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Abstract: Powdery mildew is a common crop disease and is one of the main diseases of cucumber
in the middle and late stages of growth. Powdery mildew causes the plant leaves to lose their
photosynthetic function and reduces crop yield. The segmentation of powdery mildew spot areas
on plant leaves is the key to disease detection and severity evaluation. Considering the convenience
for identification of powdery mildew in the field environment or for quantitative analysis in the lab,
establishing a lightweight model for portable equipment is essential. In this study, the plant-leaf
disease-area segmentation model was deliberately designed to make it meet the need for portability,
such as deployment in a smartphone or a tablet with a constrained computational performance and
memory size. First, we proposed a super-pixel clustering segmentation operation to preprocess
the images to reduce the pixel-level computation. Second, in order to enhance the segmentation
efficiency by leveraging the a priori knowledge, a Gaussian Mixture Model (GMM) was established to
model different kinds of super-pixels in the images, namely the healthy leaf super pixel, the infected
leaf super pixel, and the cluttered background. Subsequently, an Expectation–Maximization (EM)
algorithm was adopted to optimize the computational efficiency. Third, in order to eliminate the
effect of under-segmentation caused by the aforementioned clustering method, pixel-level expansion
was used to describe and embody the nature of leaf mildew distribution and therefore improve the
segmentation accuracy. Finally, a lightweight powdery-mildew-spot-area-segmentation software was
integrated to realize a pixel-level segmentation of powdery mildew spot, and we developed a mobile
powdery-mildew-spot-segmentation software that can run in Android devices, providing practition-
ers with a convenient way to analyze leaf diseases. Experiments show that the model proposed in
this paper can easily run on mobile devices, as it occupies only 200 M memory when running. The
model takes less than 3 s to run on a smartphone with a Cortex-A9 1.2G processor. Compared to the
traditional applications, the proposed method achieves a trade-off among the powdery-mildew-area
accuracy estimation, limited instrument resource occupation, and the computational latency, which
meets the demand of portable automated phenotyping.

Keywords: powdery mildew; lightweight; segmentation model; disease diagnosis

1. Introduction

During the growth of crops, many diseases can directly affect growth. Powdery
mildew is one of the common fungal diseases that infects plant leaves and affects their pho-
tosynthesis and, thus, yield. In the past, manual identification of the degree of disease [1]
is labor-intensive and time-consuming. Therefore, a new method is needed to replace the
manual detection of diseases.

Current image-based phenotyping methods mainly include chlorophyll-fluorescence-
imaging-based methods, hyperspectral-imaging-based methods, thermal-imaging-based
methods, and visible-light-image-based methods [2]. Compared with other methods,
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visible-light-based image-identification methods require less experimental equipment and
are more implementable.

In recent years, many visible-light-image-based plant-disease identification methods
have been developed. Wspanialy et al. built a machine vision system for early plant
powdery-mildew detection based on Hough transformations of images and random for-
est algorithm. In the experiment, the method achieved 85% recognition accuracy [3].
Zhang et al. combined the shape and color features of disease regions and used sparse
representation classification to identify plant-disease leaf images. Their proposed method
can be used to identify seven major diseases related to cucumber and achieved 85.7%
recognition accuracy in their test dataset [4].

With the development of image-processing technology, deep learning is widely used
in the field of graph analysis [5]. Convolutional neural networks (CNNs) are one of the
representative algorithms of deep learning that is often used in the fields of crop-leaf-
disease image segmentation, detection, and recognition [6]. Zhang et al. [7] proposed a
leaf-disease recognition model based on GoogLeNet and Cifar10 to improve the recognition
accuracy of maize leaf diseases. Muhammad et al. [8] proposed an automatic fruit-disease
segmentation and identification system based on correlation coefficients and DCNNs.
Lin et al. [9] proposed a semantic segmentation model based on convolutional neural net-
works (CNNs) for the pixel-level segmentation of powdery mildew on cucumber leaf
images with an average pixel accuracy of 96.08% on 20 test samples. Zhang et al. [10] seg-
mented maize-leaf spots and extracted spot features, and then used a k-Nearest Neighbors
(KNNs) classifier to classify the extracted features to achieve the recognition of five maize
diseases. Ferentinos et al. [11] developed convolutional neural networks for plant-disease
detection and diagnosis, using simple leaf images of healthy and diseased plants. Several
model architectures were trained, and the best performance reached 99.53%.

To address the problem of low accuracy given by traditional methods for image seg-
mentation, Zhang et al. [12] proposed a method for leaf segmentation of cucumber diseases
based on Multi-Scale Fusion Convolutional Neural Networks (MSF-CNNs) that consists
of Encoder Networks (ENs) and Decoder Networks (DNs), with an average segmentation
accuracy of 93.12% for diseased-leaf images in complex backgrounds.

