 - 0.3542 -
TN 0.9791 - 0.2499 -

* Symbol “-” represent the differences between original 177 AMB data and the 31 data after random under-sampling (RUS) in not significant
under p-value of 0.05.

3.2. Model Development and Performance Assessment

In total, 31 infected and 31 not infected data were conducted for modeling. Among
them, 38 randomized data (61.3% of the dataset) were used for model training, 12 data
(19.35% of the dataset) for model cross-validation (CV) and 12 data (19.35% of the dataset)
for model testing. As the network learns, the error will drop towards zero. However,
lower error does not always mean a better network; it is possible to overtrain a network.
Therefore, the CV dataset is used to avoid overfitting for model training, which adjusts the
hyperparameter and computes the error during CV. After that, the testing data is used to
test the adjusted network. The testing data are unaware of training and CV data set. If the
network is able to generalize rather precisely the output for this testing data, then it means
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that the neural network is able to predict the output accurately for new data and, hence,
the network is validated.

Based on the developed ANN models, the confusion matrix is shown in Table 5. The
model performance assessment result is shown in Table 6. F-measure comparisons from
β = 0.1 to β = 2.0 with 0.1 increments of the MLP, SVM, Elman RNN and PNN models are
shown in Figure 3. Representative model selection depends on the user’s tolerance for type
I errors or type II errors, i.e., higher or lower β. When β = 0.5, which means the importance
of precision is twice than recall, in the opposite, β = 2 represents the importance of recall is
double than precision. In this study, a lower allowance of rice blast event prediction error
is required to lower farmer’s losses. An early prevention alarm with slight uncertainty
is acceptable for farmer to conduct preventing measures, which means a higher β (β = 2)
should be considered in represent model selection. On the other hand, user can select lower
β (β = 0.5 or β = 1) if the rice yield is not significantly affected by rice blast, e.g., farming
with rice blast resistant varieties. Based on the F-measure comparison result, PNN model
showed the highest F-measure (96.8%) when β = 2, i.e., the F2-score was 96.8%. Thus, the
PNN model was selected for rice blast forecasting. Sensitivity analysis was also conducted
on PNN model for evaluation of the relative importance of inputs.

Table 5. Confusion matrix of MLP, SVM, Elman RNN and PNN model.

Predicted

Positive Negative

MLP SVM Elman RNN PNN MLP SVM Elman RNN PNN

Actual

True

Training 9 19 6 19 2 19 4 19
CV 3 3 2 3 0 1 0 0

Testing 4 6 3 6 0 2 0 0

Total 16 28 11 28 2 22 4 19

False

Training 10 0 12 0 17 0 16 0
CV 2 2 3 2 7 6 7 7

Testing 3 1 4 1 5 3 5 5

Total 15 3 19 3 29 9 28 12

Table 6. Model performance of MLP, SVM, Elman RNN and PNN model.

Indices
MLP SVM

Training CV Testing Training CV Testing

Accuracy (a) 68.4% 83.3% 75.0% 100.0% 75.0% 75.0%
Precision (p) 47.4% 60.0% 57.1% 100.0% 60.0% 85.7%

Recall (r) 81.8% 100.0% 100.0% 100.0% 75.0% 75.0%
F0.5-score (F0.5) 51.7% 65.2% 62.5% 100.0% 62.5% 83.3%

F1-score (F1) 60.0% 75.0% 72.7% 100.0% 66.7% 80.0%
F2-score (F2) 71.4% 88.2% 87.0% 100.0% 71.4% 76.9%

Indices
Elman RNN PNN

Training CV Testing Training CV Testing

Accuracy (a) 57.9% 75.0% 66.7% 100.0% 83.3% 91.7%
Precision (p) 33.3% 40.0% 42.9% 100.0% 60.0% 85.7%

Recall (r) 75.0% 100.0% 100.0% 100.0% 100.0% 100.0%
F0.5-score (F0.5) 37.5% 45.5% 48.4% 100.0% 65.2% 88.2%

F1-score (F1) 46.2% 57.1% 60.0% 100.0% 75.0% 92.3%
F2-score (F2) 60.0% 76.9% 78.9% 100.0% 88.2% 96.8%
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Figure 3. F-measure comparison of MLP, SVM, Elman RNN and PNN model testing phases.

