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Abstract: The identification of soybean growth periods is the key to timely take field management
measures, which plays an important role in improving yield. In order to realize the discrimination of
soybean growth periods under complex environments in the field quickly and accurately, a model
for identifying soybean growth periods based on multi-source sensors and improved convolutional
neural network was proposed. The AlexNet structure was improved by adjusting the number of fully
connected layer 1 and fully connected layer 2 neurons to 1024 and 256. The model was optimized
through the hyperparameters combination experiment and the classification experiment of different
types of image datasets. The discrimination of soybean emergence (VE), cotyledon (VC), and first
node (V1) stages was achieved. The experimental results showed that after improving the fully
connected layers, the average classification accuracy of the model was 99.58%, the average loss was
0.0132, and the running time was 0.41 s/step under the optimal combination of hyperparameters. At
around 20 iterations, the performances began to converge and were all superior to the baseline model.
Field validation trials were conducted applying the model, and the classification accuracy was 90.81%
in VE, 91.82% in VC, and 92.56% in V1, with an average classification accuracy of 91.73%, and single
image recognition time was about 21.9 ms. It can meet the demand for the identification of soybean
growth periods based on smart phone and unmanned aerial vehicle (UAV) remote sensing, and
provide technical support for the identification of soybean growth periods with different resolutions
from different sensors.

Keywords: convolutional neural network; soybean; RGB images; growth periods discrimination;
optimize model; multi-source sensors

1. Introduction

By quickly and accurately identifying the growth periods and determining the emergence
status, the temporal and spatial competitiveness of the crop can be improved, providing the
basis for establishing the optimal canopy structure [1]. Soybean is an important source of
high-quality protein and an essential crop for both grain and oil forage, thus improving the
yield and quality of soybean is of great importance to ensure the soybean industry security and
national food security [2]. Timely management measures at different growth periods of soybean
will help to determine the reasonable time for chemical control, so as to control weeds in the
field, prevent diseases and pests, and ensure yield. With the rapid development of precision
agriculture, using information technology to identify growth periods has become an important
direction for soybean intelligent management decisions.

In recent years, deep learning has been widely used in agricultural information analy-
sis [3]; its outstanding feature learning and extraction ability are suitable for crop identifica-
tion and classification [4–6]. The convolutional neural network is one of the representative
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methods. It is widely used in image classification by extracting deep complex features
of images to effectively express differences of different categories in images [7–9]. By
continuously reducing the dimension of the images, it can train the images with a large
amount of data [10].

Based on the traditional convolutional neural network, the model performance can be
further improved by improving important structural parameters and optimizing training
strategy. This can be achieved by improving other important layers such as convolutional
layers, pooling layers, and using other optimization algorithms such as Adam or dropout.
Colored bio-imaging provides an intuitive and less invasive detection method for research
in areas such as the environment and biology [11]. Related scholars have conducted
many studies on different crops using improved convolutional neural network combined
with colored bio-imaging techniques. Hou et al. [12] realized the accurate classification
of castor seeds in missing seed shells, castor seeds with cracks, and intact castor seeds
(without damage) by improving the convolution neural network. The optimal parameters
were determined through combination experiments, and dropout was used to optimize the
model. The average test accuracy reached 93.45%, improved by 0.93%, and the training time
was reduced. However, the reflective phenomenon on the surface of castor seeds leads to
poor image quality, which affected the test results. Zhao et al. [13] built a convolution neural
network model for the classification of intact peanuts, skin-damaged peanuts, and half
peanuts. The model structure was improved by reducing the convolution layer and pooling
layer, and the model was optimized by using exponential attenuation, moving average, etc.
The accuracy was 98.18%, which achieved 12.73% improvement, and one image processing
time was reduced from 30.7 ms to 18.3 ms; the peanut image classification accuracy and
effectiveness were significantly improved. Niu et al. [14] and Zhou et al. [15] used improved
DenseNet and MobileNetV3 convolutional neural networks to classify and identify tomato
leaf diseases from Plant Village public datasets, respectively. The accuracy was increased
from 90% to 97.76%, and from 94.68% to 98.25%, which was significantly higher than before.
However, it has not been verified in the field, and the application effect in the complex field
environment is unknown. Shen et al. [16] designed the WheNet network for wheat impurity
identification by improving and optimizing Inception_v3. The accuracy was about 98%
and the loss was 0.013, and most of the impurities in wheat could be accurately recognized.
For some impurities similar to the color of normal wheat and overlapping impurities, the
network was easy to identify errors. Wu et al. [17] developed an improved convolutional
neural network model, FWCNN, for leaf and wood component separation. In order to avoid
learning invalid features during model training and improve model operation efficiency,
the pooling layer and dropout layer were deleted. The overall classification accuracy was
≥94.98%, indicating the importance of optimizing the hyperparameters to improve the
model performance.

