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Abstract: Time to maturity (TTM) is an important trait in soybean breeding programs. However,
soybeans are a relatively new crop in Africa. As such, TTM information for soybeans is not yet as well
defined as in other major producing areas. Multi-environment trials (METs) allow breeders to analyze
crop performance across diverse conditions, but also pose statistical challenges (e.g., unbalanced data).
Modern statistical methods, e.g., generalized additive models (GAMs), can flexibly smooth a range
of responses while retaining observations that could be lost under other approaches. We leveraged
5 years of data from an MET breeding program in Africa to identify the best geographical and seasonal
variables to explain site and genotypic differences in soybean TTM. Using soybean cycle features
(e.g., minimum temperature, daylength) along with trial geolocation (longitude, latitude), a GAM
predicted soybean TTM within 10 days of the average observed TTM (RMSE = 10.3; x = 109 days
post-planting). Furthermore, we found significant differences between cultivars (p < 0.05) in TTM
sensitivity to minimum temperature and daylength. Our results show potential to advance the design
of maturity systems that enhance soybean planting and breeding decisions in Africa.

Keywords: generalized additive model (GAM); soybean; Africa; temperature; photoperiod

1. Introduction

The soybean (Glycine max (L.) Merr.) is a beneficial crop for smallholder agricultural
systems in Africa. As part of a rotation, soybeans can break yield-limiting pathogen
cycles [1], and can fix atmospheric N2 Nitrogen to reduce the fertilizer requirements of
subsequent grain crops [2]. Likewise, soybeans stand out among legume species due the
rich protein and oil content of their seeds. Soybeans grown at a large scale can create
options for enhanced security, given their wide range of applications in the food and feed
industry. From their early introduction to Africa in the 19th century, soybean planting
area has increased from as few as 20,000 to nearly 1,500,000 ha. by the late 2010s [3].
This expansion has occurred presumably due to the significant value of the crop in regional
trade networks, which strengthens domestic production, reduces the demand for imports,
and even favors surplus production for exports [4,5]. Despite the potential for increases in
soybean production, research is still needed in order to address productivity challenges
that African growers face today, such as declining soil fertility, poor farming practices,
and low-yielding cultivars.

The Soybean Innovation Lab (SIL) [6] is a USAID-funded program focused on ad-
vancing soybean production in Africa. The Pan-African Variety Trials (SIL–PAT) [7] are a
multi-environment soybean trial network currently conducting trials at over 100 locations
in 24 countries. SIL–PAT partners with public and private organizations to test commercial
soybean cultivars sourced from across Africa, the U.S., Australia, and Latin America [8].
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To date, trials carried out by SIL–PAT have enabled the registration of 7 new soybean
cultivars in Ghana, Ethiopia, Malawi, Mali, and Uganda, while 10 more are in the process
of being registered in Cameroon, Ethiopia, Kenya, Malawi, and Zambia [9]. The SIL–PAT
collect data on seed yield, time to maturity (TTM), time to flowering, and other agronomic
and seed quality traits, and these results are maintained in a database. The SIL–PAT
database offers a unique opportunity to collate diverse multi-environmental trial datasets,
which can enable the characterization of soybean performance across diverse cropping
conditions in the Pan-African region. Among these traits, the TTM of a soybean cultivar is
directly related to the commercial cycle length expected for new cultivars introduced to
the market.

Time to maturity (TTM) is associated with the biological cycle length of a cultivar [10].
Therefore, increasing the understanding of the factors that influence TTM is critical in
order to define the necessary geographical adaptation for new cultivars. More specifi-
cally, the expected TTM of a cultivar will depend on the conditions prevalent during the
growing cycle, such as daylength and temperature. In hemispheric areas, for example,
soybean maturity is delayed as cultivars are moved from lower to higher latitude locations.
Cultivars adapted to low latitudes in the southern U.S. are expected to respond better
to shorter days than cultivars adapted to high latitudes in the north [11,12]. In addition,
temperature has been reported to influence TTM and post-vegetative soybean development
in general, with studies documenting early flowering occurring under higher tempera-
tures [13], or pre- and post-flowering development rates being affected by the interaction of
photoperiod, temperature, and genotype [14]. Acknowledging daylength and temperature
as the prime drivers of reproductive development has been important in delineating areas
for soybean adaptation in northern latitudes [15]. Furthermore, a careful distinction of the
effects of daylength and temperature has permitted the identification of optimal areas of
adaptation, with a consequent impact on resource allocation and soybean productivity in
both northern and southern latitudes. On the other hand, field evidence of thermal and
photoperiodic effects on the onset of physiological maturity is rather limited for emerging
soybean markets in the tropics, such as the Pan-African region. Moreover, no previous
characterizations of TTM have been released over a large geographical coverage in Africa.

