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Abstract: Biochar addition has been proposed to influence soil nitrogen (N) cycle and improve
crop productivity. However, a comprehensive understanding of the impact of soil N cycle on
the productivity of different crops under biochar addition remains elusive. Thus, a meta-analysis
of 93 peer-reviewed field experiments was undertaken to investigate these outcomes of biochar
addition. Results show that biochar addition significantly enhances crop productivity by 13.0%. The
productivities of legumes, maize, and wheat were significantly increased by 21.2%, 14.3%, and 8.00%
following biochar addition in the fields, respectively. However, the improvement in rice productivity
is the lowest (3.36%), insignificant following biochar addition. The aggregated boosted tree, and
partial least squares path analyses, indicated that the changes in the soil N pool (i.e., TN, NO3

−-N,
and NH4

+-N) and plant N uptake were the most critical factors in increasing crop productivity under
biochar addition. Although biochar addition had no significant enhancement on rice productivity,
enhancing field rice nitrogen uptake and modest application of nitrogen fertilizers greatly improved
rice productivity. The amount of soil NH4

+-N was vital to improving legume productivity rather
than biological N2 fixation when biochar was applied. Increases in NH4

+-N content and decreasing
NO3

−-N content were favorable to improving maize productivity under biochar addition. In contrast,
biochar additions did not significantly regulate the parameters and processes of soil N cycle to
enhance wheat productivity. Overall, the productivity of different types of crops is greatly influenced
by soil N cycle under biochar addition.

Keywords: biochar addition; crop productivity; soil N cycle; field studies; meta-analysis

1. Introduction

Nitrogen (N) is required by plants in considerable quantities and is the most frequent
limiting factor for crop biomass and yield (productivity) [1]. Crop productivity is un-
doubtedly affected by soil N cycle, including the size and flux of N pool, the processes of
N transmission (i.e., nitrification, denitrification, and N mineralization), N fixation and
loss [2,3]. Notably, improving soil N availability and use-efficiency are directly linked
to enhancing crop growth [4,5]. Low N use efficiency is the primary difficulty with crop
N demand, surplus fertilization, a low capacity for N retention in agricultural soils, and
challenges regarding the time and magnitude of soil N mineralization [6–8]. However,
the addition of biochar during N fertilizer application in agricultural soils has been pro-
posed for improving temporal synchrony between crop N demand and soil N availability
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and reducing N loss (i.e., N leaching, N2O emission, and NH3 volatilization) [9–11]; thus,
enhancing crop productivity [12,13].

Biochar is a carbon-rich material produced by heating biomass such as wood, ma-
nure, or crop residues in an oxygen-limited environment, and is also an important carbon
source [14,15]. Especially, biochar applications significantly impact on soil carbon cycle,
soil microorganism abundance/activity, and plant respiration, and thus affect crop pro-
ductivity [14,16,17]. Several published reports indicated that biochar additions greatly
improve crop productivity [16–20]. For example, Bai et al. (2022) indicated that biochar
combined with inorganic and organic fertilizers significantly increased crop yield by 25.3%
and 179.6%, respectively. In contrast, negative or no effect was reported on grain yield
and biomass under biochar addition without applying N fertilizers [21]. The high carbon
content of biochar may cause immobilization of soil N, which would adversely affect
crop growth and decrease crop productivity [11,22]. A recent study indicated that soil N
cycle might be one of the most relevant outcomes of biochar on crop productivity and
sustainability of agricultural systems [23–26]. Another explanation for these different re-
sults could be attributed to the different responses and utilization forms of different crops
(i.e., rice, maize, wheat, and legumes) to N form in soil under the influence of biochar
addition [18,19,27]. For instance, the low content of NH4

+-N leads to an enhanced increase
in wheat aboveground biomass [28], but a decrease in maize aboveground biomass under
biochar addition [29]. Other studies also found that a high content of NO3

−-N and N
uptake with biochar addition could improve maize yield [30], while reducing the rice
yield [31]. Therefore, it is necessary to systematically evaluate soil N cycle affecting the
productivity of different crops under biochar addition. In particular, the main regulatory
factors mediating soil N cycle parameters’ effect on the productivity of different crops still
need to be understood.