These studies demonstrate the feasibility of convolutional neural networks applied
to the nondestructive diagnosis of leaf diseases. The neural network is becoming more
complex in order to obtain higher accuracy. In the field environment, the most convenient
method is to deploy neural networks in smartphones and use them for crop-disease
detection. However, a large number of parameters of neural network models, high memory
requirements, and slow detection speed limit their applications and development in mobile.
In order to make the convolutional neural network model better for mobile and embedded
devices, there are two main approaches [13]: the first one is to deploy the model on the
server and return the computational results by the server each time, and the second one is
to reduce the number of model parameters and reduce the complexity of the model. The
second method has better real-time performance, so there is an urgent need for lightweight
algorithmic models that can be deployed in embedded devices or mobile.

GoogLeNet increases the network width, reduces the computational complexity, and
greatly improves the speed compared to the simple stacked convolutional layers; SqueezeNet
greatly reduces the number of parameters and computation, while maintaining accuracy;
and SqueezeNext improves the network structure based on SqueezeNet and analyzes how
to speed up from the hardware perspective [14]. Mobilenet-v2 [15] and Shufflenet-v2 [16] are
lightweight networks proposed by Mark Sandler et al. and Ningning Ma et al., respectively.
They can guarantee classification accuracy with fewer model parameters and faster inference
speed, are suitable for use in mobile or embedded devices, and are also the mainstream mo-
bile convolutional neural networks. Yang Wu et al. [17] proposed a lightweight compressed
deep neural network for tomato-disease diagnosis and tested it on 10 leaves in the dataset.
The recognition accuracy reached 98.61%, and it can achieve real-time tomato-disease iden-
tification on low-performance terminals. Miaomiao Ji et al. [18] proposed an image-based
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crop-leaf-disease automatic identification and severity estimation networks (BR-CNNs). It
can simultaneously identify crop varieties, classify crop diseases, and estimate crop disease
severity based on deep learning. The accuracy of the BR-CNN based on ResNet50 was
tested at 86.70%. The test accuracy of BR-CNN based on lightweight NasNet also reached
85.28%, and it provides more possibilities for the development of mobile systems and de-
vices. Hong et al. [13] used ShuffleNet V2 0.5× network to quickly and efficiently classify
disease types of multiple crop leaves and improved the recognition by using the Leaky
ReLU activation function.

In this paper, we propose a lightweight powdery mildew spot segmentation model
based on the super-pixel segmentation method and hybrid Gaussian clustering method.
The model has better segmentation performance and small memory occupation, which
can be deployed to embedded devices and smartphones to meet the demand for portable
automated phenotyping. Hence, it breaks the bottleneck of field application of powdery
mildew identification and its severity evaluation.

2. Materials and Methods

In this study, 20 photographs of leaves suffering from powdery mildew were collected,
using the portable image acquisition platform to lay a foundation for model parameters
estimation. We modeled powdery mildew disease evaluation issue as a three-classification
problem (each pixel should be classified into one of the three types, namely the background,
the healthy leaves, and the powdery mildew spots). More than 10,000 super-pixels of image
patches were generated from 20 leaf pictures. The super-pixel method (SLIC) was used
to pre-segment the pixels in the picture. Each picture produced 512 super-pixels, so it
became 20 × 512 = 10,240 data in total, and the number of samples was overqualified for
the classification problem. Then, the Gaussian Mixture Model (GMM) was used to model
different kinds of super-pixels (background, healthy areas, powdery mildew spots) in the
picture. In this way, we described the prior distributions of three types of super pixels in
the sample set. The Expectation–Maximization (EM) algorithm was used to optimize the
model. In this way, we used the prior model obtained by the GMM method to calculate the
posterior probability of new samples. Finally, a lightweight powdery mildew segmentation
model was obtained.

2.1. Portable Image Acquisition Platform

The portable phenotype platform consists of a dark box, a top LED strip, a top diffuser,
a bottom diffuser, and a tablet PC, and its dimensions are 25 cm× 49 cm× 32 cm, as shown
in Figure 1. The dark box is made of metal and connected by hinges. When using the
dark box, you only need to open the dark box and put the leaves into the bottom diffuser,
close the dark box, and use the tablet computer to take pictures. The top light source is
composed of an LED strip plus a diffuser plate, which is used to simulate the surface light
source. The top of the dark box has an opening for the tablet to take pictures, and the tablet
is magnetically attached to the outside of the top of the dark box to take pictures of the
plant leaves through the top opening. In addition, the top outer side of the dark box has a
handle to make it easy for researchers to carry.
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Figure 1. Main structure of portable plant-leaf automated phenotyping platform.