Using 5 years of data (2015–2020) from 176 cultivars and experimental lines evaluated
at 68 sites in the SIL–PAT network, we set the following goals: (1) identify the best com-
bination of geographical and seasonal characterization variables (i.e., elevation, latitude,
longitude, temperature, and daylength) that explain site and genotypic differences in
soybean TTM; and (2) evaluate the usability of these variables to build a parsimonious
predictive model of soybean maturity timing adapted to the growing conditions in the
Pan-African region. Results from this research will be used to categorize cultivars by
their environmental interactions, as well as to support the selection of cultivars adapted
to African farmers’ fields. Our work will lay the groundwork for building a maturity
classification system, currently lacking for soybean growers in Africa. Knowing maturity
timing in advance is important for growers to improve their planting decisions, and for
breeders to best plan their trials.

2. Materials and Methods
2.1. Pre-Modeling Exploratory Analysis: Soybean Maturity Time

To elucidate the patterns of variation in soybean TTM before the modeling stage,
we performed an exploratory analysis of the TTM results for 175 soybean experimental
lines using 67 locations of data across 8 cropping seasons (75 environments). Interclass com-
parisons from an all-fixed-effects model for genotype (G), environment (E), and genotype
by environment (G × E), were avoided, as such a model overfitted the TTM response.
As an alternative, sequential three-way ANOVA models were used to evaluate the main
sources of variability in time to maturity (TTM; days after planting) due to the additive
effects of G and E combined.
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2.2. Modeling Soybean Time to Maturity as a Function of Environment

To prepare the target variable of interest, we obtained TTM mean estimates from
a linear model assuming random slope effects for G and E. The random-effects model
corrected the departures in TTM for the sample of cultivars and locations evaluated in
the MET. This sample is representative of a much larger target population, where the
predictive model could be deployed. As such, best linear unbiased predictions (BLUPs)
from this process were used to adjust the mean estimates of soybean TTM by accounting
for experimental conditions in the MET. Observations which departed unusually from the
model assumptions were identified and excluded on the basis of influential observations
(Cook’s distance analysis) and residuals vs. fitted maturity time plots. Random-effects
models have proven effective for analyzing the phenotypic data generated by a breeding
program [16]. Following this step was necessary to make the modeling process more
computationally efficient. In this fashion, the first stage of the analysis helped to adequately
describe within-environment errors [17], while focusing on enhancing prediction accuracy
with a data-driven algorithm in the next steps. Stagewise approaches allow for adjusting
cultivar means per trial for later analysis, and enable combined analyses of large amounts
of data carrying significant variation across environments [18].