The reliability of meta-analysis is highly dependent on the quantity and quality of the
data analyzed [32,33]. However, previous meta-analyses used data mainly drawn from the
composite data of laboratory and field experiments, of which there are fewer, resulting in
excessive, inconsistent results [18,19]. With the rapid increase in the related field studies of
biochar experiments in the recent [34–36], a meta-analysis using the data collected from
93 peer-reviewed global field experiments should comprehensively analyze soil N cycle
influence on the productivity of various crops under biochar addition. Consequently, the
objectives of this study are (1) to quantify the effects of biochar addition on the productivity
of various crops and (2) to identify the primary control factor in soil N cycle affecting the
productivity of different crops under biochar addition.

2. Methodology
2.1. Data Sources and Compilation

The published articles were searched on the Web of Science and Google Scholar using
the following keywords “biochar OR black carbon AND nitrogen OR N OR nitrate OR
ammonium OR mineral N AND crop yield OR crop productivity AND soil AND field”.
Relevant articles were selected for this meta-analysis if they satisfied the following criteria:
(1) only field experiments were included; (2) biochars were produced by anaerobically
pyrolyzing organic materials; (3) results of N cycle parameters and the biomass and yield
of different crops were concurrently reported in each paper; (4) each treatment included
at least three replicates; (5) the control and biochar treatments were subject to the same
management practices (i.e., tillage, irrigation, fertilization, and residue additions); and
(6) the original data could be extracted from the manuscript, including the mean and
standard deviation (SD) or standard error (SE). For those studies devoid of any information
on the variance (SD or SE), 1/10 of the mean was used as SD in these cases [37]. The
relevant databased information is included in the Supplementary Materials.

This study focuses on evaluating the effects of soil N cycle on the productivity of
different crops under biochar addition. The productivity of different crops is generally
represented by the values of crop total biomass, aboveground biomass, belowground
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biomass, and crop yield [16]. The N cycle includes soil N pool (soil total N (TN), microbial
biomass N (MBN), inorganic N (IN), NH4

+-N, and NO3
−-N), N fixation (biological N2

fixation (BNF)), plant N uptake (PNU), N loss (NH3 volatilization (NH3V), N2O emission
(N2OE), and N leaching (NL)), and N transformation. N transformation was indicated
by the microbial indicators, including soil microbial abundance (SMA), the abundance of
nitrifying (amoA) and denitrifying genes (DENG) (including amoA (archaeal ammonia
(AOA) and bacterial ammonia (AOB) oxidizers), nitrate reductase gene (narG), nitrite
reductase genes (nirK/S), and nitrous oxide reductase gene (nosZ)) [38,39]. Crop type cate-
gories extracted from the papers mainly included rice, maize, wheat (containing wheat and
barley), legumes (i.e., peanut, cowpea, and bean), forage grass, cotton, tuber (e.g., potato,
and onions), vegetables (such as arugula, cabbage, lettuce, canola, broccoli, and coriander
herb)), and sugarcane [19].

2.2. Data Acquisition and Analysis

The raw data were obtained numerically from text and tables or extracted from the
figures in the original papers using the Get-Data Graph Digitizer 2.26. The effects of biochar
on the different sampling times and the uppermost soil layer were chosen [14,38]. SE values
were unified into SD values (SD = SE ×

√
n, where n is the replicate number) [40].

The effects of biochar addition on N cycle parameters and the productivity of different
crops were evaluated using the response ratio (RR) [37]:

RR = ln(
Xt

Xc
) (1)

where Xt and Xc are the results of the biochar treatment and control treatment, respectively.
Moreover, SD and the number of replicates were used as a measure of variance. The
weight for each effect size was considered as its inverse variance. The effect sizes of the
above-categorized groups were calculated using a categorical random-effects model [14,41].