Considering the production cost of the portable image acquisition platform and the
required performance, the Xiaomi Tablet 2® with a Cortex-A9 1.2G processor was chosen
as the computation core in the instrument, with a camera resolution of 2048 × 1536 and
autofocus support, which can largely meet the image acquisition needs. The tablet is
powered by an Intel Atom x5-Z8500 quad-core processor, which can meet the computing
requirements of the mobile recognition algorithm. In addition, the tablet runs on 2 GB of
memory to meet the memory requirements of image processing algorithms.

2.2. Image Preprocessing

The background of the images collected by using the platform was white, because the
background on the platform was white and a white light source was used. In addition,
the degree of powdery mildew and leaf size of the collected cucumber leaves are varied.
The background plate can transmit white light. Therefore, it can highlight the outline
of the leaves in the picture for the convenience of leaf geometrics measurement during
phenotyping. Since the main feature of the powdery mildew spots in the images is the
white area, if the background is also white, it will have an impact on the recognition effect;
therefore, in this section, based on these images, the white background in the images is
transformed into a black background. The white powdery mildew spots are closer to the
white background in the RGB color space, and direct background color conversion in the
RGB color space may be unsuccessful, and it is easy to convert the white powdery mildew
spots to black, as well. However, the HSV method can solve this problem. The image is
first mapped from RGB space to HSV space, where H denotes the different color which
is the color of the pixel point, S denotes the saturation of the color of the pixel point, and
V denotes the brightness of the point. In general, the saturation component (S channel)
can be used to distinguish between white backgrounds and white powdery spots. The
transformation function is as follows:

S[i, j] =


0, l = 0 or p = q

p−q
2l , 0 < l ≤ 1

2
p−q

2(2−l) , l > 1
2

, (1)

where p is the maximum of the three values of RGB at a pixel divided by 255, q is the
minimum of the three values of RGB at a pixel divided by 255, and l = 1/2(p + q). After
obtaining the background template in the S channel, the image with a black background is
obtained by multiplying this template with each of the three RGB channels of the image.
In addition, based on the empirical knowledge related to powdery mildew, the powdery
mildew spot areas in each image were manually marked: the powdery mildew areas were
marked as white and the non-powdery mildew areas were marked as black. The labeled
images are shown in Figure 2.
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Figure 2. Rows 1–3 are the raw images, their disease areas, and annotation of the areas, respectively.

2.3. Segmentation Model
2.3.1. Method of Simple Linear Iterative Clustering

Super-pixel, as the name suggests, is the aggregation of pixels in an image that have
similar features in the same area, which can be texture, color, category, etc. Thus, these
pixels can be treated as one pixel, which greatly reduces the number of pixel points and
effectively reduces the computational effort during image processing. Considering that
powdery mildew spots in images usually appear in blocks, pre-segmentation of images
by using super-pixel methods can help improve the segmentation accuracy of powdery
mildew spots.

Such segmentation algorithms are mainly divided into two categories: graph theory-
based algorithms and gradient-based methods. The graph theory-based methods include
the normalized cuts method [19], graph-based method [20] and optimal path method [21].
Gradient-based methods include Simple Linear Iterative Clustering (SLIC) [22], the Water-
shed approach [23], and the Turbopixel method [24].

Among them, SLIC is an efficient method for generating super-pixels by using
K-means clustering. This method is characterized by its fast computation and low memory
consumption. Therefore, this section uses the SLIC method to perform pre-segmentation
operations on all pixels in an image.

Firstly, the number of super pixels (k) need to be set, and the image (CIELAB color
space) is divided into grids with intervals of S pixels, so as to generate initial clustering
centers Ci = [li, ai, bi, xi, yi]T (i = 1, 2, . . . , k). Each pixel should find the nearest cluster
center with size S × S. Therefore, we should first search for similar pixels in the area 2S ×
2S around the super pixel center to generate new cluster centers. Once the nearest cluster
center of the pixel is found, the value of the cluster center is the average value of all pixels
in the cluster. L2 norm is used to calculate the residual E between the new cluster center
and the previous cluster center.

