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Abstract: The phototaxis of insects is closely related to light source factors, such as spectrum and
light intensity. The cane grub, Exolontha castanea Chang (Coleoptera: Melolonthidae), is an important
underground pest of sugarcane in Guangxi province of China. To clarify the effect of spectral
sensitivity and light intensity response on the phototactic behavior of E. castanea, the phototactic
behavior responses of male and female adults to 13 monochromatic lights in the wavelength range of
365–630 nm and different light intensities were measured. We found that both male and female adults
had positive phototaxis to 13 monochromatic lights. The phototactic response rate of males and
females at ultraviolet and violet light was the highest in the wavelength range of 365–420 nm. Among
them, the most sensitive spectrum of females and males was at 365 nm and 420 nm, respectively.
From the intensity response of phototactic behavior to different spectrum, the G1 (strong phototaxis)
response rates of females at 365 nm and males at 420 nm were the highest. In addition, the phototactic
response rate of females and males increased with the light intensity, showing a significant positive
correlation. This study showed that the spectrum and light intensity were the key factors affecting
the phototactic behavior of E. castanea. The sensitive spectrum of males and females were different,
with a similar trend in phototaxis.

Keywords: Exolontha castanea; phototactic behavior; sexual difference; spectrum; light intensity

1. Introduction

Sugarcane is the major sugar crop in China, contributing more than 90% of the sugar
produced nationally [1]. Guangxi province is the largest sugarcane production region in
China, which constitutes more than 60% of the total cultivated area of China [2]. The contri-
bution of Guangxi has made China the third biggest sugar producer in the world [1,3]. Sug-
arcane is affected by biotic and abiotic stressors, and under the sugarcane agro-ecosystem,
arthropod pests are among the key constraints that impact sugarcane yield and quality [4–7].
Underground pests are the big group of sugarcane pests in China, such as grubs [8,9],
longhorn beetles [10], and termites [11] with economic damage on both the plant and

Agronomy 2022, 12, 481. https://doi.org/10.3390/agronomy12020481 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12020481
https://doi.org/10.3390/agronomy12020481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-8823-7798
https://orcid.org/0000-0001-9662-1327
https://orcid.org/0000-0002-5438-1078
https://doi.org/10.3390/agronomy12020481
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12020481?type=check_update&version=3


Agronomy 2022, 12, 481 2 of 13

ratoon stages. Under severe pest outbreak, significant economic losses to sugarcane yield
and sugar quality can be observed.

The cane grub, Exolontha castanea Chang (Coleoptera: Melolonthidae), is an important
underground pest of sugarcane that is mainly distributed in Guangxi and Hainan provinces
of China and in northern Vietnam [6,8]. This pest mainly damages sugarcane at the larval
stage (white grub) by feeding voraciously on sugarcane roots and stools in the soil, resulting
in short stunted plants and yellow leaves. In case of severe infestation, sugarcane plants
ultimately dry off and die, resulting in cane lodging and finally crop losses at harvest [12].
Recently, infestation of E. castanea has been increasing, and it has become more serious
in Laibin, Liuzhou, and Chongzuo cities in Guangxi. Especially in 2010, the population
density of E. castanea larvae in the field reached 315,000 individuals/ha in Laibin, causing
serious economic loss [12]. For a long time, chemical pesticides have been the main method
to control cane grubs under sugarcane field conditions in China [13,14]. However, this
strategy is not eco-friendly because of the inappropriate control timing and the mismatch of
combined pesticides. In addition, due to the long-term and often excessive use of chemical
pesticides, negative effects such as insect resistance, adverse side effects on humans, natural
enemies, and pollution of soil and water, the use of environmentally sound tactics has
raised greater attention [15,16].

Light trap is a technology that uses the phototaxis of pests to attract and kill pests [17–19].
It is one of the reliable and important measures of eco-friendly control of pest populations
within the fields especially for adult beetles of the order Coleoptera [20,21]. At present, light
trapping technology has been widely used in the monitoring and control of agricultural
and forestry pests in several parts of the world with positive and promising results [22–24].
Previous studies have shown that most species of scarab beetles on sugarcane have strong
phototaxis to light traps [25,26]. Due to these facts, light trapping has very wide populariza-
tion and application prospects in the control of sugarcane scarab beetles. Our previous light
trapping experiments in the field showed that adults of E. castanea had positive phototaxis,
but the phototaxis of males and females were very different. Females accounted for more
than 95% of the total adults trapped. However, this phenomenon was independent of the
number of male and female individuals in the natural population [27]. At present, the
mechanism of phototaxis difference between males and females of E. castanea is not clear.