Mean effect sizes of each category and the 95% confidence intervals (CIs) generated by
bootstrapping (999 iterations) were calculated using the “metafor” packages in R software
(version 4.0.5, R, Hongkong). The effect sizes (RR) were converted to percentage change,
following methods outlined in a previous report [41]. Mean effect sizes were considered
significantly different from zero if the 95% confidence intervals (CIs) do not overlap zero
and considered significantly different from each other if their 95% CIs do not overlap [37,38].
The mean of all effect sizes combined was calculated for soil N cycle to the productivity of
various crops under biochar addition in the conditions of global field.

To further evaluate the related data validity and the robustness of this meta-analysis,
the fail-safe number and funnel plot were used to elucidate the publication bias [42,43],
which was compared with 5n + 1 (n is the number of cases). The results of different crop
productivity and N cycle parameters from the datasets were without publication bias
(Tables S1–S3 and Figure S1). The between-group heterogeneities (QB) were calculated
across all datasets for a given response variable (i.e., Figure 1), and the chi-square test was
applied to determine the significant difference between groups at p < 0.05 [38].

The quantification of mainly controlled factors (the percentage of relative influence)
in the different conditions was elucidated using an aggregated boosted tree (ABT) model.
The “gbm” package in R software (version 4.0.5, R, Hongkong) was applied. Model
selection was run with the following predictors: TN, MBN, IN, NH4

+-N, NO3
−-N, BNF,

PNU, NH3V, N2OE, NL, SMA, amoA, and DENG. The partial least squares (PLS) path
analysis (a structural equation model) differed from the conventional covariance-based path
analysis, and did not impose distributional assumptions on the data, which was usually
difficult to meet [44]. Therefore, the criteria used in the covariance-based approaches are
invalid for the PLS path analysis. In the PLS path analysis, the loading of each indicator
variable was the key to estimating latent variable scores and calculated as the correlation
between a latent variable and its indicators. An iterative algorithm was used to estimate
the loadings until convergence was reached to maximize the explained variance of the
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dependent variables (both latent and observed indicator variables). A non-parametric
bootstrapping (200 resamples in this study) was used to estimate the precision of the PLS
parameter estimates. The 95% bootstrap CIs were used to judge whether the estimated path
coefficients were significant. The PLS path analyses were performed using R software’s
(version 4.0.5, R, Hongkong) “plspm” packages.

3. Results
3.1. Soil N Cycle Influences the Productivity of Different Crops under Biochar Addition

Under biochar addition, crop productivity was overall enhanced by 13.0% in the global
field conditions (Figure 1). Tuber productivity greatly increased most by 24.5%, while rice
productivity was the lowest (3.36%) without significant increase under biochar addition
(Figure 1). The productivities of legumes, vegetables, maize, forage grass, and wheat were
significantly increased by 21.2%, 15.8%, 14.3%, 9.55%, and 8.00% under biochar addition
in the field conditions, respectively (Figure 1). Moreover, cotton productivity was also
enhanced by 7.90%, albeit insignificant under biochar addition (Figure 1).

Agronomy 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

(a structural equation model) differed from the conventional covariance-based path anal-
ysis, and did not impose distributional assumptions on the data, which was usually diffi-
cult to meet [44]. Therefore, the criteria used in the covariance-based approaches are in-
valid for the PLS path analysis. In the PLS path analysis, the loading of each indicator 
variable was the key to estimating latent variable scores and calculated as the correlation 
between a latent variable and its indicators. An iterative algorithm was used to estimate 
the loadings until convergence was reached to maximize the explained variance of the 
dependent variables (both latent and observed indicator variables). A non-parametric 
bootstrapping (200 resamples in this study) was used to estimate the precision of the PLS 
parameter estimates. The 95% bootstrap CIs were used to judge whether the estimated 
path coefficients were significant. The PLS path analyses were performed using R soft-
ware’s (version 4.0.5, R, Hongkong) “plspm” packages. 

3. Results 
3.1. Soil N Cycle Influences the Productivity of Different Crops under Biochar Addition  

Under biochar addition, crop productivity was overall enhanced by 13.0% in the 
global field conditions (Figure 1). Tuber productivity greatly increased most by 24.5%, 
while rice productivity was the lowest (3.36%) without significant increase under biochar 
addition (Figure 1). The productivities of legumes, vegetables, maize, forage grass, and 
wheat were significantly increased by 21.2%, 15.8%, 14.3%, 9.55%, and 8.00% under bio-
char addition in the field conditions, respectively (Figure 1). Moreover, cotton productiv-
ity was also enhanced by 7.90%, albeit insignificant under biochar addition (Figure 1). 

