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Abstract: The potential benefits of applying information and communication technology (ICT) in
precision agriculture to enhance sustainable agricultural growth were discussed in this review article.
The current technologies, such as the Internet of Things (IoT) and artificial intelligence (AI), as well
as their applications, must be integrated into the agricultural sector to ensure long-term agricultural
productivity. These technologies have the potential to improve global food security by reducing crop
output gaps, decreasing food waste, and minimizing resource use inefficiencies. The importance of
collecting and analyzing big data from multiple sources, particularly in situ and on-the-go sensors, is
also highlighted as an important component of achieving predictive decision making capabilities
in precision agriculture and forecasting yields using advanced yield prediction models developed
through machine learning. Finally, we cover the replacement of wired-based, complicated systems
in infield monitoring with wireless sensor networks (WSN), particularly in the agricultural sector,
and emphasize the necessity of knowing the radio frequency (RF) contributing aspects that influence
signal intensity, interference, system model, bandwidth, and transmission range when creating a
successful Agricultural Internet of Thing Ag-IoT system. The relevance of communication protocols
and interfaces for presenting agricultural data acquired from sensors in various formats is also
emphasized in the paper, as is the function of 4G, 3G, and 5G technologies in IoT-based smart farming.
Overall, these research sheds light on the significance of wireless sensor networks and big data in the
future of precision crop production

Keywords: precision crop production; ICT; IoT; sensors; big data; AI

1. Introduction

The world population is undergoing continuous growth and is anticipated to reach
10 billion within the next 35 years. It is imperative to make significant advancements in
agricultural production and disaster management to ensure adequate sustenance for the
world’s population [1]. As the quantity of arable land remains static, the quality of the
soil is not improving, and groundwater levels are dropping, there is an urgent need to
responsibly enhance agricultural productivity [2].

Precision agriculture has transformed agricultural practices since its inception in the
1980s by utilizing technologies like remote sensing, the geographic information system
(GIS), and the global positioning system (GPS). This integration has transformed crop
production methods, resulting in a significant shift in agricultural mechanization think-
ing [3]. The combination of Internet of Things (IoT) sensors and artificial intelligence
(AI) enables precision crop production. This cutting-edge technology employs sensors
and artificial intelligence to optimize crop growth and yield, allowing farmers to collect
detailed data about their fields and use it to make informed decisions about irrigation,
fertilization, and pest control. Moreover, the greatest output benefit of precision agriculture
is decreased temporal yield changes, which has increased yield stability and climate change
tolerance [4].
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The agricultural industry faces several significant challenges related to effectively uti-
lizing new technologies, including discovering knowledge and correlations from historical
records, processing large volumes of unstructured data in an appropriate format, managing
extensive amounts of image and video data, monitoring crops using multiple sensors,
and effectively communicating and integrating these data. Additionally, the adoption
and accessibility of emerging technologies can be cost-prohibitive for individual farmers,
while a lack of low-technology expertise requires extra training and better information and
communication technology (ICT) management equipment. Ensuring the security of these
systems is also a critical concern within the agricultural community [5,6].

Precision agriculture has undergone a transformation over the past three decades,
advancing from strategic monitoring using satellite imaging for regional decision making
to tactical monitoring and control allowed by low-altitude remotely sensed data for site-
specific field-scale applications. The incorporation of data science and big data technology
into precision agriculture strategies has led to a rapid analysis of data, facilitating timely
decision making [7,8]. Farming could move to a more effective, productive, and sustainable
paradigm through the integration of technologies such ground IoT sensing and remote
sensing, using both satellite and Unmanned Aerial Vehicles (UAVs), as well as utilizing data
fusion and data analytics [9]. Wireless connection methods, such as Wi-Fi, Bluetooth, and
cellular networks, are utilized to transmit sensor data to a central hub, allowing farmers to
monitor their farms in real time and make informed crop production decisions.