There were many previous studies on the sexual differences of insect phototaxis. For
example, the females of Holotrichia oblita Hope, Holotrichia parallela Motschulsky, and Serica
orientalis Motschulsky had stronger phototaxis than the males [28,29]. In contrast, the males
of Ostrinia furnacalis (Guenée) and Spodoptera exigua (Hübner) had stronger phototaxis
than the females [30,31]. Previous studies showed that the phototaxis difference between
males and females was related to compound eye structure, opsin gene, age, mating status,
flight ability, light source etc. [32–34]. Among them, the difference of sensitive spectrum
between male and female adults is the main factor leading to the sexual difference of insect
phototaxis [35–37].

Spectrum and light intensity are classified as important light source factors affecting
the phototaxis of insects [38,39]. Different species of insects have different spectral ranges
and sensitive wavelengths [40,41]. Generally, the phototaxis of insects increases with
the increase in light intensity [18,39], while some insects show the opposite behavioral
response [29,42]. Here, to understand the effects of spectral sensitivity and light intensity
on the phototactic behavior of male and female adults of E. castanea, and whether the
sexual differences of their phototaxis are related to light source factors (spectrum and
light intensity), its response to 13 monochromatic lights and different light intensities were
measured in this study. It is expected to pave the way and develop the research and
development of light trapping and provide a technical solution for effective control of
this pest.
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2. Materials and Methods
2.1. Insects Source

In May 2020, adults of E. castanea were collected by light trap with a 450W self-ballasted
high-pressure mercury vapor lamp (Shanghai Yaming Lighting Co., Ltd., Shanghai, China)
from sugarcane fields (23◦40′20” N, 108◦58′17” E) in Qianjiang Town, Laibin City, Guangxi,
China. The individuals were placed in a plastic box (length 35 cm, width 23 cm, height
11 cm) containing soil with 18% water content to lay eggs. After hatching, larvae were
fed on pieces of sugarcane stalks (Cultivar ROC 22), which were changed every 10 days.
When the larvae were matured, they were reared in transparent glass bottles (diameter
6 cm, height 10 cm), individually. These bottles were observed every day to check pupation
and emergence. Ten to fifteen days after emergence, female and male adults were selected
for our tests.

2.2. Soil Preparation as Feeding Source

Soil samples were taken from the same sugarcane field where E. castanea were collected,
and they were air-dried and sterilized at 120 ◦C (dry heat) in a blast-drying oven (DHG-
9146A, Shanghai Jinghong Experimental Equipment Co., Ltd., Shanghai, China) for 8 h. In
addition, pure water was used to prepare the soil with 18% water content.

2.3. Optical Path System

The optical path system consisted of an analog sunlight xenon lamp source (CEL-S500,
Beijing China Education Au-light Co., Ltd., Beijing, China). The light source was a high-
pressure xenon lamp (HPXL) of 500 W. At the light outlet, UVREF (ultraviolet reflection
filter) or VISREF (visible reflection filter) with monochromatic filters (QD type, Beijing
China Education Au-light Co., Ltd., Beijing, China) of different wavelengths were used
to obtain monochromatic lights of 365 nm, 380 nm, 400 nm, 420 nm, 435 nm, 450 nm,
475 nm, 500 nm, 520 nm, 550 nm, 578 nm, 600 nm, and 630 nm, respectively (Figure 1a). The
light intensity was adjusted by controlling the resistance of the power supply device and
measured with an Illuminometer (GM1030, Shenzhen Jumaoyuan Technology Co., Ltd.,
Shenzhen, Guangdong, China). The light intensity of the experiment was set as 50 lux for
the phototactic reaction experiment of different spectra.

2.4. Phototactic Behavior Reaction Device

The phototactic behavior reaction device of E. castanea adults was made with cardboard.
It had an L-shaped split structure and was divided into three parts, namely, a phototactic
reaction chamber (length 120 cm, width 40 cm, height 40 cm), a photophobic reaction
chamber (length 120 cm, width 40 cm, height 40 cm), and an activity chamber (length 40 cm,
width 40 cm, height 40 cm) (Figure 1b). To better simulate a dark environment, a black
sponge cloth was glued on the inner wall of the device. Movable baffles were arranged at
both ends of the activity chamber. A light hole (diameter 22 cm) was arranged at the top of
the phototactic reaction chamber, and a light source was placed 35 cm away from the light
hole. Then, we covered the light source and the top of the phototactic reaction chamber
with nylon gauze to prevent insects from escaping. In addition, in order to determine the
reaction intensity of phototactic behavior of insects, the phototactic reaction chamber was
divided into three parts (indicating three grades) according to the distance from the light
source, namely:

Grade 1 (G1): strong phototaxis (i.e., the adults fly toward the light source and out of
the device through the light hole).