3.3. Sensitivity Analysis of the Selected Model

A sensitivity analysis was performed on the PNN model forecasting results to under-
stand the relative importance of each input to the output by sensitivity index (SI). The SI
evaluation stander is shown in Table 7. The PNN SA results and ranked results are shown in
Table 8. The model influence was defined based on counted sensitivity amount (Sa) when
SI = 1, 2 (very high sensitivity and high sensitivity). The SA result showed that the fac-
tor with the greatest influence in D10 was Tmin (Sa = 3), followed by Tmax, RHavg and SE
at an equivalent degree of sensitivity (Sa = 1), totaling Sa = 6 for D10. For D20, the high-
est Sa = 2 for the factor SE and the factor with the second greatest influence was TS with
Sa = 1, for a total Sa = 3 in D20. Based on the SA result, it could be concluded that D10 has
a stronger influence than D20; Tmin and SE have the highest influence (Sa = 3, respectively),
followed by Tmax, TS and RHavg (Sa = 1). Tavg was found to have no significant influence
in the model, perhaps because the contribution was accounted for by the Tmin and Tmax
factors. The high sensitivity index (SI = 1) have higher relative importance to the PNN mode,
which can be used for model rebuild to reduce the degrees of freedom. Therefore, this study
re-develops PNN model (SA-PNN) by nine high sensitivity factors (SI = 1) and compares the
model performance with established PNN model. The SA-PNN modeling results are shown
in Table 9 and the model performance compared between SA-PNN and established PNN
is shown in Table 10. It seems that the model performances have some reductions, but the
model’s degrees of freedom are significantly decreased with acceptable accuracy.

Table 7. Evaluation stander of sensitivity and associated ranks.

Sensitivity Evaluation Value of SI Rank

1. Very high sensitivity >0.1 1
2. High sensitivity 0.05 to 0.1 2
3. Moderate sensitivity 0.01 to 0.05 3
4. Low sensitivity 0.005 to 0.01 4
5. Very low sensitivity ≤0.005 5
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Table 8. Sensitivity analysis results and ranked result of the PNN model.

Variables Stations D10 D10 Rank D20 D20 Rank

Tmin

YL 0.3580289 1 0.0000087 5
CY 0.3990114 1 0.0000344 5
TN 0.3129893 1 0.0000062 5

Tmax

YL 0.0000231 5 0.0010775 5
CY 0.1924365 1 0.0094483 4
TN 0.0000415 5 0.0001820 5

Tavg

YL 0.0008756 5 0.0002544 5
CY 0.0013252 5 0.0000734 5
TN 0.0003396 5 0.0006273 5

TS

YL 0.0073819 4 0.1295456 1
CY 0.0003835 5 0.0000043 5
TN 0.0000001 5 0.0009962 5

RHavg

YL 0.1281920 1 0.0225078 3
CY 0.0000149 5 0.0000377 5
TN 0.0004056 5 0.0002079 5

SE
YL 0.1552321 1 0.0024349 5
CY 0.0000072 5 0.2205285 1
TN 0.0002271 5 0.2655721 1

Table 9. Rebuild SA-based PNN model (SA-PNN) modeling result.

Predicted

Training CV Testing

Actual
Class Positive Negative Positive Negative Positive Negative

True 20 4 3 2 6 2

False 0 14 2 5 0 4

Table 10. Model performance comparison between established PNN model and SA-based PNN (SA-PNN) model.

Indices
Training CV Testing

PNN SA-PNN PNN SA-PNN PNN SA-PNN

Accuracy (a) 100.0% 89.5% 83.3% 66.7% 91.7% 83.3%
Precision (p) 100.0% 100.0% 60.0% 60.0% 85.7% 100.0%

Recall (r) 100.0% 83.3% 100.0% 60.0% 100.0% 75.0%
F0.5-score (F0.5) 100.0% 96.2% 65.2% 60.0% 88.2% 93.8%

F1-score (F1) 100.0% 90.9% 75.0% 60.0% 92.3% 85.7%
F2-score (F2) 100.0% 86.2% 88.2% 60.0% 96.8% 78.9%