The improvement of agricultural goods and services while reducing investment costs
represents a critical objective for future farming. Big data can effectively support diverse
precision agriculture functions and assist in the extraction of information and insights from
data in order to process important farming decisions and difficulties. In the agricultural sec-
tor, ICT plays an important role in developing breakthrough data creation, transformation,
and management technologies [10].

Site-specific data collection, characterized by the acquisition of comprehensive infor-
mation regarding events occurring during the vegetation period, offers a practical solution
to this issue. This methodology enables the identification of underlying processes and
their causes, leading to precise intervention that reduces adverse environmental effects.
It creates a monitored and controlled environment in both spatial and temporal domains
and sets the stage for a more advanced decision support system than is currently available.
Previous studies have advocated for this approach [11,12].

This review offers an informed summary of the most recent approaches used in
precision agricultural production. It meticulously investigates and highlights the cutting-
edge technology and approaches that are currently transforming the agricultural practice
scene. The study focuses on the application of the Internet of Things (IoT) and big data in
the agricultural industry and research. The review provides light on these technologies’
beneficial effects in enhancing crop yields, resource usage, and overall farm management
by explaining their practical applications. Moreover, it addressed the challenges that come
with integrating IoT and big data in agriculture. It discusses the challenges that have been
encountered, such as data security concerns, technical difficulties, and the necessity for a
strong infrastructure which are among many other limitations faces the integration of IoT
in agricultural practices around the world.

2. Overview of Precision Agriculture Technology
2.1. ICT, IoT, Big Data, Cloud Computing, and Data Fusion

Sustainable agricultural development presents a crucial solution to address rapid pop-
ulation growth, facilitated using ICT in precision agriculture. This approach has yielded
innovative techniques that enhance agricultural productivity, efficiency, and regulation
while concurrently preserving the environment [2]. To ensure long-term agricultural pro-
duction, modern technologies must be used in the agricultural field, like blockchain [13,14],
the IoT [15], and (AI) [16]. The most promising strategy for solving these problems is
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data-driven agriculture using these technologies. (IoT) assists in data collection at all stages
of agricultural production and supply chain management [17].

The internet now plays a crucial role across many industries. Within the agricultural
domain, a suggested approach that involves monitoring agricultural fields utilizing the
IoT is utilized. This approach employs sensors that analyze diverse parameters within
the agricultural domain, leveraging wireless sensor network technology [18]. “IoT” refers
to the connection of devices and tools, such as sensors, to the internet, allowing them to
transfer data. The IoT is a huge network with an enormous number of objects connected
to a global information infrastructure. The number of connected devices has increased
many folds, giving rise to the scalability issue in the IoT. For proper communication to take
place, a unique sender and receiver must be recognized, along with the identification of an
appropriate path or channel [19]. In agriculture, the use of IoT technology has the potential
to revolutionize the way farms operate and increase the efficiency and productivity of
the industry. Another application of IoT in agriculture is the use of precision farming
techniques, which involve using sensors and other technologies to gather data and make
precise and timely adjustments to various aspects of farming operations. For example,
GPS-guided machinery can be used to precisely apply fertilizers and pesticides, reducing
the number of resources used and minimizing waste. Even though, due to the necessity
for skills in interacting with sensors, the internet cloud, and end-user apps, farmers face
difficulties adopting smart farming and IoT technology [20].

The Internet of Things has numerous applications in the Digital Agriculture field,
including detection of plant physiological status, nutrient replenishment recommendations,
water requirements, and so on [18,21]. The (IoT) offers significant benefits for agricul-
ture and sustainable crop production, including the ability to anticipate and prepare for
potential disturbances that may originate from remote locations, such as insect pest inva-
sions and monitoring soil nutrients, water dynamics, and pest management. The other
advantages of using IoT technology in farming systems are that the ability of using in
yield prediction, energy and cost savings, and the establishment of indoor vertical farming
systems by utilizing the information from the established IoT station there [20]. Regarding
ecological aspirations, the Internet of Everything (IoE) is receiving an increasing amount of
attention [22]. This increases the effectiveness of protection and hence lowers costs. Big
data can be utilized for different spatiotemporal applications, such as connecting remote
IoT equipment to cloud-based computing capabilities [23,24]. The use of IoT with big data
analysis techniques is the basis for new decision making tools.