Grade 2 (G2): medium phototaxis (i.e., the adults fly toward the light source but
stop halfway).

Grade 3 (G3): weak phototaxis (i.e., the adults climb to the light area but do not fly
toward the light source).



Agronomy 2022, 12, 481 4 of 13Agronomy 2022, 12, x FOR PEER REVIEW  4  of  13 
 

 

 

Figure 1. Optical path  system and  response device of phototactic behavior of Exolontha  castanea 

adults. (a) Optical path system; (b) Response device of phototactic behavior. G1 indicates the strong 

phototaxis of adults (i.e., the adults fly toward the light source and out of the device through the 

hole), G2 indicates the medium phototaxis of adults (i.e., the adults fly toward the light source but 

stop halfway), and G3 indicates the weak phototaxis of adults (i.e., the adults climb to the light area 

but do not fly toward the light source). 

2.5. Effect of Spectrum on Phototactic Behavior of Males and Females 

The experiment was carried out in a dark room at a temperature of 28 ± 1 °C and a 

relative humidity of 60 ± 5%. According to the activity habits of adults, this experiment 

was conducted  from 18:30  to 22:30 every day. To make  the status of compound eye of 

insects tested consistent, insects were dark adapted for 2 h before the experiment. There 

were 13 monochromatic light treatments from 365 to 630 nm (Figure 1a). Ten insects (fe‐

males and males tested separately) were used in each group with six replicates. Insects 

once tested were not reused. During the experiment, the insects were placed in the activity 

chamber for 10 min, and then, the movable baffles at both ends were pulled out. The du‐

ration of each illumination lasted 20 min. The number of insects in the phototactic reaction 

chamber, photophobic reaction chamber, and activity chamber were counted, and the re‐

sponse rate of phototactic behavior and photophobic behavior were calculated. To reduce 

the experimental error, only insects of the same sex were tested on the same day, and the 

next day, another sex to the same monochromatic light was tested. To eliminate the influ‐

ence of odor, ethanol was sprayed on the inner wall of the device after experiments every 

day. 

Figure 1. Optical path system and response device of phototactic behavior of Exolontha castanea
adults. (a) Optical path system; (b) Response device of phototactic behavior. G1 indicates the strong
phototaxis of adults (i.e., the adults fly toward the light source and out of the device through the
hole), G2 indicates the medium phototaxis of adults (i.e., the adults fly toward the light source but
stop halfway), and G3 indicates the weak phototaxis of adults (i.e., the adults climb to the light area
but do not fly toward the light source).

2.5. Effect of Spectrum on Phototactic Behavior of Males and Females

The experiment was carried out in a dark room at a temperature of 28 ± 1 ◦C and a
relative humidity of 60 ± 5%. According to the activity habits of adults, this experiment
was conducted from 18:30 to 22:30 every day. To make the status of compound eye of insects
tested consistent, insects were dark adapted for 2 h before the experiment. There were
13 monochromatic light treatments from 365 to 630 nm (Figure 1a). Ten insects (females
and males tested separately) were used in each group with six replicates. Insects once
tested were not reused. During the experiment, the insects were placed in the activity
chamber for 10 min, and then, the movable baffles at both ends were pulled out. The
duration of each illumination lasted 20 min. The number of insects in the phototactic
reaction chamber, photophobic reaction chamber, and activity chamber were counted, and
the response rate of phototactic behavior and photophobic behavior were calculated. To
reduce the experimental error, only insects of the same sex were tested on the same day,
and the next day, another sex to the same monochromatic light was tested. To eliminate the
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influence of odor, ethanol was sprayed on the inner wall of the device after experiments
every day.

2.6. Effect of Light Intensity on Phototactic Behavior of Males and Females

According to the above experimental results in Section 2.5, the sensitive wavelengths
of female and male were 365 nm and 420 nm, respectively. According to the light intensity
range of the two-wavelength monochromatic light (the light intensity range was 8–115 lux
at 365 nm and 17–320 lux at 420 nm), three kinds of light intensity were set, respectively:
(1) light intensity at 365 nm with 10 lux, 50 lux, and 100 lux; and (2) light intensity at 420 nm
was 20 lux, 100 lux, and 300 lux. Ten insects were tested in each group and replicated six
times. The insects tested once were not reused. The method was the same as above.