 
Figure 1. Effects of biochar addition on the productivity of various crops. Data on the right side of 
each panel represent the number of observations. Bars indicate 95% confidence intervals. 

Figure 1. Effects of biochar addition on the productivity of various crops. Data on the right side of
each panel represent the number of observations. Bars indicate 95% confidence intervals.

The data shows that only the RR of TN was positively correlated with the RR of wheat
productivity (p < 0.01) under biochar addition (Figure 2a and Table 1). The RR of rice
productivity was positively correlated with the RRs of TN (p < 0.05) and PNU (p < 0.001),
and negatively correlated with the RRs of NO3

−-N (p < 0.05), NH4
+-N (p < 0.001), and N2O

emissions under biochar addition (Figure 2b and Table 1). The RR of legume productivity
had a positive correlation with the RR of PNU (p < 0.01; Table 1), but a negative correlation
with the RR of biological N2 fixation by biochar addition (Figure 2d). A positive association
was seen between the RRs of maize productivity and PNU (p < 0.01) under biochar addition
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(Figure 2c). The RR of maize productivity was positively correlated with the RR of NH4
+-N

(p < 0.05) under biochar addition (Table 1). Moreover, biochar addition markedly increased
the N uptake of maize and legumes (Table 2).
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Figure 2. Relationships between the response ratios of wheat, rice, maize, and legume productivity
vs. the response ratios of (a) soil total N, (b) N2O emission, (c) plant N uptake, and (d) biological
N2 fixation.

Table 1. Pearson correlation coefficients (r) between the response ratios (Equation (1)) of different
crops’ productivity and soil nitrogen (N) cycle parameters. Sample size is depicted by n.

Index r p Value n

Rice
TN 0.256 0.047 60

NO3
−-N −0.382 0.018 * 38

NH4
+-N −0.543 0.000 *** 44

PNU 0.745 0.000 *** 29
Maize

TN 0.073 0.566 65
NO3

−-N −0.369 0.005 ** 35
NH4

+-N 0.339 0.046 * 57
N2O emission −0.174 0.200 55

Wheat
NO3

−-N 0.113 0.490 40
NH4

+-N 0.190 0.282 34
N2O emission 0.037 0.838 33

PNU 0.215 0.292 26
Legumes

TN 0.211 0.059 81
NO3

−-N −0.061 0.704 41
NH4

+-N 0.177 0.269 41
N2O emission −0.549 0.065 12

PNU 0.440 0.005 ** 40
Note: *, **, and *** represent the significance levels of p < 0.05, p < 0.01, and p < 0.001, respectively. TN and PNU
represent soil total N and plant N uptake, respectively.
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Table 2. Mean values and 95% confidence interval (CI) of percentage changes (Pc: %) in soil N cycle
parameters under biochar addition in various crops.

Index Effect Size Rice Maize Legumes Wheat

TN
Pc (n) 9.72 (43) 10.42 (50) 12.82 (39) 4.29 (24)

95% CI −0.25~20.7 1.05~20.7 1.99~24.8 −8.45~18.5

NO3
−-N

Pc (n) −4.22 (25) 1.17 (34) 15.12 (19) 2.68 (25)
95% CI −11.1~3.24 −5.03~7.77 6.90~24.0 −4.96~10.9

NH4
+-N

Pc (n) 17.38 (29) 2.81 (21) 18.72 (19) −8.68 (21)
95% CI 10.3~24.9 −3.94~10.0 8.82~29.5 −14.7~−2.23

PNU
Pc (n) 0.37 (23) 27.07 (67) 36.51 (20) 10.84 (15)

95% CI −8.52~10.1 20.3~34.3 22.9~51.6 −1.94~25.3
Note: TN and PNU represent soil total N and plant N uptake, respectively. n is the sample size.