The next step was preparing environmental features for soybean TTM prediction.
Weather records were spatially linked to the geographic coordinates (latitude and longi-
tude) of the trialing sites in the SIL–PAT. Soybean cropping conditions were characterized
by the geographic and meteorological variables recorded during the growing length cycle.
Temperature and daylength are the most physiologically meaningful drivers of phenolog-
ical changes in soybeans [19], and were included in this analysis. Daily meteorological
variables were averaged or summed from planting up to the occurrence of three pheno-
logical stages, i.e., emergence, flowering initiation, and physiological maturity. Minimum,
maximum, and mean daily temperatures, (◦C) were provided by aWhere [20] and validated
to ancillary station-based data. Daylength [h day−1] was simulated as a function of latitude
based on standard equations by Campbell and Norman [21] and Teh [22]. Aside from abso-
lute values for temperatures and daylength, we considered additional variables capturing
the differences in maximum, minimum, and mean daily temperature and daylength, com-
puted between growth stages. For example, DLMEANDIFF signifies the difference in hours
of light received from flowering to maturity for a certain cultivar at a given location. A pos-
itive value for DLMEANDIFF means that a cultivar was exposed to a longer daylength at
flowering than at maturity, because the daylength was becoming shorter during this period.
In contrast, a negative value means that a given cultivar received a longer daylength at
maturity than at flowering. It must be noted that the SIL–PAT trials were conducted within
a considerable latitudinal range (i.e., −21◦ S–13◦ N), but still circumscribed to the tropics.
Thus, the difference in daylength from flowering to maturity varied between environments
from −0.51–+0.71 h.

A full description of all of the variables considered for soybean TTM prediction is
presented in Table 1.

We ran forward stepwise regression in order to identify the most essential variables
that could be combined to build a predictive model of soybean TTM (Supplementary Mate-
rials, Figure S4). Redundancy in this set was reduced by removing highly collinear variables
via Spearman’s rank correlation. Different feature sets combining a temperature-based
predictor at a time, along with DLMEANDIFF and geolocation (latitude and longitude),
were evaluated independently. The ”Mallow’s” (Cp), ”Hocking’s” (Sp), and ”Amemiya’s
prediction criterion” (APC) indices [23] were used to select the best feature combination.
Both Cp and Sp measure the fraction of variability in the response variable (i.e., the resid-
ual sum of squares; RSS) that results from recursively fitting models with one regressor
removed at a time. The APC index is an adjusted R2 that penalizes additional parameters
(i.e., degrees of freedom) in the regression’s right-hand side. Lower values for Cp and Sp,
and higher values for APC, are equivalent, and indicative of a better model. Variables in
the final subset were used as predictors for fitting and parametrizing a generalized additive
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model (GAM) to predict soybean TTM. Traditional breeding techniques are usually per-
formed on reduced MET datasets due to the few genotypes that are retained for evaluation
in the late stages of the trialing process [24]. In our analysis, we avoided losing far too
many observations indiscriminately, and favored the application of the GAM statistical
algorithm to capture data signals that could be lost with the use of alternative approaches.

Table 1. Crop cycle seasonal features considered for soybean time to maturity (TTM) predictions.

Temperature (Celsius, ◦C)

Label Description Mean (1 SD) Range (2 IQR)

TMAXF Daily maximum temperature to flowering 28.1(2.0) 22.4–32.5 (2.4)
TMINMF Daily minimum temperature to flowering 19.7 (3.2) 11.2–23.9 (3.8)
TMEANF Daily mean temperature to flowering 23.9 (2.5) 16.8–28.2 (3.3)
TMAXM Daily maximum temperature to maturity 28.5 (2.0) 22.5–32.9 (2.8)

TMINMM Daily minimum temperature to maturity 19.8 (2.8) 11.8–23.9 (3.8)
TMEANM Daily mean temperature to maturity 24.1 (2.3) 17.2–28.4 (3.4)

Daylength (h, hours)

DLMEANF Mean daylength to flowering 12.5 (0.5) 11.4–13.3 (0.5)
DLMEANM Mean daylength to maturity 12.4 (0.3) 11.7–13.1 (0.4)

Difference-based variables (Flowering to Maturity)

TMINMDIFF Minimum temperature difference (◦C) −0.1 (0.9) −4, −1.12 (0.5)
TMEANDIFF Mean temperature difference (◦C) −0.3 (0.7) −3.5, 1.0 (0.4)
TMAXDIFF Maximum temperature difference (◦C) −0.4 (0.7) −3.0, 1.0 (0.6)

DLMEANDIFF Daylength difference (h) 0.2 (0.2) −0.5, 0.7 (0.2)

Location-based variables

Long Longitude, (Degrees, deg) 23.1 (15.6) −9.5, 38.0 (28.6)
Lat Latitude, (Degrees, deg) −5.1 (11.4) −20.5, 13.1 (21.7)
ALT Altitude, (Meters, m) 858 (470) 148–2160 (752)