4. Discussion

Katsantonis, Kadoglidou, Dramalis and Puigdollers [24] reviewed 52 rice blast fore-
casting models indicating that weather variables, such as T, RH, spore dissemination and
leaf wetness, are among the most critical model inputs, since these variables play essential
roles in rice blast pathogen growth. In ML models, T, RH and sunlight have been found
to be effective factors for rice blast forecasting model development. However, due to
climate change, which has intensely affected rice field environmental variation [30], the
conventional prediction model may inappropriate for rice blast modeling. In addition, the
rice blast spore mechanism involves a short-term effect that lasts only 7 to 14 days [17–20].
This indicates the long-term rice blast forecasting model might show reduced prediction
accuracy. However, TS has been found to be highly influential when considering the
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growth mechanism of the rice blast pathogen [25–29]. Thus, this study adopted TS along
with conventional environmental factors for rice blast forecasting. In addition, under the
mechanism of the rice blast pathogen, blast lesions occur with elevated blast incidence
and severity 7 to 10 days after suitable weather conditions. Sporulation takes only 7 to
14 days as a short-term effect [17–20]; this investigation used D10 (before 10 days of rice
blast occurred) and D20 (10 days to 20 days after the initiation of rice blast) as input vari-
able periods. The weather data shows that the largest difference between D20 and D10
in an infection event was observed for SE and the smallest difference was observed for
RHavg. Values for most factors, such as Tmin, Tmax, Tavg, TS and SE, increased. Only RHavg
decreased. In the “not infected” result, a slight difference between each factor could be
found. Only RHavg differences were positive and differences for the other five variables
were negative. This shows an opposite pattern compared with data from infections. The
variation of “infected” data was higher than for “not infected” data. This reveals that the
rice blast occurrences corresponded with significant weather change from D10 to D20.

After data treatment, the ANN algorithms were applied, including traditional rice
blast forecasting models MLP, SVM and Elman RNN, as well as a model not previously
used for rice blast forecasting called PNN, to develop rice blast forecasting models. The
developed models were mainly evaluated by F-measure, particularly with higher β, for
which the infection event is more important than the noninfected period. Therefore, F2-
scores were used for model performance assessment. The F2-scores for MLP, SVM, Elman
RNN and PNN models were 87.0%, 76.9%, 59.5% and 96.8%, respectively. Comparing
model performance with previous research, periods predicted have ranged from 14 to
15 days [56] to 1 year [14] in advance with model prediction accuracy of 79.4% [14] to
87.2% [56]. The only F1-score was obtained by Kim, Roh and Kim [14] with a value of
79.4%. In this study, the predicted period was 10 days, with accuracy 91.7% and F1-score
92.3%. The developed rice forecasting PNN model was found to perform similarly to or
slightly better than models from previous studies. Thus, the PNN model is recommended
for rice blast forecasting in the YCN area. Moreover, a sensitivity analysis (SA) was
conducted of the PNN to evaluate the importance of factors in the model. D10 was found
to have a stronger influence than D20. In addition, the most influential factors were Tmin
and SE, followed by Tmax, TS and RHavg. The last factor Tavg was not found to have a
significant influence in the model, perhaps because the contribution was accounted for
by Tmin and Tmax. The impact of soil temperature (TS) may result from the phase lag in
the diurnal variations of temperature (T). At some point in daily T and TS variation, TS is
warmer than T (T < TS). Radiative cooling near the ground is very clear at night, leading to
T values lower than TS [57]. In this case, a lower dewpoint has been reached. This causes
RH to approach 100%, then mist appears in the field. Thus, the rice blast pathogen has an
ideal environment for growth and spread. Under the opposite condition (T > TS), a similar
mechanism also occurs.

Based on the developed rice blast forecasting model, a disease warning could be
issued to farmers 10 days before the disease occurs and spreads across a vast area. Several
prevention measures are possible to implement, such as ferric chloride, di-potassium
hydrogen phosphate, salicylic acid, nano-chitosan and resistance-inducing compounds
produced by F. solani [58–61]. Among them, the application of nano-chitosan and F. solani
have been shown to exert 10 to 14 days of resistance ability. These could perhaps be used
in conjunction with the model developed in this study.

5. Conclusions

Rice blast causes high yield losses across the world. Due to climate change, existing
rice blast forecasting models may lose their accuracy. This study used random under-
sampling method to prevent unequal proportional dataset by trimmed the not infected
data from 146 to 31 (equal to the infected data). Finally, the ML-based rice blast forecasting
models have been developed as a short-term (10 days before rice blast occurrence) warning
for farmers to implement their prevention measures, such as nano-chitosan and F. solani.
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Moreover, unnoticed factors contributing to rice blast modeling was discovered. The
soil temperature is an important factor because of the phase lag in the diurnal variations
between air temperature and soil temperature. This may be considered relevant in further
studies of rice blast disease. In addition, the established rice blast forecasting model in this
study is based on large-scale environment observation. We suggest that in-situ environment
monitoring system, e.g., Internet of Things based smart irrigation control system [62], may
be used to collect microclimate for each field and to develop the small-scale rice blast
forecasting model in further studies. Moreover, the large-scale dataset with advanced
ML even deep learning algorithms, such as long short-term memory (LSTM), random
vector functional link network (RVFL) and generative adversarial network (GAN), may be
considered for the further research on rice blast forecasting.
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