For two pixel points in a certain neighborhood, both the proximity of the two points in
terms of distance and the similarity of the two points in terms of color are considered in the
clustering process. In order to normalize these two types of metrics, the SLIC method uses
a metric of normalized distance and color. The distance scale between two pixel points, pi
and pj, is shown in Equation (2).

dc =
√(

lj − li
)2

+
(
aj − ai

)2
+
(
bj − bi

)2

ds =
√(

xj − xi
)2

+
(
yj − yi

)2

D
(

pi, pj
)
=

√(
dc
m

)2
+
(

ds
S

)2
(2)
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where l, a, and b are the values of the CIELAB color model of the pixel. Moreover,
l represents luminosity, and the value range of l ranges from 0 (black) to 100 (white);
a represents the range from magenta (127) to green (−128); and b represents the range from
yellow (127) to blue (−128). Furthermore, x and y represent the coordinates of the pixel,
dc represents the Euclidean distance between two pixel points in color space, ds represents
the Euclidean distance between two pixel points in physical location, m is a customizable
hyperparameter, and n is the Euclidean distance between starting points at grid division.
The algorithm flow of the simple linear iterative clustering method is shown in Algorithm 1.

Algorithm 1 Pseudocode of SLIC

Input: picture, Number of blocks k
Process:
1: Initialize cluster center Ck by sampling pixels at regular grid steps S.
2: Move cluster centers to the lowest gradient position in a 2S × 2S neighborhood.
3: Set label l(i) = −1 and distance d(i) = ∞ for each pixel i.
4:do
5: for each cluster center Ck do
6: for each pixel i in a 2S × 2S region around Ck do
7: Using equation (2) to compute the distance D between Ck and i
8: if D < d(i) then
9: set d(i) = D, l(i) = k
10: end if
11: end for
12: end for
13: Compute new cluster centers
14: Compute residual error E
15: while E ≤ threshold
Output: Image after super pixel segmentation

Figure 3 shows the effect of segmenting leaf image by using the SLIC method.

Figure 3. Leaf image preprocessed by SLIC method.

2.3.2. Hybrid Gaussian Model

In a plant-leaf powdery mildew image, pixels or super-pixels are divided into three
main categories with their a priori semantics: the background, the healthy leaves, and
powdery mildew spot areas. It stands to reason that the distribution of each class of pixels
or super-pixels features in an image obeys a latent Gaussian distribution; then all the pixels
or super-pixels in the whole image can be described by a Gaussian Mixed Model (GMM),
with respect to unsettled parameters. Here, x is the characteristics value of a super-pixel
block which is the mean value of all pixels in that super-pixel block in their respective color
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channels, i.e., the vector of the mean of all pixels in the R, G, and B channels. A multivariate
Gaussian distribution probability density function can be represented by Equation (3).

p(x, µ, Σ) =
1

(2π)
n
2 |Σ|2

exp{−1
2
(x− µ)T∑−1(x− µ)}, (3)

where µ is the vector of the mean of the colors in three channels, ∑ is the vector of the
covariance matrix. Then the probability density function of the GMM model is as follows:

pM(x) = ∑k
i=1αi·p(x, µi, ∑i), (4)

where k is the number of Gaussian distributions, i.e., three types of super pixels (back-
ground, healthy leaves, and powdery mildew spots); µi represents the vector of the average
value of the three colors of the ith super pixels; ∑i represents the covariance matrix of
the colors of the ith super pixels; and αi is the mixing factor, a non-negative real number
indicating the probability that the ith distribution is selected, i.e., the confidence that the
super-pixel point belongs to one of the three types, where ∑αi = 1.

Since the generation of pixel points is assumed here to be given by a Gaussian mixing
distribution, each sample generation process is as follows.

A certain Gaussian distribution is first picked according to the prior distribution
defined by αk, and then the corresponding sample is sampled according to the probability
density function of this Gaussian distribution. Let the random variable zj ∈ {1, 2, . . . , k} be
the probability of the ith Gaussian distribution being picked. According to Bayes’ theorem,
the posterior distribution of zj with respect to x is as follows:

pM
(
zj = i

∣∣xj
)
=

p
(
zj = i

)
· pM

(
xj
∣∣zj = i

)
pM
(
xj
) =

αi · p
(

xj
∣∣µi, ∑i

)
∑k

i=1 αi · p
(
xj
∣∣µi, ∑i

) , (5)

Here, let γji = pM(zj = i|xj). xj is the new super-pixel, and pM (zj = i) is the confidence
probability that the new super-pixel belongs to type i. Modeling the GMM model given the
dataset D can be performed by using a great likelihood estimation method to maximize the
likelihood function. The objective function is shown in Equation (6).

l(D) = ln(∏m
j=1 pM

(
xj
)
) = ∑m

j=1ln(∑k
i=1αi · p(xj|µt, ∑t)), (6)

To maximize this function, the EM algorithm can be used to solve it. The parameters
of the mixed Gaussian distribution (µ, ∑, and α) and the posterior distribution (zj) are
estimated in the E step, using the parameters of the mixed Gaussian distribution (µ, ∑ and
α) and using Equation (5) in the M step, using γji and combined with Equation (6), the
parameters of the mixed Gaussian distribution can be calculated. The constant iterations of
both can obtain the solution of the maximized likelihood function.