In agriculture, “big data” refers to the massive amount of data generated by agri-
cultural activity and measurement. Processing and managing large amounts of data is a
difficult undertaking when using standard approaches and systems [7]. Big data have a big
chance in agriculture for solving various farming difficulties and, as a result, increasing
agricultural production quality and quantity. Big data analytics can be used to anticipate
agricultural harvesting time, soil quality, crop protection, and irrigation requirements.
Furthermore, big data empowers agricultural practitioners and related industries to gain
information about different factors that impede agricultural production and make efficient
decisions in daily farming [2]. While it is unclear whether agriculture practitioners’ infor-
mation will be replaced by algorithms, big data applications are likely to revolutionize how
agriculture farms are managed and operated [25,26].

The collection of data from multiple sources is a critical component of achieving
predictive decision making capabilities in precision agriculture. Weather conditions play
a pivotal role in determining the productivity and management of agricultural systems,
emphasizing the importance of accurate area-based weather forecasting for the future of
precision crop production and with further data collection from various sources would
allow to monitor and optimize crop growth conditions [27]. Precision agriculture datasets
typically comprise a diverse range of data related to crops, soil, and nutrients, atmospheric
data, technological data such as GIS data, GPS data, and data from trucks and the Variable
Rate Fertilizer (VRT) system [7,28–30].
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Big data analysis is a methodical strategy that applies cutting-edge analytic tools to big
data sets. This entails the integration of two technical components, namely extensive data
sets and an array of analytics tool categories such as data mining, statistics, AI, predictive
analytics, and natural language processing (NLP), among others. The analysis of such data
is accomplished through the utilization of big data mining techniques. In the realm of
smart agriculture, the feasibility study is significantly improved by the application of IoT
and big data analytics in the cloud [2,18]. In Figure 1, we can see the relationship between
IoT and data analytics. Because of the volume, velocity, and variety of data generated by
IoTs, they are classified as “big data systems”. These data are mined and processed in order
to show the relationships between inputs and outputs [31].
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Cloud computing is a method that allows for the sharing of resources at a low cost.
Cloud computing service providers make these services available at an economical cost.
The storage of agricultural data has been facilitated through the utilization of cloud com-
puting. In the agriculture sector, cloud computing is employed in conjunction with IoT
technology [33]. According to Neményi et al., 2022 [34], the combination of artificial intel-
ligence and cloud computing constitutes a comprehensive support system for the IoT. It
requires combining data from intelligent wireless sensors, such as unmanned aerial vehicles
(UAVs) [35] and satellites, data acquisition systems on agricultural machinery and crop
production equipment, and robots such as unmanned ground vehicles (UGVs), with precise
positioning systems (such as navigation systems, real-time kinematics (RTK), and Lidar).
The Wireless Sensor Network (WSN) is a wireless network made up of geographically
distributed sensor stations.

Sensors → MCU → Nodes → Gateways → Clouds (server) [34].
Multisensor data fusion is a technology that facilitates the integration of data from

multiple sources to create a comprehensive representation. Data fusion systems have
found broad use in many different domains, including but not limited to sensor networks,
robotics, video and image processing, and intelligent system design. The process of
data fusion is described as a complex, multifaceted operation that involves automated
detection, association, correlation, estimation, and gathering of data from multiple sources
at various levels [36,37]. The practice of data fusion offers numerous benefits, primarily
through improving the authenticity and availability of data. The utilization of data fusion
strategies has been extensively applied in various sectors, including the food and chemical
industries, with the aim of augmenting the analytical platforms’ overall performance and
robustness [38–40].