3.2. Major Control Factors in Soil N Cycle Effect on the Productivity of Various Crops

The ABT analysis was carried out to compare the relative importance (major influence
factors) of N cycle parameters with biochar addition on overall crop productivity (Figure 3).
In total, 92.8% of the variances in the crop productivity are explained by the first six factors
of TN, MBN, NH4

+-N, NO3
−-N, BNF, and PNU. Notably, the factors of soil N pool (i.e.,

TN, NH4
+-N, and NO3

−-N) and N fixation (i.e., PNU) were the most influential variables
on crop productivity under biochar addition among the 13 chosen variables (Figure 3).

Agronomy 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 3. The relative influence (%) of the effects of soil N cycle (microbial biomass N: MBN; inor-
ganic N: IN; ammonium N: NH4+-N; nitrate N: NO3−-N; NH3 volatilization: NH3V; N2O emission: 
N2OE; N leaching: NL; biological N2 fixation: BNF; plant N uptake: PNU; soil microbial abundance: 
SMA; archaeal ammonia and bacterial ammonia oxidizers: amoA; denitrification genes: DENG (ni-
trate reductase (narG), nitrite reductase (nirK/S) and nitrous oxide reductase (nosZ) genes)) follow-
ing biochar addition on crop productivity based on aggregated boosted tree (ABT) model analysis. 

Soil N pool and N fixation acted as the primary influence factors in crop productivity 
under biochar addition by the ABT analysis (Figure 3). On this basis, PLS path analysis 
was used to further explore the responses of soil N pool (i.e., TN) and N fixation (i.e., 
PNU) to the productivity of different crops with biochar addition. The results showed that 
the goodness of fit indicating the average prediction of the entire model was 0.27–0.63 for 
the path analysis of different crop productivity (Figure 4). Under biochar addition, rice 
productivity was not significantly associated with soil N pool, but directly and positively 
correlated with PNU (p < 0.05; Figure 4). Soil N pool (i.e., TN, NH4+-N, and NO3−-N) had a 
direct and positive correlation with legume productivity (p < 0.01), but negative associa-
tions with maize productivity (p < 0.05; Figure 4). The PLS path analysis also indicated 
that soil NH4+-N and NO3−-N were the most significant factors influencing legume and 
maize productivity (Figure 4). Moreover, the improvements in TN, NH4+-N, and NO3−-N 
contents greatly enhanced legume productivity (Table 2). 

 

Figure 3. The relative influence (%) of the effects of soil N cycle (microbial biomass N: MBN; inorganic
N: IN; ammonium N: NH4

+-N; nitrate N: NO3
−-N; NH3 volatilization: NH3V; N2O emission: N2OE;

N leaching: NL; biological N2 fixation: BNF; plant N uptake: PNU; soil microbial abundance: SMA;
archaeal ammonia and bacterial ammonia oxidizers: amoA; denitrification genes: DENG (nitrate
reductase (narG), nitrite reductase (nirK/S) and nitrous oxide reductase (nosZ) genes)) following
biochar addition on crop productivity based on aggregated boosted tree (ABT) model analysis.

Soil N pool and N fixation acted as the primary influence factors in crop productivity
under biochar addition by the ABT analysis (Figure 3). On this basis, PLS path analysis
was used to further explore the responses of soil N pool (i.e., TN) and N fixation (i.e., PNU)
to the productivity of different crops with biochar addition. The results showed that the
goodness of fit indicating the average prediction of the entire model was 0.27–0.63 for
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the path analysis of different crop productivity (Figure 4). Under biochar addition, rice
productivity was not significantly associated with soil N pool, but directly and positively
correlated with PNU (p < 0.05; Figure 4). Soil N pool (i.e., TN, NH4

+-N, and NO3
−-N)

had a direct and positive correlation with legume productivity (p < 0.01), but negative
associations with maize productivity (p < 0.05; Figure 4). The PLS path analysis also
indicated that soil NH4

+-N and NO3
−-N were the most significant factors influencing

legume and maize productivity (Figure 4). Moreover, the improvements in TN, NH4
+-N,

and NO3
−-N contents greatly enhanced legume productivity (Table 2).
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4. Discussion
4.1. Effect of Biochar Addition on the Productivity of Different Crops