The posterior distribution of zj calculated in step E can be obtained according to equa-
tion (5), and the method of estimating the parameters of the mixed Gaussian distribution,
using the posterior distribution in step M, is given below. In Equation (6), l(D) performs
the partial derivative of µi and makes the partial derivative 0.

∂l(D)

∂µi
= ∑m

j=1
αi · p

(
xj
∣∣µt , ∑t

)
∑k

t=1 αt · p
(
xj
∣∣µt , ∑t

) (xj − µi
)
= 0, (7)

µi =
∑m

j=1 γjixj

∑m
j=1 γji

, (8)
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Similarly, find the partial derivatives for ∑i and αi, respectively, and let the partial
derivatives be 0.

∑i =
∑m

j=1 γji
(
xj − µi

)(
xj − µi

)T

∑m
j=1 γji

, (9)

αi =
1
m ∑m

j=1γji, (10)

From this, a hybrid Gaussian model can be used to cluster the super-pixels in the
image, thus realizing the need for disease spot segmentation. The algorithm flow is showen
in Algorithm 2.

Algorithm 2 Gaussian Mixture Model for superpixel clustering

Input: picture, Number of blocks k
Preprocess:
0: use SLIC method to divide the image into xm super pixels, number of Gaussian distributions
k = 3
Process:
1: Dataset D = {x1, . . . , xm}, randomly initialize µi, ∑i, αi
2: while
3: for j = 1, 2, . . . , m do
4: The posterior probability γji of each sample composition component is calculated according to
Equation (5)
5: end for
6: for i = 1, 2, 3 do
7: Calculate the new µi, ∑i, αi according to Equation (8), Equation (9), and Equation (10)
8: end for
9: Update the parameters of the Gaussian Mixture Model to the new µi, ∑i, αi
10: do the parameter update difference is less than a threshold value
11: for j = 1, 2, . . . , m do
12: Find the category to which sample xji belongs according to argi max γji
13: Assign xj to the category to which it belongs
14: end for
Output: Each super-pixel block belongs to a category {background, healthy leaf, powdery
mildew spot}.

The Gaussian Mixture Model can be used to model different types of pixel points and
obtain the properties of each pixel point according to the distribution from which it comes,
thus achieving the effect of image segmentation.

2.3.3. Lightweight Powdery-Mildew-Spot-Segmentation Model

Based on the super-pixel segmentation method and hybrid Gaussian model, this paper
proposes a lightweight powdery mild segmentation model. Firstly, we used the SLIC
method to super-pixel segment the original image; secondly, we calculated the mean values
of all pixels in each pixel block in the three RGB color channels and used them as features;
subsequently, we used the hybrid Gaussian model to model the features of the three types
of super-pixel points (background, healthy leaves, and powdery mildew spots) to obtain
three Gaussian distributions. Then we took the distribution with the largest mean value as
the distribution where the pixel points of powdery mildew spots are located. Finally, the
posterior probability was used to find the pixel points belonging to the powdery mildew
spots to construct the segmented image.

Considering the feature of under-segmentation by clustering method, we used expan-
sion operation to alleviate the under-segmentation problem after obtaining the whitefly
segmented image, using the hybrid Gaussian model.

Generally, the expansion operation is performed on the image and is represented
as follows:

A⊕ B = {z|(B̂)z ∩ A 6= φ}, (11)
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where A is the original binary image, B is the template used for the expansion operation,
and (B̂)z indicates that the template B is translated by z units in A after performing the flip.
The template is a solid square or circle with a reference point in the middle. The movement
of the template in the picture is similar to the movement of the template in the picture in
the convolution operation, thus allowing the current template centroid location to take
a value of 1 when the intersection of the template and the original binary picture is not
empty, as shown in Figure 4.

Figure 4. Expansion operation.

After the hybrid Gaussian model clustering, the image is inflated to finally obtain
the whitefly spot segmentation image. The flowchart of the whole algorithm is shown
in Figure 5.

Figure 5. Algorithm flowchart of lightweight segmentation model.

2.4. Model Testing

In the experiment, we used six indexes to evaluate the performance of the model.

2.4.1. IoU Accuracy

The full name of the IoU is Intersection over Union, and it is specifically used to
evaluate the performance of image segmentation methods. Its calculation formula can be
expressed as follows:

IoU =
2pt f

pt + p f
(12)
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where ptf denotes the area of the intersection of the real powdery mildew area in a picture
and the area predicted as powdery mildew area by the model; and pt and pf denote the area
of the real powdery mildew area in a picture and the area predicted as powdery mildew
area by the model, respectively.