The previous research results showed that an improved convolutional neural network
could provide support for soybean seedling growth period discrimination. However,
poor dataset quality, complex network structure, improper parameter setting, and an
inappropriate optimization strategy will affect the model performance and the accuracy
in practical applications will be greatly reduced. Low-cost and rapid detection sensors
should be used as much as possible to meet detection needs [18]. The visible sensors
used in the previous studies have these advantages and provide a basis for obtaining
images of soybean to identify the growth periods. The morphological difference of soybean
seedlings in different periods is obvious, which is difficult to identify. Therefore, a growth
period identification model based on an improved convolutional neural network that can
identify soybean from different visible sensors was proposed. The structure of AlexNet’s
fully connected layers were improved, and the model was trained and tested using the
soybean seedling image datasets containing three growth periods. Different combinations
of learning rate, dropout, and batch size were optimized. Through the contrast experiment
of different image datasets, the optimal image dataset was determined. It is expected
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to realize rapid and accurate identification of soybean seedling growth periods under a
complex field environment.

2. Materials and Methods
2.1. Image Acquisition

A large amount of representative and quality data should be prepared for train-
ing to make the convolutional neural network still classify new data well [19]. The im-
ages acquired in the laboratory environment generally have a similar background, uni-
form lighting, uniform acquisition equipment, and focal length, which are different from
the real environment. Therefore, various data were collected from No. 15 in Jianshan
Farm (48◦86′22′′ N, 125◦36′43′′ E) and No. 9 in Bawuer Farm of Heilongjiang Province
(46◦28′93′′ N, 132◦74′40′′ E) and the Circular Agriculture Research Center of Guangdong
Province (21◦16′46′′ N, 110◦25′86′′ E) as experimental sites. Images from different periods
were captured in the morning, mid-day, and evening in sunny days, after rain, calm, breezy,
and other environments [20]. Field RGB images were obtained during VE, VC, and V1 of
more than 10 main soybean varieties in Heilongjiang Province. The image acquisition tool
was a smart phone (Huawei nova6, China) and the original image format was a .jpg with a
resolution of 3648 × 2736 pixels.

2.2. Dataset Construction

One-thousand original images were selected for each location. The required sample
images were cut by manual clipping, and Photoshop software was used to modify the
images size to 255 × 255 × 3. Effective image enhancement increases the number of
training samples and the diversity of image data. Image datasets for three growth periods
of soybean seedlings were constructed by adjusting image brightness, contrast, flip, and
random rotation. There were 9000 images in the datasets, 3000 images in each period.
As shown in Table 1, the training and testing set were divided by 3:1, with labels to
distinguish them.

Table 1. Distribution of image datasets.