With biochar addition, tubers show the highest increase by 24.5% in productivity
among the different crops (Figure 1). This could be attributable to the improved soil pH,
water availability, texture, and nutrients by biochar addition, which were more benefi-
cial for aboveground and belowground growth of tuber than other crops (e.g., maize
and wheat) [14,45,46]. On the other hand, biochar addition can reduce soil phytotoxic
compounds and pathogens; thus, increase tuber productivity [47,48]. Similarly, the produc-
tivities of maize, wheat, legumes, forage grass, and vegetables were significantly increased
under biochar additions in the fields (Figure 1). This could also be due to the liming,
structural, and nutrient effects of biochars, improving crop productivity [18,19,49]. Further-
more, biochar addition greatly improved plant N uptake and use efficiency, and reduced
N leaching and greenhouse gas emission, and thus significantly increased crop produc-
tivity [19,38,49]. These results were consistent with previous meta-analysis reports that
biochar addition positively impacted the productivity of different crops in the global field
conditions [18,19].

However, the current data indicated that rice productivity was not significantly en-
hanced by biochar addition in the field conditions (Figure 1). This was consistent with the
findings of Liu et al. (2013, 2019), and Ye et al. (2019), which reported that rice productivity
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was less responsive to biochar than the productivity of dry upland crops. The possible
reason was that the high C/N ratio of biochar addition could influence N utilization or
limit rice rooting and growth; thus, decrease rice productivity [34,50,51]. Alternately, the
rice field with higher soil moisture than in drylands could weaken the liming and structure
effects of biochar; thus, lead to the non-significant improvement in rice productivity with
biochar addition [19,52]. The current study also indicated that rice productivity decreased
with increasing soil NH4

+-N and NO3
−-N contents under biochar addition (Table 1). How-

ever, a previous study found that biochar addition significantly enhanced soil NH4
+-N and

NO3
−-N contents in the field conditions [38]. Therefore, the inference was that the high

levels of applied N fertilizers should be reduced under biochar addition in the paddy soil.

4.2. Soil N Cycle Influences the Productivities of Maize and Legumes with Biochar Addition

Previous meta-analyses generally demonstrated that productivity (yield) of maize
showed an enhanced response to biochar addition with and without fertilizer (the control
treatment is non-fertilized) than those of other major dryland cereals (i.e., wheat, barley,
and oat) [19]. The current study indicated that the enhancement of maize productivity by
biochar addition was positively correlated to higher amounts of soil NH4

+-N content and
plant N uptake, and negatively to soil NO3

−-N content (Figure 2c, Tables 1 and 2). The
PLS path analysis also showed that NO3

−-N content in the soil had the most significant
adverse effect on maize productivity (Figure 4). However, plant N uptake had no significant
impact on maize productivity under biochar addition (Figure 4). These results imply that
NO3

−-N and NH4
+-N in the soil N pools could be the more critical factors for maize

productivity than plant N uptake. Notably, the increased NH4
+-N content and decreased

NO3
−-N content are the most advantageous factors for improving maize productivity

under biochar addition in the global field conditions (Table 1). Moreover, previous studies
found that the application of biochar combined with N fertilizer (i.e., N application rates
of 156–170 kg N ha−1) increasing the stock of NH4

+-N and decreasing NO3
−-N content in

the field soil profile had a positive effect on maize yield [53,54].
Biochar addition increased the productivity of legumes more remarkably than main

cereals (such as maize) in the dryland soil (Figure 1), which was consistent with previous
results [18,19,55]. These studies demonstrated that biochar could specifically enhance
biological N2 fixation in legumes, and then promote legume growth more than other crops
(i.e., maize and wheat) without fixing atmospheric N2 [19,56,57]. Nevertheless, this study
revealed that the improved biological N2 fixation was not beneficial to increasing legume
productivity under biochar addition (Figure 2d). A possible explanation was that the
reduction of soil NH4

+-N and NO3
−-N contents enhanced the percentage of biological

N2 fixation with biochar addition [58]. However, biochar addition significantly increased
soil mineral N in the field conditions [38], which directly supplied nutrients to increase
legume growth, and thus could inhibit the nutrient source of biological N2 fixation. A high
N uptake could decrease the amount of biological N2 fixation by reducing the mycorrhizae
of legumes in the biochar treatment (Tables 1 and 2) [17,59].