2.4.2. Dice Accuracy

The Dice is another metric to evaluate the performance of model image segmentation,
and its value is usually larger than IoU for the same segmentation performance. Its
calculation formula is as follows:

Dice =
pt f

pt + p f − pt f
(13)

2.4.3. Pixel Accuracy

In simple terms, pixel accuracy is to consider image segmentation as a binary classifi-
cation problem and get the classification of each pixel point and count it. The calculation
formula is as follows:

Pixel =
1
m

m

∑
i=1

fi fi =

{
1, yi = yi

′

0, yi 6= yi
′ (14)

Considering that the image segmentation problem can be essentially classified as a
classification problem, the performance of the models is also evaluated by using Precision,
Recall, and F-beta, so that the strengths and weaknesses of different models can be assessed
from different perspectives. In this case, for the F-beta, the value of beta was chosen as 2 to
give more weight to the recall. This is reasonable for plant-disease segmentation, since it is
more important for disease identification not to miss disease regions.

2.5. Apps on the Instrumented Devices

The automation recognition software was developed based on Android Studio and
can run on Android phones or Android tablets, with a minimum adaptation to Android 4.0.
The software’s whitefly spot recognition interface is shown in Figure 6. The upper part of
the interface is the picture display area, the lower part is the conclusion display area, and
the button in the lower right corner is used for some operations such as selecting pictures.
In the recognition process, first select the picture; this step can be performed by directly
opening the picture or calling the camera of the tablet computer to take the picture. After
the picture selection is completed, click “start recognition” to get the recognition result.
This software is able to perform pixel-level segmentation for powdery mildew spots, thus
providing practitioners with the convenience of analyzing leaf traits quantitatively.

According to the runtime test, this method takes up the memory space, such as 3.6 M,
for storing images in floating-point type, 12.8 M for the super-pixel segmentation part,
1.2 M for the Gaussian Mixture Model, and 163 M for the Python runtime environment,
which runs in about 3s on a normal cell phone. However, the U-net model occupies about
2621 M of memory in CPU mode and cannot run in ordinary embedded devices or mobile
devices. Therefore, this method meets the requirements of portable devices. If the method
is rewritten in C, the memory consumption and running speed will be further improved.
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Figure 6. Powdery-mildew recognition interface.

3. Results

The segmentation effect of the proposed lightweight method in this paper is shown
in Figure 7.

Figure 7. Segmentation performance of different methods on three samples.

The first column is the original image, the second column is the manually labeled
image, the third column is the result obtained by the U-net method, the fourth column is the
segmentation result of the K-mean clustering method, the fifth column is the segmentation
result of the maximum interclass variance, and the last column is the segmentation result
of the method proposed in this paper. As can be seen from the figure, compared with
other lightweight segmentation methods (K-mean clustering and maximum interclass
variance), the present method solves the problem of under-segmentation of such methods
to a certain extent.

Table 1 shows the detailed segmentation results of the proposed lightweight method
on the test set in this paper, and it is worth stating that the method performs poorly in terms
of accuracy on samples 1, 3 and 17, and better on the other samples. The lower accuracy on
these two samples is the reason for the lower average accuracy. By analyzing the images of
these three numbers, it was found that the diseased areas of these samples were smaller,
and the clustering effect of the Gaussian Mixture Model became poor, resulting in some
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pixel points of healthy leaf areas being identified as powdery-mildew diseased areas, thus
leading to lower recognition accuracy.

Table 1. Segmentation results of the lightweight method on 20 test samples.

No. Accuracy Recall Rate F2 Score IoU
Accuracy

Dice
Accuracy

Pixel
Accuracy

1 35.12% 89.07% 68.13% 33.67% 50.37% 90.73%
2 85.58% 92.70% 91.18% 80.17% 89.00% 95.47%
3 10.91% 69.16% 33.45% 10.41% 18.85% 94.22%
4 87.67% 89.00% 88.73% 79.09% 88.33% 93.75%
5 85.61% 87.14% 86.83% 76.00% 86.37% 95.97%
6 67.31% 85.39% 81.04% 60.36% 75.28% 94.09%
7 84.02% 88.80% 87.80% 75.96% 86.34% 94.30%
8 85.31% 84.02% 84.27% 73.40% 86.66% 93.37%
9 58.49% 74.28% 70.47% 48.64% 65.44% 95.53%