2.7. Statistical Analyses

All data were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). The data
were checked for normality and homoscedasticity before performing ANOVA. Data were
analyzed by Tukey’s HSD (honestly significant difference) test (one-way ANOVA) when
they met the normal distribution and homogeneity of variance at the 0.05 level, otherwise
by Kruskal–Wallis one-way ANOVA (k samples) (independent samples, nonparametric
tests). Briefly, the phototactic response rates of females and males to different spectra
and light intensities were tested by Tukey’s HSD. The photophobic response rates and
phototactic response intensity (G1, G2, and G3) of females and males to different spectra
were tested by Kruskal–Wallis. The spectral sensitivity of females and males were compared
by t-test (independent samples, when data met the normal distribution) or Mann–Whitney
U test (independent samples, when data did not meet the normal distribution). Correlation
analysis between the light intensity and phototactic response rate of females and males
was performed by Pearson correlation analysis.

3. Results
3.1. Spectral Sensitivity of Females and Males

Females had positive phototaxis to 13 monochromatic light with wavelengths rang-
ing from 365 to 630 nm, and the phototactic response rate decreases gradually with the
increase in wavelength (Figure 2a). The response rate of phototactic behavior showed sig-
nificant difference among different wavelengths, ranging from 30.00% to 88.33% (F = 10.036;
df = 12,65; p < 0.001). It could be seen that females were sensitive to 365–420 nm ultraviolet
and violet light, and in this wavelength range, the phototactic response rates were more
than 70%. Among them, the highest was at 365 nm, up to 88.33%. The response rate for
green, yellow, and red light at 520–630 nm was relatively lower. With the exception of
500 nm, females had a certain negative phototaxis to other spectra, and the response rates
of photophobic behavior were less than 20% (Figure 2c).

Similar to females, males also had significantly different (F = 10.976; df = 12,65;
p < 0.001) phototactic behavior response to 13 monochromatic light, the response rates
ranged from 31.67% to 93.33% (Figure 2b). Males were sensitive to ultraviolet, violet, and
blue light at 365–435 nm, and the phototactic response rate was more than 70%. Different
from females, the phototactic response rate of males first increased and then decreased
gradually with the increase in wavelength, and they were most sensitive to violet light
at 420 nm with the highest response rate reaching 93.33% (compared to 365 nm for fe-
males). In addition, males had negative phototaxis at 365 nm, 380 nm, 475 nm, 500 nm,
520 nm, and 550 nm, and the response rate of photophobic behavior was very low, less than
5%, with no significant difference among all wavelength treatments (χ2 = 18.782; df = 12;
p = 0.094) (Figure 2d).
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Figure 2. Behavioral responses of females and males of Exolontha castanea to different wavelengths.
(a) Phototactic behavior of females; (b) Phototactic behavior of males; (c) Photophobic behavior of
females; (d) Photophobic behavior of males. (a,b) Data are means ± SE, different lowercase letters
indicate significant differences between wavelengths (Tukey’s HSD test, p < 0.05). (c,d) The upper
and lower sides of the box plot are 75% and 25% quantiles, respectively. The line in the middle of
the box represents the median of the data. The square are mean. Different lowercase letters indicate
significant differences between wavelengths (Kruskal–Wallis test, p < 0.05).

3.2. Phototactic Response Intensity of Females and Males

Reaction intensities of females to light of different spectra were different. In the
ultraviolet light and violet light region of 365–420 nm, the G1 (strong phototaxis) response
rates were above 20%, and the response rate at 365 nm was the highest, up to 30.00%, which
were significantly different from those of other treatments (χ2 = 51.365; df = 12; p < 0.001)
(Figure 3a). However, there was no G1 behavior at the green and yellow light region of
520–578 nm. With the exception for 630 nm, the G2 (medium phototaxis) response rates of
other spectral treatments ranged from 10% to 25%, with no significant difference (p > 0.05)
(Figure 3c). Similar to G1, the reaction rate of G3 decreased gradually with the increase
in wavelength and was the highest at 365 nm (χ2 = 24.764; df = 12; p = 0.016) (Figure 3e).
In addition, in the ultraviolet and violet regions of 365–435 nm (except 400 nm), the
reaction rates of G3 were higher than those of G1 and G2, indicating the weak phototaxis of
more insects.
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Figure 3. Phototactic reaction intensity of females and males of Exolontha castanea to different
wavelengths. (a) G1 of females; (b) G1 of males; (c) G2 of females; (d) G2 of males; (e) G3 of females;
(f) G3 of males. The upper and lower sides of the box plot are 75% and 25% quantiles, respectively.
The line in the middle of the box represents the median of the data. The square are mean. Different
lowercase letters indicate significant differences between wavelengths (Kruskal–Wallis test, p < 0.05).