On the other hand, plant N uptake exhibited an insignificant correlation with legume
productivity, while soil N pool notably influenced legume productivity under biochar
addition. Especially, NH4

+-N content showed the most positive correlation with legume
productivity (Figures 3 and 4). Meanwhile, biochar addition greatly improved soil NH4

+-N
in legumes (Table 1). Therefore, these results suggested that the amount of soil NH4

+-N
could collectively regulate legume productivity under biochar addition.

4.3. Responses of Wheat and Rice Productivities to Soil N Cycle with Biochar Addition

Only soil TN in the N cycle was positively correlated with wheat productivity
(Figure 2a; Table 1), while soil N pool and N uptake did not significantly affect wheat
productivity under biochar addition in the current study (Figure 4). Meanwhile, biochar
addition did not increase the amount of soil N contents and N uptake in the wheat fields
(Table 2). These results suggested that soil N cycle could not significantly and directly
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influence wheat productivity under biochar addition. A previous study also indicated that
wheat plants only utilized partly mineral N (i.e., NO3

−-N) under biochar addition and thus
could decrease the effect of soil N cycle on wheat productivity [60]. However, the soil N
cycle’s lack of influence on wheat productivity requires further clarification and research.

Although biochar addition had a less significant influence on increasing rice productiv-
ity, enhancing rice N uptake by reasonable biochar management practices and N fertilizer
application could improve the situation [16,61]. The current study elucidated that plant N
uptake in the N fixation was a more vital impact factor on rice productivity than soil N pool
in this study (Figure 4). Previous research reported that the improvement in rice N uptake
could be beneficial to enhancing rice growth and productivity under biochar addition [62].
Moreover, the high amount of NH4

+-N in the soil N pool was detrimental to increasing rice
productivity by biochar addition (Tables 1 and 2). However, Zhang et al. (2020) reported
that rice was a typical species that preferred NH4

+-N rather than NO3
−-N. Such inconsis-

tencies may be related to rice metabolism, the energy utilized for N assimilation inside the
rice, the rhizosphere pH, and the possible solubilization of other minerals in the paddy soil
with biochar addition [50,63]. Nonetheless, the relevant mechanism is not understood and
needs further study.

5. Conclusions

Based on this meta-analysis using the global field studies data, biochar addition greatly
enhanced several crop productivities overall. The changes in N pool (TN and NO3

−-N)
and N fixation (BNF and PNU) in soil N cycle processes were the most critical factors in
enhancing crop productivity under biochar addition. Increasing rice N uptake was the
essential factor for improving rice productivity under biochar addition. The amount of
soil NH4

+-N plays a vital role in improving legume productivity. The controlling soil
NO3

−-N and NH4
+-N contents were important factors for maize productivity. However,

the soil N cycle did not significantly affect wheat productivity when biochar was applied
in the fields. For the practical application/values, our results suggest that (i) increasing the
supply of soil NH4

+-N will be conducive to improving legume productivity under biochar
addition, (ii) improving rice N uptake and use efficiency should be beneficial to increasing
rice productivity by biochar addition, and (iii) the increased soil NH4

+-N application but
decreased NO3

−-N supply greatly enhance maize productivity under biochar addition in
the field conditions. The soil N cycle under biochar addition in field conditions significantly
influences the productivity of different crops.
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abundance of (a) crop productivity, the productivities of (b) rice, (c) maize, (d) wheat, (e) legumes,
(f) tuber, (g) vegetables, (h) forage grass, (i) cotton, and (j) inorganic N (IN) in the investigated
datasets, Table S1: Values of fail-safe number of crop productivity (CP), and the productivities of
rice, maize, wheat, legumes, tuber, vegetables, forage grass, and cotton in the investigated datasets,
Table S2: Fail-safe number values of soil total N (TN), microbial biomass N (MBN), NH4
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