1 SD: standard deviation; 2 IQR: interquartile range (difference between the 75th and 25th percentiles).

The GAM algorithm [25] has been traditionally applied to problems in ecology, land al-
location, and climatology [26–28]. Given its flexibility and simplicity for capturing complex
responses, it is being implemented more often to predict field-level agricultural traits—for
example, wheat yield [29], pasture biomass [30], or pest use assessment [31]. Our study is
the first documented application of a GAM to predict soybean phenotypic traits across trop-
ical environments. Further, GAMs provide a balanced approach between prediction and
explanation. GAMs have been shown to offer a middle ground between highly accurate
models with minimal interpretability—such as neural networks—and interpretable models
with a tendency to bias (e.g., multiple linear regression). We harnessed the advantages of
the GAM methodology in approximating complex non-linear relationships, and evaluated
genotype-specific responses to environmental maturity drivers.

Crop breeders model phenotypic expression with a linear modeling framework if
phenotypic and environmental data are available. A general version of this approach is:

Y = µ + G + E + βE + e (1)

where G and E are mean additive effects relative to the average performance of all of the
cultivars across environments, and β represents slope parameters related to cultivar-specific
sensitivities to environmental conditions. In this form, Equation (1) is the Finlay–Wilkinson
model, or regression on the mean. If specific environmental covariates are available,
Equation (1) can be rewritten as a variant of factorial regression:

Y = µ + G + E + βz + e (2)
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Within this framework, specific sensitivities to each covariate can be modeled indepen-
dently, and their effects “smoothed” through natural transformations or linear functionals
(i.e., a family of functions), such as splines or local regression. A modified version of
Equation (2) becomes a GAM of the form:

Y = [µ + G + E] + f (z) + e (3)

Following Equation (3), the soybean GAM maturity model was specified as follows:

YGE(ij)(z) = f (z1) + . . . + f (zn) =
N

∑
i

f (zi; k) + eij (4)

The response variable Y in Equation (4) is the mean TTM previously adjusted for
genotype and environmental effects. Y is predicted with an additive function of the best z-
environmental features (e.g., mean temperature to maturity, daylength, etc.). Each predictor
(z) is smoothed by a basis function, f, which modulates the maturity response through
parameter k. The k parameter is a knot indicating whether there is a change in the direction
of the response, and could be tuned, as in other non-parametric approaches, such as splines.
The GAM’s advantage is that non-linear relationships carried by the predictors can be
easily smoothed to improve model fit, without increasing complexity as in other parametric
approaches (e.g., non-linear multivariate regression). GAM-smoothed response curves
were generated to facilitate the interpretation of G× E interactions subjacent to the soybean
TTM patterns displayed by different cultivars.

Model parametrization was sequential, and used a fivefold cross validation with five
replicates to find the optimal knot (k-parameter) for each predictor at a time. For model
training and validation, we balanced the number of observations in each dataset, ensuring
that trial planting dates be sufficiently represented (Supplementary Materials, Figure S3).
Soybean planting in Africa may occur at the end of the year, so that the reproductive stages
coincide with the peak of the rainy season in the early months of the subsequent year.
However, other regions would grow soybeans during the summer months. In this fashion,
the training/testing dataset included observations for the years 2019 (summer season),
and 2018/2019 and 2019/2020 (winter seasons). Seasons 2018 (summer), and 2016/2017 and
2017/2018 (winter) were held out for model validation. To account for spatial variability,
the latitudinal and longitudinal coordinates of each trial were also included as predictors.