Unlike females, males had G1, G2, and G3 phototactic behavior to all monochromatic
light. The phototactic response rate of G1 first increased and then decreased with the
increase in wavelength, with the highest response rate of 45% at 420 nm (Figure 3b).
This was significantly different from that of monochromatic light at other wavelengths
(χ2 = 30.732; df = 12; p = 0.002). In each spectral treatment, the phototactic response rate
of G2 (except for 600 nm) and G3 ranged from 10% to 35%, and there was no significant
difference between different wavelength treatments (p > 0.05) (Figure 3d,f).
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3.3. Comparison of Spectral Sensitivity between Males and Females at the Same Spectrum

We compared the difference of G1, G2, G3, and total phototactic response rate be-
tween males and females at different spectra (Figure 4). The total phototactic response
rates of both males and females at 365 nm (t = 3.297; p = 0.008) and 450 nm (t = −2.607;
p = 0.026) were significantly different. At 365 nm, the phototactic response rate of females
was higher (88.33%) than that of males (71.67%), but an opposite trend was evident at
450 nm spectra. By comparing the response rate of G1, it can be seen that there were sig-
nificant difference between the phototactic response rates of males and females at 420 nm
(t = −3.081; p = 0.012), 450 nm (Z = −2.091; p = 0.041), and 520 nm (Z = −2.739; p = 0.015);
the phototactic response rate of males was significantly higher than that of females. In
summary, females were more sensitive to ultraviolet light, while males were more sensitive
to violet light.
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Figure 4. Comparative p-value heatmap of phototactic responses of females and males at different
wavelengths. * significant at p < 0.05 level, ** significant at p < 0.01 level by t-test or Mann–Whitney U
test. + The phototactic response rate of females was higher than that of males, − on the contrary.

3.4. Effects of Light Intensity on Phototactic Behavior of Females

Under the light intensity of 10 lux, 50 lux, and 100 lux at 360 nm, the phototactic
response rate of females increased with the light intensity, showing a very significant
positive correlation (r = 0.786; p < 0.001) (Figure 5a). The highest response rate was 93.33%
at 100 lux; the lowest was 63.33% at 10 lux, which was significantly different from that of
the other two light intensity treatments (F = 18.611; df = 2,15; p < 0.001) (Figure 6a).
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Figure 5. Correlation analysis between light intensity and phototactic response rate of adults.
(a) females; (b) males. * significant at p < 0.05 level, ** significant at p < 0.01 level, *** significant at
p < 0.001 level by Pearson correlation analysis.
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Figure 6. Phototactic behavioral responses of females and males to different light intensities. Photo-
tactic rate (a) and phototactic reaction intensity (c) of females to different light intensities at 365 nm;
phototactic rate (b) and phototactic reaction intensity (d) of males to different light intensities at
420 nm. (a,b) Data are means± SE, different lowercase letters indicate significant differences between
light intensity (Tukey’s HSD, p < 0.05); (c,d) data are means ± SE, * significant at p < 0.05 level,
** significant at p < 0.01 level, *** significant at p < 0.001 level, n.s. no significant difference, by Tukey’s
HSD test.

The phototactic response rate of G1 of females increased with light intensity, showing
a very significant positive correlation (r = 0.769; p < 0.001) (Figure 5a). Among them, the
response rate at 100 lux was the highest (33.33%), which was significantly different from
other light intensity treatments (F = 10.882; df = 2,15; p = 0.001) (Figure 6c).

3.5. Effects of Light Intensity on Phototactic Behavior of Males

The light intensity shows a significant positive correlation with the total phototactic
response of males (r = 0.544; p = 0.020) (Figure 5b). The phototactic response rates at 100 lux
and 300 lux were 93.33% and 91.67%, respectively (Figure 6b). The response rate of 20 lux
was the lowest (68.33%), which was significantly different from the other two light intensity
treatments (F = 13.562; df = 2,15; p < 0.001).