10 61.89% 77.35% 73.67% 52.39% 68.76% 93.98%
11 74.92% 82.03% 80.50% 64.36% 78.31% 95.59%
12 80.32% 84.30% 83.47% 69.86% 82.26% 95.79%
13 44.93% 79.37% 68.82% 40.23% 57.38% 95.01%
14 92.65% 84.43% 85.96% 79.13% 88.35% 92.56%
15 70.41% 77.08% 75.65% 58.23% 73.60% 91.88%
16 61.04% 80.61% 75.75% 53.22% 69.47% 92.77%
17 38.25% 79.42% 65.35% 34.80% 51.63% 90.56%
18 80.31% 75.20% 76.17% 63.49% 77.67% 92.92%
19 61.29% 83.48% 77.85% 54.66% 70.69% 95.23%
20 52.77% 84.18% 75.22% 48.01% 64.87% 93.23%

The average values of accuracy, recall, F2-score, IoU precision, Dice precision, and pixel
precision are 65.94%, 82.35%, 76.52%, 57.80%, 71.38%, and 93.85%, respectively, among the
20 test samples, and the segmentation results meet the practical needs better. The results
compared with lightweight methods, such as OTSU and K-mean clustering, and with
convolutional neural networks, such as U-net, are shown in Table 2. Moreover, this method
has significantly improved in the more important evaluation metrics, such as F2 score,
IU precision, and Dice precision.

Table 2. Results of lightweight methods on six evaluation indicators.

Method Accuracy Recall Rate F2 Score IoU
Accuracy

Dice
Accuracy

Pixel
Accuracy

Our method 65.94% 82.35% 76.52% 57.80% 71.38% 93.85%
OTSU 69.39% 58.78% 59.20% 45.33% 61.48% 92.04%

K-means
Clustering 71.35% 60.55% 60.83% 47.05% 63.11% 92.33%

U-net 73.30% 97.34% 91.20% 72.11% 83.45% 96.08%

4. Discussion

In this paper, we proposed a lightweight powdery-mildew segmentation model. We
firstly use a super-pixel segmentation method to pre-segment the images, secondly use
a hybrid Gaussian model to model three classes of super-pixels (background, healthy
leaves, and powdery mildew spots), and finally compensated for the spot areas by using
an expansion operation and achieved powdery-mildew-spot recognition on a portable
instrument for field use.

Compared to the clustering algorithmic counterparts, such as K-mean clustering and
maximum interclass variance, the proposed method in this paper has better segmentation
performance and achieves better results in both IoU metrics and Dice metrics. Meanwhile,
when compared to such deep learning methods as the U-net, although the proposed method
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is slightly inferior to deep learning methods in terms of segmentation accuracy, its small
memory consumption and low computational latency lend themselves to being deployed in
embedded devices and smartphones to meet the needs of portable automated phenotyping.
Compared with some lightweight neural networks, the proposed method does not require
a large number of images for training the model to achieve high accuracy. In general, it
lays a foundation for the portable automated phenotyping for powdery mildew disease in
field detection and severity evaluation.

Author Contributions: Conceptualization, L.G., K.L. and C.L.; software, C.Y. and K.L.; validation,
C.Y. and C.L.; formal analysis, L.G. and K.L. investigation, L.G. and K.L.; resources, L.G.; data
curation, L.G., C.Y. and K.L.; writing—original draft preparation, L.G., C.Y. and K.L.; project adminis-
tration, C.L.; funding acquisition, L.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Science and Technology Innovation Action Project of Shanghai
Committee of Science and Technology, grant number 21N21900100; and the APC was funded by
Shanghai Committee of Science and Technology, Shanghai, China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request from the corresponding authors.

Acknowledgments: The authors would like to thank Junsong Pan at School of Agriculture Science
and Technology, Shanghai Jiao Tong University, for providing the powdery mildew leaves and
image annotation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sharma, P.; Berwal, Y.P.S.; Ghai, W. Performance analysis of deep learning CNN models for disease detection in plants using

image segmentation. Inf. Processing Agric. 2019, 7, 566–574. [CrossRef]
2. Mutka, A.M.; Bart, R.S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 2015, 5, 734. [CrossRef] [PubMed]
3. Wspanialy, P.; Moussa, M. Early powdery mildew detection system for application in greenhouse automation. Comput. Electron.

Agr. 2016, 127, 487–494. [CrossRef]
4. Zhang, S.; Wu, X.; You, Z.; Zhang, L. Leaf image based cucumber disease recognition using sparse representation classification.

Comput. Electron. Agr. 2017, 134, 135–141. [CrossRef]
5. Oppenheim, D.; Shani, G.; Erlich, O.; Tsror, L. Using deep learning for Image-Based potato tuber disease detection. Phytopathology

2019, 109, 1083–1087. [CrossRef]
6. Mohanty, S.P.; Salathé, M.; Hughes, D.P. Using deep learning for image-based plant disease detection. Front. Plant Sci.