The modeling steps for modeling soybean time to maturity as a function of environ-
ment are presented in Figure 1.Agronomy 2021, 11, x FOR PEER REVIEW 6 of 16 
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maturity (TTM), based on seasonal characterization and resources from a breeding program in Africa.
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3. Results
3.1. Exploratory Analysis of Soybean Maturity Timing

A sample size of 250 observations (Genotype × Environment) was used to analyze the
sources of variability of the TTM trait recorded in the SIL–PAT dataset (Figures 2 and 3).
Genotype (G) and location (L) separately explained 12 and 68% of the total variability in
maturity time, respectively. While the contribution of the cropping season (S) alone was
low, it helped to account for almost 87% of differences in maturity timing across genotypes
and locations (Table 2). Furthermore, the environmental effects (location + season) were
almost six times those of genotype, as evidenced by adjusted R2, and type II sum of
squares (SS) estimated in sequential ANOVA models fitted to time to maturity. Expectedly,
there was also a gradual decrease in the standard error for the TTM residuals (RSE, Table 2)
as additional sources of variability were considered.
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Mean TTM was adjusted for hierarchies in the SIL–PAT dataset by means of random-
effects modeling. The random-effects model captured these discrepancies efficiently,
as 98.5% of the resulting mean TTM met model assumptions (i.e., residuals randomly
scattered and bounded within three times the residual SE; Figure 4). Three observations
corresponding to the genotype x environment entries L342-Chilanga-2019, N390-Chilanga-
2019, and SP 8 DPSB – Thika 2016/2017 failed to meet model assumptions, and were
removed from the model. Additional details on outlier detection through residuals and
Cook’s distance analysis can be found in the supplementary materials (Figures S1 and
S2). The overall soybean mean TTM was 108.9 days after planting [95% CI: 105–113 days]
(Table 3, Figure 4). Around the estimated mean, time to maturity departed by 8 and 19 days
due to G and E effects, respectively (σG, σE, Table 3).

The significant pool of variation in maturity occurrence across genotypes and locations
in the SIL–PAT (i.e., 89%, Table 3) warranted the exploration of environmental queues that
can be used in a parsimonious model to predict maturity times in Sub-Saharan Africa.
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3.2. Best Features to Characterize Soybean Time to Maturity (TTM)

The best features to explain changes in TTM were the daily minimum temperature
from planting to maturity (TMINM), and the difference in daylength from flowering to
maturity (DLMEANDIFF). After also accounting for the effects of latitude and longitude
(lat, long), the best subset captured 36% of the differences in maturity reported across
genotypes and environments in the SIL–PAT dataset (Table 4). The actual and fitted soybean
TTM responses to each of these four predictors are visualized in Figure 5. Likewise, the best
feature subset displayed the lowest numbers for AIC, Cp, HSP, and AP, suggesting that
complexity (i.e., the number of parameters) and explanatory capabilities will be balanced
in a soybean TTM predictive model built atop this one.

The GAM, using the best explanatory features of soybeans, improved the accuracy
of TTM predictions (Table 5). The GAM used three “break points” (i.e., k-nodes) to
smooth the overall negative relationship between TTM and both TMINM and DLMEAN-
DIFF. While latitude and longitude show a less than strong association with the response
(Figure 5), including two-dimensional smoothing for these terms helped account for the
spatial variability due to trial location. Model fit improved as a result.
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Figure 3. Geographical variation of soybean time to maturity (TTM) in the Soybean Innovation Lab
Pan-African Variety Trials (SIL–PAT) network.

Table 2. Sources of variation in the target variable soybean time to maturity (TTM). Additive components from G and E are
displayed to visualize their relative contribution to TTM variability.

Factor 2 DF Model 2 DF Residuals 1 RSS Adj-R 2 3 RSE (Days)

Genotype (G) 174 2648 882,623 0.12 18.2
Location (L) 67 2755 330,979 0.68 10.9
Season (S) 8 2814 1,017,289 0.05 19.0

G + L 241 2581 225,891 0.76 9.3
G + S 182 2640 864,933 0.14 18.10

E = L + S 75 2747 280,997 0.73 10.1
G + E 249 2557 121,887 0.87 6.9

2 DF = degrees of freedom; 1 RSS = type II residual sum of squares; 3 RSE = residual standard error.
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Table 3. Soybean time to maturity (TTM) adjusted by genotype (G) and environmental (E) effects. The mean estimates of
soybean TTM from this process were used as the target variables in the implementation of the GAM predictive model afterwards.