Period Number of Training
Set Images

Number of Testing
Set Images Image Label

VE 2250 750 0
VC 2250 750 1
V1 2250 750 2

2.3. Model Establishment

AlexNet is a typical model in convolutional neural network with good classification
performance [21]. Based on the AlexNet, the soybean seedling growth period discrimination
model with self extracting features was established. AlexNet consists of 5 convolutional
layers, 3 pooling layers, and 3 fully connected layers. Convolutional layers can effectively
extract deeper feature information from certain regions of pixels in the images [22]. The
convolution process is defined as follows:

Convout =
Convin + 2P− Fconv

Sconv
+ 1 (1)

where Convout is the output image size, Convin is the input image size, Fconv is the convolu-
tion kernel size, P is the input images fill size, and Sconv is the convolution step.
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Pooling layers are usually applied behind convolutional layers to further reduce
computation. AlexNet uses max-pooling to reduce information loss by retaining the most
prominent features in the images [23]. The max-pooling process is defined as follows:

Mpout =
Mpin − FMp

SMp
+ 1 (2)

where Mpout is the output image size after max-pooling, Mpin is the input images size in
max-pooling, FMp is the convolution kernel size of max-pooling, and SMp is the pooling step.

The fully connected layers undertake the main calculation, store the final feature
information, and realize image classification and prediction [24]. It is classified by Softmax
and defined as follows:

Sr =
exp(arx)

∑3
k=1 exp(ark)

(3)

where Sr is the classification probability of the r-th soybean seedling belonging to the x-th
growth period, arx is the product component of the r-th soybean seedling and the x-th
growth period in the vector, ark is the product component of the r-th soybean seedling
and the k-th growth period in the vector, and k is the number of growth periods (it is 3 in
this study).

By improving the model structure, the identification accuracy, stability, and operation
efficiency can be enhanced. The number of neurons in traditional AlexNet’s fully connected
layer 1 and fully connected layer 2 is 4096. In this study, the fully connected layers were
improved. The number of neurons in fully connected layer 1 and fully connected layer
2 was reduced to 1024 and 256 respectively, and fully connected layer 3 was set to 3. VE,
VC, and V1 periods are classified by an improved model. The schematic diagram of fully
connected layers before and after being improved is shown in Figure 1.
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Figure 1. Schematic diagram of fully connected layers before and after being improved.

The final model was established to discriminate the growth periods of soybean
seedlings as shown in Figure 2. The input image size was 255 × 255 × 3, and the feature
map size of 3 × 3 × 256 was obtained. The convolution kernel size decreased from 7 to
5 and then to 3, whereas the feature map size was also reduced in half at layer 1, 2, and
5 by overlapping max-pooling. The image features had been extracted sufficiently to the
fifth convolutional layers, and the classification results were obtained through the fully
connected layers.

The training and testing of convolutional neural network adopted TensorFlow 2.5 deep
learning framework and Keras module. Anaconda software, CUDA architecture, cuDNN
development library, and Pycharm were applied. The processor was Inter(R) Core(TM)i5-
1035G1 CPU @1.00GHz 1.19; the running environment was Windows 10 system; and the
display adapter parameters were Inter(R) UHD Graphics, NVIDIA GeForce MX350.
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Figure 2. Discrimination model of soybean seedlings growth periods.

2.4. Model Optimization

A large number of parameters need to be specified in the training of a convolutional
neural network, and different sensitivity to various parameters lead to different experimen-
tal results. Hyperparameter is an important part of the model, which needs to be set before
training. As a tuning parameter, it has the characteristics of a parameter and needs to be
set manually. Different datasets and models have different applicable hyperparameters,
so it is necessary to select appropriate hyperparameters through experimental design to
obtain the optimal model. Improper setting of the learning rate will lead to model training
shock or even divergence. In AlexNet’s fully connected layer 1 and fully connected layer
2, dropout is introduced to prevent the model from overfitting. Some nodes in the neural
network will be closed and no longer communicate with each other, which can reduce the
network complexity, make the network generalization ability stronger, and speed up the
operation. Batch size is the size of each batch of data; by selecting a suitable batch size, the
model training speed can be accelerated and the accuracy can be improved. Batch size to
the power of 2 can speed up the calculation process [25].