Under the three light intensities, the phototactic response rate of G1 of males increased
with light intensity, showing a very significant positive correlation (r = 0.676; p = 0.002)
(Figure 5b). The phototactic response rate at 300 lux was the highest (45%) and at 20 lux was
the lowest (21.67%), which was significantly different from other light intensity treatments
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(F = 13.145; df = 2,15; p = 0.001). There was no significant difference among light intensities
of G3 (p > 0.05) (Figure 6d).

4. Discussion

Light source is an important external factor stimulating insects to phototaxis, and the
sensitivity of insects to light was highly wavelength-dependent [38,43]. The majority of
insects are trichromatic vision, and there are three photoreceptors in their compound eyes,
i.e., ultraviolet light sensitive, green light sensitive, and blue light sensitive, so that it is
more sensitive to the light of these three bands [44,45]. The results of this study showed that
female and male adults of E. castanea had positive phototaxis to 365–630 nm monochromatic
light and were sensitive to ultraviolet and violet light in the range of 365–420 nm, which
was similar to that of other species of scarab beetles [28,46,47].

In this study, we found that females had the highest phototactic response rate at
365 nm, while males had the highest phototactic response rate at 420 nm. Moreover, the
phototaxis of females was stronger than that of males in the ultraviolet region of 365 nm
and 380 nm, while the phototaxis of males was stronger than that of females in the violet
and blue light region of 400–450 nm. By comparison, we found that there were significant
sexual differences in phototaxis between females and males at 365 nm, 420 nm, and 450 nm.
It can also be considered that the difference of sensitive spectra is one of the reasons for their
sexual differences in phototaxis. Whether the difference of phototaxis between male and
female adults of E. castanea is related to compound eye structure, photosensitive mechanism,
and opsin needs to be further studied in the future. On the other hand, we found that the
difference of phototaxis between females and males in this study was not as large as that in
the field [27], which may be related to the development, flight ability, mating status, and
living habits of males and females. It needs to be confirmed by further research.

By observing the trajectory of the phototactic behavior of insects, it is found that moths
fly close to the light source in spiral mode [48], while scarab beetles fly in a straight line
close to the light [49,50]. We also found that adults of E. castanea flew in a straight line
close to the light source during light trapping in the field. However, some adults did not
fly to the lamp, staying on the leaves of the light-irradiated area, which may be related
to the intensity of the individual phototactic behavior response. Therefore, in this study,
the phototactic reaction intensity was analyzed by measuring the displacement distance of
male and female adults in the phototactic reaction chamber, and this method was similar to
Baliota et al. 2021 [51]. The phototactic reaction chamber was divided into three grades in
this study, i.e., G1, G2, and G3. During the experiment, it could be concluded that most
female and male adults crawled from the activity chamber to the G3 reaction chamber and
then remained in a static state with no intention to fly to the lamp. It showed that their
phototaxis was relatively weak. G2 showed that the adults had the intention to fly to the
lamp, but they stopped halfway. More importantly, G1 showed that adults have strong
phototaxis and can fly straight toward the light source. The results of this study showed that
the G1 phototaxis response rate of females and males was high at 365–420 nm, which makes it
more clear that males and females were more sensitive to light in this wavelength range.

Light intensity is also an important factor affecting the phototactic behavior of insects.
Under the same spectrum, insects prefer a light source with strong light intensity [39,52]. In
this study, we also found the same behavior for E. castanea adults. The phototactic response
rate of females and males of E. castanea increased with the increasing light intensity. In
addition, the response rate of G1 of males and females increased with light intensity.

Finally, this study was carried out in the laboratory, and the environmental conditions
and the status of insects tested were undoubtedly different from those in the actual field.
Therefore, there is a need for further experimental verification in the field for the light-
trapping conditions of E. castanea at the sensitive spectrum in the future.
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5. Conclusions

In this study, we tested the phototactic behavior of male and female adults of E.
castanea under 13 monochromatic light at 365–630 nm. It was concluded that the males
and females had a certain positive phototaxis to 13 kinds of monochromatic light, and
the phototactic response was higher in the ultraviolet and violet regions of 365–420 nm.
Moreover, the phototactic response rate of females was the highest at 365 nm, while that of
males was the highest at 420 nm, indicating that their sensitive spectra were different. In
addition, light intensity plays an important role in the phototaxis of adults. Under the same
spectrum, the phototactic response rate of females and males increased with the increase
in light intensity. In conclusion, we believe that spectrum and light intensity are the key
factors affecting the phototactic behavior of adults of E. castanea. From the perspective of
application, light trapping can be used as an important measure for green control of this
pest in the field.
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