Random Effects

Group σ2 σ (days) σ [95% CI] n

G 65.69 8.10 [7.20, 9.16] 175
E 357.35 18.90 [16.36, 21.92] 73

Error 47.80 6.91 [6.72, 7.10]

Fixed Effects Intercept [95% CI] 108.9 [95% CI: 104.87, 113.05]

Goodness of fit
AIC = 19,984
BIC = 19,918

R2 = 0.89

Table 4. Best subset of features used as predictors to build a soybean time to maturity (TTM) model. Feature selection based
on stepwise forward regression.

Feature Subset AIC Adj-R 2 1 Cp 2 HSP 3 APC

TMINM + DLMEANDIFF + lat + long 13,817 0.36 5.04 0.13 0.63
TMEANM + DLMEANDIFF + lat + long 14,014 0.29 7.09 0.14 0.71
TMINDIFF + DLMEANDIFF + lat + long 13,962 0.31 5.0 0.14 0.68

ALT + DLMEANDIFF + lat + long 14,134 0.24 5.0 0.15 0.76
1 Cp = Mallow’s; 2 HSP = Hocking’s; and 3 APC = Amemiya’s prediction indices. Lower numbers denote a better model.

Following 5-fold model validation, the overall expected TTM for a cultivar tested in the
SIL–PAT network was predicted within ±10 days of the observed field data (RMSE = 10.35,
Table 5). Relative to simple linear regression, prediction error with the GAM decreased by
almost 33%. Likewise, R2 increased to nearly 70%, whereas AIC was the lowest among
several specifications of the GAM (Table 5). A more detailed description of model agree-
ment during the training and testing phases is presented in Figure 6, and all of the models
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considered can be found in the Supplementary Materials (Table S1). The GAM predictions
fitted acceptably well with the observed time to maturity (Figure 6 and Figure S7). The root-
mean-square error (RMSE) ranged between 9 and 14 days at different soybean growing
seasons considered in the validation sets (i.e., data held out from training/testing). Rela-
tive to other seasons, the model under- and overpredicted time to maturity in 2016/2017
and 2018 by 4% relative to the observed overall mean (x = 109 days, Table 3, Figure 4).
The lower fit in 2018 was associated with cultivars tested in mid-to-high-elevation sites
in Rwanda (1300–1700 m). In contrast, the less than ideal fit in 2016/2017 was presum-
ably due to fewer cultivars tested at very low elevations in Mali (280–320 m). Overall,
soybean TTM predictions held acceptably well for 70% of the 122 genotypes considered
for training/testing the GAM (±5 days off the observed maturity). The remaining 30%
of the cultivars were off by 6 days or more, and resulted from low sampling, i.e., 15 sites
evaluated or fewer.
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Table 5. Evaluation of generalized additive models (GAM) used to predict soybean maturity timing (TTM).

Model

5-Fold Cross Validation
1 RMSE (Days) R2-Adjusted AIC BIC

Training Testing Training Testing

lm ~ TMINM 15.34 15.79 0.29 0.30 14,000 14,016
gam ~ f(TMINM, k = 3) 13.55 13.67 0.46 0.46 13,542 13,564

lm ~ (TMINM + DLMEANDIFF) 14.96 15.48 0.32 0.33 13,924 13,945
gam ~ f(TMINM, k = 3) + DLMEANDIFF 12.50 12.70 0.54 0.53 13,280 13,307

gam ~ f(TMINM, k = 3) + f(DLMEANDIFF, k = 3) 10.78 11.02 0.66 0.65 12,793 12,825
lm ~ (TMINM + DLMEANDIFF + lat + long) 14.90 15.48 0.34 0.32 13,817 13,850

gam ~ f(TMINM, k = 3) + f(DLMEANDIFF, k = 3) + lat + long 10.05 10.3 0.70 0.69 12,576 12,620
gam ~ f(TMINM, k = 3) + f(DLMEANDIFF, k = 3) + f(lat, long, k = 4) 9.99 10.35 0.70 0.69 12,564 12,613

1 RMSE = root-mean-squared error.
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Figure 6. Implementation of a generalized additive model (GAM) to predict soybean time to maturity
in African growing environments. Panel (A) shows results from the training/testing phases. Panel (B)
shows results for model validation (i.e., environments held out from the training/testing) process.
The color bar on the right-hand side indicates the range of elevations for the sites considered in the
model (altitude; ALT (m)).