Consequently, a single-factor experiment was designed to determine the value range
of the hyperparameters. Learning rate, dropout, and batch size were selected as influencing
factors. The experiment was conducted with learning rate (0.0001, 0.001, 0.0025, 0.005,
0.01) [26,27], dropout (0.5, 0.6, 0.7, 0.8, 0.9) [28], and batch size (16, 32, 64, 128, 256) [9], and
Adam was selected as the AlexNet optimization algorithm.

A complex environment background will make a difference in the model feature
extraction effect. The datasets constructed from binary images, background-removed
images, and edge detection images were used as the model input for experiments. By
comparing the classification results of different types of image datasets, the optimal image
datasets were determined; the experimental flow chart is shown in Figure 3.
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3. Results
3.1. Evaluating Indicator

The model performance is evaluated by accuracy and average accuracy. In the process
of model training, the operation stability is explored by setting the number of iterations. In
this work, the iterations number was 500, and the model will get a classification accuracy
after each iteration. The calculation equation of model accuracy and average accuracy is
as follows:

A =
NC
NT
× 100% (4)

AA =
eT
e
× 100% (5)

where A is accuracy; NC is quantity with correct classification; NT is quantity of all samples;
AA is average accuracy; e is epoch; eT is sum of classification accuracy after each iteration.

3.2. Analysis of Hyperparameters Combination Experiment

The model was trained with a batch size of 32; dropout of 0.5; and learning rate of
0.01, 0.005, 0.0025, 0.001, and 0.0001, and the learning rate was 0.001 > 0.0001 > 0.01 > 0.005
> 0.0025. With the learning rate of 0.001; batch size of 32; and dropout of 0.5, 0.6, 0.7, 0.8,
and 0.9, the dropout 0.5 > 0.8 > 0.6 > 0.7 > 0.9 was obtained. With the learning rate of
0.001 and dropout of 0.5, the batch size was 16, 32, 64, 128, and 256 to train the model,
which was obtained as 32 > 128 > 64 > 256 > 16. The single-factor experiment results of
hyperparameters are shown in Figure 4.
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According to the single-factor experiment results of hyperparameters, a learning rate
of 0.001, 0.0001, 0.005, 0.01; dropout of 0.5, 0.6, 0.7, 0.8; and batch size of 32, 64, 128, 256
were selected to arrange the combination test. The experimental design and results are
shown in Table 2.

From the experiment results, the model corresponding to experiment 6 had the highest
average classification accuracy of 99.58%. The best classification of soybean seedlings
images was achieved with this hyperparameter combination. The convergence speed
and stability are also the key to judge the performance of the model. According to the
experiment results, the model performance before and after improvement were compared
under the hyperparameter combination. The results are shown in Figure 5.

When the number of neurons in fully connected layer 1 and fully connected layer 2
was 4096, the average accuracy of the model was 99.53%, the average loss was 0.0209, and
the running time was 0.55 s/step. While the average accuracy was 99.58%, the average
loss was 0.0132, and the running time was 0.41 s/step when the number of fully connected
layer 1 and fully connected layer 2 neurons were 1024 and 256, respectively. By comparing
the two groups of experiment results, the improved model was superior to the original
model in terms of running time, average loss, and average accuracy. The improved model
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started to converge at about 20 iterations, with fast convergence, stable operation, and less
overfitting. Based on the above results, the optimal hyperparameter combination of the
model was a learning rate of 0.0001, dropout of 0.6, and batch size of 32.

Table 2. Experimental design and results.