2016, 7, 1419. [CrossRef]
7. Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep convolutional neural

networks. IEEE Access 2018, 6, 30370–30377. [CrossRef]
8. Khan, M.A.; Akram, T.; Sharif, M.; Awais, M.; Javed, K.; Ali, H.; Saba, T. CCDF: Automatic system for segmentation and

recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Comput. Electron. Agr. 2018, 155,
220–236. [CrossRef]

9. Lin, K.; Gong, L.; Huang, Y.; Liu, C.; Pan, J. Deep learning-based segmentation and quantification of cucumber powdery mildew
using convolutional neural network. Front. Plant Sci. 2019, 10, 155. [CrossRef]

10. Zhang, S.W.; Shang, Y.J.; Wang, L. Plant disease recognition based on plant leaf image. J. Anim. Plant Sci. 2015, 25, 42–45.
11. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agr. 2018, 145, 311–318.

[CrossRef]
12. Zhang, S.; Wang, Z.; Wang, Z. Method for image segmentation of cucumber disease leaves based on multi-scale fusion convolu-

tional neural networks. Trans. Chin. Soc. Agric. Eng. 2020, 36, 149–157.
13. Hong, H.; Huang, F. Recognition Algorithm for Crop Disease based on Lightweight Neural Network. J. Shenyang Agric. Univ.

2021, 52, 239–245.
14. Bi, P.; Luo, J.; Chen, W. Research on Lightweight Convolutional Neural Network Technology. Comput. Eng. Appl. 2019, 55, 25–35.
15. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. arXiv

2018, arXiv:1801.04381.
16. Ma, N.; Zhang, X.; Zheng, H.; Sun, J. ShuffleNet v2: Practical Guidelines for Efficient CNN Architecture Design; Springer International

Publishing: Cham, Switzerland, 2018; pp. 122–138.

http://doi.org/10.1016/j.inpa.2019.11.001
http://doi.org/10.3389/fpls.2014.00734
http://www.ncbi.nlm.nih.gov/pubmed/25601871
http://doi.org/10.1016/j.compag.2016.06.027
http://doi.org/10.1016/j.compag.2017.01.014
http://doi.org/10.1094/PHYTO-08-18-0288-R
http://doi.org/10.3389/fpls.2016.01419
http://doi.org/10.1109/ACCESS.2018.2844405
http://doi.org/10.1016/j.compag.2018.10.013
http://doi.org/10.3389/fpls.2019.00155
http://doi.org/10.1016/j.compag.2018.01.009


Agronomy 2022, 12, 97 14 of 14

17. Wu, Y.; Xu, L. Lightweight compressed depth neural network for tomato disease diagnosis. In Proceedings of the Eleventh
International Conference on Graphics and Image Processing, Washington, DC, USA, 3 January 2020; SPIE: Washington, DC, USA, 2020;
Volume 11373, p. 113731S.

18. Ji, M.; Zhang, K.; Wu, Q.; Deng, Z. Multi-label learning for crop leaf diseases recognition and severity estimation based on
convolutional neural networks. Soft Comput. 2020, 24, 15327–15340. [CrossRef]

19. Shi, J.B.; Malik, J. Normalized cuts and image segmentation. IEEE T. Pattern Anal. 2000, 22, 888–905.
20. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [CrossRef]
21. Moore, A.P.; Prince, S.; Warrell, J.; Mohammed, U.; Jones, G.; IEEE. Superpixel lattices. In Proceedings of the 2008 IEEE Conference

on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; Volumes 1–12, p. 998.
22. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel

methods. IEEE T. Pattern Anal. 2012, 34, 2274–2282. [CrossRef]
23. Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE T. Pattern Anal.

1991, 13, 583–598. [CrossRef]
24. Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. TurboPixels: Fast superpixels using geometric

flows. IEEE T. Pattern Anal. 2009, 31, 2290–2297. [CrossRef] [PubMed]

http://doi.org/10.1007/s00500-020-04866-z
http://doi.org/10.1023/B:VISI.0000022288.19776.77
http://doi.org/10.1109/TPAMI.2012.120
http://doi.org/10.1109/34.87344
http://doi.org/10.1109/TPAMI.2009.96
http://www.ncbi.nlm.nih.gov/pubmed/19834148

	Introduction 
	Materials and Methods 
	Portable Image Acquisition Platform 
	Image Preprocessing 
	Segmentation Model 
	Method of Simple Linear Iterative Clustering 
	Hybrid Gaussian Model 
	Lightweight Powdery-Mildew-Spot-Segmentation Model 

	Model Testing 
	IoU Accuracy 
	Dice Accuracy 
	Pixel Accuracy 

	Apps on the Instrumented Devices 

	Results 
	Discussion 
	References