3.3. Soybean Maturity Response to Temperature and Daylength

Cultivars that were tested more consistently across environments (n = 40) captured
a larger range of responses, and displayed consistent patterns of maturity occurrence
across sites in response to minimum temperature (TMINM) and daylength (DLMEAN-
DIFF). These cultivars were also part of foreign germplasm introduced with the potential
for fast introduction to African markets. Segmented regression [32,33] was used to ap-
proximate the points in the range of these variables where a shift in response occurred
(Appendix A). Critical values where a cultivar responded more sensitively to changes in
minimum temperature and daylength were estimated.

To illustrate (Figure 7), the cultivar TGX 2014-16FM reached maturity at around
105 days at sites whose minimum temperatures during the soybean growing cycle were
between 17 and 30 ◦C. In turn, maturity was sharply delayed by almost 60 days in the
~12–17 ◦C range. The cultivar “Lukanga” displayed a slightly higher value to delimit
the ranges of thermal sensitivity (i.e., 19 ◦C), with seemingly late and early patterns of
maturity occurring before and thereafter. In the same vein, physiological maturity occurred
more prevalently around 100 days post-planting, when the daylength interval between
flowering and maturity (DLMEANDIFF) approached +0.20 h. A positive value for this
explanatory variable means that the given cultivars received more light hours at flowering
than maturity, and is indicative of their growing cycles progressing along shorter days.
As in the case of minimum temperature, cultivars seemed to follow different patterns of
TTM response when the gap in daylength between flowering and maturity moved far
from a critical value. In the cultivars shown, the critical points of sensitivity to daylength
were estimated at +0.23 and +0.28 h of light. Based on an extended analysis, all of the
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cultivars considered for analysis (Supplementary Materials, Figures S5 and S6) were ranked
in terms of their sensitivity to temperature and daylength (i.e., critical points of response).
Segmented regression [32,33] was used to approximate the points in the range of these
variables where a shift in response occurred.
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Figure 7. GAM-smoothed response of soybean time to maturity (TTM) to seasonal variables during the growing cycle.
Each dot represents a testing site where the given cultivar was evaluated. Red parallel lines indicate a change in the direction
of the response, and were approximated through segmented regression (Appendix A).

4. Discussion and Implications

The environment and genotype effects were significant sources of variation in the
time to maturity trait. Roughly, the environment (location × season) effects were almost
six times more significant than the effects carried by genotype. Our findings are the first to
systematically quantify location and genotype effects on soybean maturity time in Africa.
Our results corroborate other reports from sub-tropical regions—areas characterized by
short days and long summers. Alliprandini et al., (2009), for instance, found that location
and genotype accounted for 62% and 29%, respectively, of the variance in the number
of days to maturity recorded for commercial cultivars adapted to recurrent cultivation
ecoregions in Brazil [34]. While the significance of environmental effects is important in
characterizing a phenotype response, inter-cultivar differences are more informative from
a breeding perspective [35]. Furthermore, genotype and genotype by environment (G × E)
interactions are ubiquitous in phenotypic characterization studies.

G× E effects were revealed by cultivar-specific patterns of maturity that emerged from
smoothing the responses attributed to weather features in the GAM. Our results contribute
to increasing the understanding of the joint effects of temperature and daylength on the
phasic development of soybeans adapted to the African region. Reports from tropical
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conditions within the same latitudinal circumscription, such as from Hawaii, showed that
colder nights (i.e., minimum temperatures in high elevations) extended soybean vegetative
periods and delayed physiological maturity (R7) by 25 days [36]. More importantly,
we highlighted the seemingly higher importance that thermal variation had relative to
photoperiod in characterizing maturity in less hemispheric areas. In fact, low-temperature
effects on soybean field development unfold when photoperiodic effects exist but are
minimal [37]. A close inspection into critical response values for these areas helped to
define ranges of response where the maturity of a cultivar would occur more or less
consistently. Such ranges may indicate areas of geographical adaptation for a given cultivar.
In turn, sudden shifts in maturity are associated with growing conditions in cultivation
areas outside the possible ranges of adaptation.