Serial Number
Factors

Accuracy
Learning Rate Dropout Batch Size

1 0.001 0.5 32 98.63%
2 0.001 0.6 64 98.77%
3 0.001 0.7 128 98.39%
4 0.001 0.8 256 97.12%
5 0.0001 0.5 64 99.47%
6 0.0001 0.6 32 99.58%
7 0.0001 0.7 256 88.25%
8 0.0001 0.8 128 99.14%
9 0.005 0.5 128 68.44%
10 0.005 0.6 256 40.11%
11 0.005 0.7 32 36.52%
12 0.005 0.8 64 37.63%
13 0.01 0.5 256 66.98%
14 0.01 0.6 128 39.08%
15 0.01 0.7 64 47.25%
16 0.01 0.8 32 43.42%
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model accuracy before improvement; (b) change trend of model loss before improvement; (c) change
trend of model accuracy after improvement; (d) change trend of model loss after improvement.
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3.3. Performance Comparison of Different Image Datasets

Canny operator can effectively eliminate information irrelevant to image edges, so that
morphological features and texture features can be completely preserved. After removing
the background from the original images, all color features except for the soybean seedlings
can be suppressed more obviously. Complex backgrounds were removed to make soybean
seedlings more prominent. Binary allowed soybean seedlings to be screened out, but only
the external morphological characteristics were retained. Several different image datasets
were trained by the convolution neural network, and the model performance comparison
is shown in Table 3.

Table 3. Model performance comparison.

Datasets Running Time Average Loss Average Accuracy

RGB Images 0.41 s/step 0.0132 99.58%
Binary Images 1.21 s/step 0.0978 94.53%

Background-removed Images 0.54 s/step 0.0123 99.61%
Canny Edge Detection Images 1.13 s/step 0.0294 99.52%

The results showed that the complexity of image background affected the model
training. The average classification accuracy of the model for RGB images was 99.58%,
with the shortest running time in the complex environment of soybean fields. The average
classification accuracy of background-removed images was 99.61%, which was 0.03%
higher than RGB images, but the running time was increased by 0.13 s/step, and the
pre-processing took plenty of time, which increased the workload. Thus, from multiple
perspectives of model performance and application efficiency, RGB images can meet the
demand of discriminating soybean growth periods in actual agricultural production.

3.4. Field Experiment Validation

As a new method to obtain field data, an unmanned aerial vehicle (UAV) can quickly
obtain images of large plots in a short time. It can avoid the error caused by manual shooting
and effectively make up for the shortcomings of traditional image acquisition methods,
with the advantage of high throughput [29]. More than 800 mu of No. 15 in Jianshan Farm
with high hills, flat slopes, slopes, and other landforms was taken as the experiment site.
According to the terrain difference and crop growth habits, DJI P4 Multispectral UAV was
used to select representative locations to collect a large number of images. The UAV flight
height was 5 m, the original images were 1600 × 1300 pixels, and the image enhancement
and acquisition methods remained the same as before. Figure 6 shows the soybean seedling
images in different growth periods under standard conditions, and the datasets include
3000 images.
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AlexNet was used to train and test the RGB images of the UAV, and the model
performance is shown in Figure 7. The average classification accuracy was 99.35%, the
average loss was 0.0328, and the running time was 0.47 s/step.

Images were collected in the natural environment of the field, and datasets containing
1000 images were constructed to validate the practical application of the model, in which
the images were not processed in any way. The classification accuracy was 90.81% in VE,
91.82% in VC, and 92.56% in V1, with an average classification accuracy of 91.73% and
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a single image recognition time of about 21.9 ms. The model combined with UAV field
images allows for the accurate identification of soybean seedling growth periods.
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4. Discussion