A cultivar planted under extreme conditions would mature either too early or too
late. Consequently, the asynchronous occurrence of maturity leads to incomplete cycles,
with detriments on production. Soybean yields, for example, tend to be the highest for
cultivars that maximize resources during the whole growth cycle [38]. Low yields can also
be the result of premature maturity in short-stature plants that flower too early [39].

Soybean maturity time in the SIL–PAT network can be accurately predicted using geo-
graphical and seasonal characterization variables. Statistical learning (i.e., machine learn-
ing) can assist in the construction of parsimonious models that replace complex approaches,
such as mechanistic models, to readily assist soybean field operations. Alternative ap-
proaches, such as mechanistic or process-oriented crop models, can arguably be more
accurate under particular conditions, but require a full and detailed description of the
physiological processes involved in plant development and growth (i.e., parametrization).
Possible accuracy losses from statistical models are compensated for by their lesser demand
for inputs and their ease of adaptation to other regions. Accordingly, models need to be
constantly updated as the volume of information in their inputs increases. The expansion of
the SIL–PAT network, and the information provided within it, will facilitate the validation
of the findings from this study. In addition, SIL–PAT protocols encompass data from field-
level phenotyping as well as genotypic characterization. In this context, the availability
of marker-related data in the coming years could enable the discovery or validation of
marker–trait associations in tropical regions for these important traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11061043/s1: Figure S1: Ranking of influential genotypes sorted by Cook’s co-
efficient values; Figure S2: Outliers corresponding to observations displaying both a large Cook’s
coefficient and a large residual; Figure S3: Planting date variation in the SIL–PAT network (2015–2020);
Figure S4: Stepwise forward selection for the best feature set to predict maturity times using seasonal
variables; Figure S5: GAM-smoothed response of soybean maturity time to minimum tempera-
ture; Figure S6: GAM-smoothed response of soybean maturity time to post-flowering daylength;
Figure S7: GAM-smoothed response of soybean maturity time to post-flowering daylength; Table S1:
Evaluation and testing of GAMs used to predict soybean maturity timing.
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Appendix A

Segmented regression can be applicable to non-linear problems where breakpoints in
the response function could be parameterized through numerical approximation. In gen-
eral, for a non-linear process of the form:

g(E[Y]) = β [h(z; θ)] (A1)

where g(.) is a link function applicable to any regression problem, the function h(.) can be
approximated as:

h(z; θ) ≈ h
(

z; θ(o)
)
+

(
θ − θ(o)

)
h′
(

z; θ(o)
)

(A2)

The right-hand side of Equation (A2) is a first-order Taylor expansion around an
initial known value for θ, provided h is differentiable in the boundary around θ(o), i.e.,
lim

θ→θ(o)
h(z; θ) = 0.

The right-hand side of Equation (A2) can be reorganized as:

βh
(

z; θ(o)
)
+ β

(
θ − θ(o)

)
h′
(

z; θ(o)
)

(A3)

Let γ = β
(

θ − θ(o)
)

be a new parameter. Thus, the two new variables h
(

z; θ(o)
)

,

h′
(

z; θ(o)
)

, and parameters β and γ , are all dependent on θ(o).
Refitting a model of this nature using maximum likelihood (ML) at small θ increments

will update h(z; .) and h’ (z;.), at every new iteration, and produce estimates for all
parameters (including β and γ) until convergence is achieved. Convergence here means
that an algorithm to linearize a non-linear process through Equation (A1) will stop when
the difference in slopes (γ) between consecutive linear regressions fitted at updated values
for θ will be non-significantly different from zero (i.e., a break in response is found, for strict
values <θ(o) and >θ(o)). An implementation of the algorithm in R following Muggeo [40] is
available on request.
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