Many researchers have studied crop recognition and classification by improving the
AlexNet. Different crop types and characteristics will affect the model recognition accu-
racy. Accordingly, recognition time, stability, and structural complexity are also criteria
for evaluating the model. The recognition accuracy of kiwifruit in a complex environ-
ment by Mu et al. [30] was 96.00%, and the recognition time of a single image was about
1 s, but the recognition time of a single image of a soybean seedling was about 21.9 ms.
Zhang et al. [31] realized the leaf classification of five plants by modifying different param-
eters of the AlexNet structure, with an accuracy of more than 99%. The model tended to
be stable after 25 training times, whereas the soybean seedling recognition tended to be
stable after 20 training times. Xiao et al. [32] showed 98.92% accuracy of rice pest identi-
fication, with an average loss of 0.03, whereas the average loss in soybean seedlings was
0.0132. Dong et al. [33] improved the classification model for nine strawberry pests and
diseases, which increased the training time compared to the pre-improvement, whereas the
improved soybean seedlings identification model saved 25.46% of the training time. The
identification of heat damage stress in tomato seedlings was carried out by Wang et al. [34],
with an average accuracy of 98.8%. Ni et al. [35] classified different types of peanut pods,
with a maximum accuracy of 88.76%. The above comparative analysis showed that the
discrimination of soybean growth periods using the improved AlexNet network has been
improved in terms of recognition time, accuracy, and stability.

Research has been carried out for the identification of crop growth periods using
sensors of different scales. Li [36] acquired winter wheat visible images by a near-earth end
sensor, and used the improved Faster R-CNN to achieve the recognition of three growth
periods with an average accuracy of 96%. Fu et al. [37] used UAV to identify four growth
periods of maize by Swin Transformer model, and the test accuracy was 98.7% with a single
image recognition time of 89.7 ms. Using satellite remote sensing images and based on
the decision tree algorithm, Xu [38] achieved the identification of five growth periods of
winter wheat, with the highest recognition accuracy of 86%. The crop images acquired
by the near-ground end sensor are more accurate, but the coverage is smaller. Satellite
remote sensing has a large coverage, but low accuracy. The advantage of UAV is that
it can not only ensure certain accuracy, but also cover a large range. It has been tested
as a high-throughput crop information detection tool [39]. For soybean growing period
recognition, the test accuracy reached 99.35%, and still achieved good results in the actual
field trial verification, with an accuracy of 91.73%, and it still has room for improvement.



Agronomy 2022, 12, 2991 10 of 12

The identification model proposed in this study can provide decisions for management
measures to be taken during different growth periods of soybean. It plays an important
role in scientific and careful fertilizer application; the rational and timely use of pesticides
to achieve yield preservation; and, to some extent, yield increase.

Based on this model, soybean VE, VC, and V1 periods were identified, and various
control measures are still needed to ensure efficient and high-quality soybean growth in
V2, V3, and subsequent growth periods. With the gradual vigorous growth, the soybean
seedlings will overlap with each other and be sheltered by leaves. In this research, the
early stages of soybean growth were identified, so the model did not consider the above
phenomena, which became the key and difficult problem in the follow-up research. The
model can be further improved and optimized and tried to be studied in combination with
other algorithms.

5. Conclusions

In view of the importance of soybean growth period identification for timely man-
agement and control measures, the soybean seedling growth period identification model
was constructed. By improving the fully connected layer structure of the AlexNet, and
optimizing the selection of learning rate, dropout, and batch size, the identification of VE,
VC, and V1 of soybean seedlings was realized. Through improving and optimizing the
model, the simplified fully connected layer structure of 1024 and 256 was determined. The
optimal combination of hyperparameters with a learning rate of 0.0001, dropout of 0.6, and
batch size of 32 was determined. The average classification accuracy of the model was
99.58%, the average loss was 0.0132, and the running time was 0.41 s/step. Compared with
the model before improvement, the performance of the model was improved by 0.05%,
0.0077, and 0.14 s/step respectively. The model was trained by UAV RGB images and
verified in the field. The classification accuracy was 90.81% in VE, 91.82% in VC, and 92.56%
in V1, with an average classification accuracy of 91.73%. It provides a new idea and method
for the accurate and rapid identification of soybean seedling growth periods in the complex
field environment, and offers a theoretical basis and technical support for agricultural
managers to take timely measures in the corresponding growth periods of soybean.
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