Munnaf et al., 2021 [41] recommend employing Site-Specific Seeding (SSS) for potato
production using the proposed multi-sensor data-fusion technique to manage in-field soil
and crop variabilities and improve productivity and profitability in their study. (SSS) was
examined for potato production utilizing Management Zone (MZ) maps based on several
soil and crop variables. Despite using more seeds, SSS increased tuber yields, and gross
margins compared to Uniform Rate Seeding (URS). SSS profitability ranged from 2.34% to
27.21%, with the highest profitability in low-productivity fields. The study suggests using
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SSS for potato production, along with the proposed multi-sensor data-fusion approach,
to manage in-field soil and crop variabilities and improve productivity and profitability.
These studies have concentrated on how cloud computing, IoT, and multisensor data fusion
are integrated in precision agriculture, while Neményi et al. (2022) [34] highlighted the
complementary advantages of AI, cloud computing, and IoT for comprehensive data use,
cloud computing offers cost-effective data storage. Fusion of data from multiple sensors
is essential to enhance data availability and validity across sectors. Munnaf et al. [41]
recommends Site-Specific Seeding (SSS) with multisensor data fusion in potato production
because it outperforms Uniform Rate Seeding (URS) in terms of tuber yields and profitabil-
ity, especially in low-productivity fields. These results highlight the need for data-driven
approaches for enhanced crop productivity and optimized resource management.

2.2. AI, Real-Time Monitoring, and Big Data (Mining and Analyzing)

In contemporary times, traditional yield modeling aimed at meeting the demands of
sustainability and identifying yield drivers and factors restricting yield is increasingly being
executed using AI. An expanding number of researchers are employing AI to model an
extensive array of agricultural tasks. The technical literature sources reveal the application
of diverse techniques for supporting precision agriculture decision making. AI presents a
promising prospect for improving the world’s food security, including closing crop yield
gaps, minimizing food waste, and mitigating resource utilization inefficiencies [42,43].

Counter propagation artificial neural network (CP-ANN), SKN, and XY-F models
were used along with high-resolution soil and crop data such as spatial-temporal soil types
and crop production effectiveness to predict classes of wheat yield productivity. The SKN
network predicts the low category of yield output the best, with a proper classification
percentage of 91.3% for both cross- and independent validation. Temperature and other
climate effects have also been analyzed by AI [44–46]. These researches emphasize the
importance of conventional yield modeling to be integrated with AI-driven methods in
precision agriculture. Applications for (AI) like CP-ANN, SKN, and XY-F models show
highly promising results, especially SKN with a 91.3% classification accuracy for low yield.

Precision agriculture involves the collection of real-time and historically generated
data, which is structured or unstructured in nature. With the increasing adoption of
precision agriculture practices, the amount of unstructured data generated has grown
significantly. Consequently, current research efforts have focused on extracting meaningful
insights and knowledge from these unstructured datasets [30]. High-spatiotemporal-
resolution automated monitoring of the soil, plants, and atmosphere is an important factor
in converting labor-intensive, experience-based decision making in agricultural production
to an autonomous, data-driven way. Real-time field data might help growers make better
management decisions, and researchers could use this information to find answers to
important scientific problems [47].

The implementation of fully automated decision making systems (ADMS) is essential
in precision agriculture. These systems are designed to monitor multiple chemical or physi-
cal parameters of soil and plants while simultaneously regulating them to maintain optimal
conditions for each specific plant or soil type. Despite the feasibility of developing such
systems using existing technologies, the implementation of ADMS encounters significant
challenges. ADMS generally consists of four main sections: the sensing technique, sensor
interfaces, the information transmission platform, and the data processing and control
unit; the crucial role of precision agriculture in utilizing both historical and real-time data
for well-informed decision making is highlighted by both studies. Despite its feasibility,
both studies agree that deploying ADMS is challenging. They develop a comprehensive
view of the changing precision agricultural scene, combining data-driven insights with the
complexities of implementing automated systems technologies. Figure 2 shows the general
structure of automated decision-making systems [48].
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There are now three fundamental approaches accessible for soil and plant sensing
systems: satellite imaging, on-the-go sensors, and in situ soil and plant sensors. Satellite
imaging is a way of monitoring soil and plant quality and fertility by acquiring and
analyzing multi-spectral satellite images of the field of interest [49]. This technology is very
costly and limited to particular countries.

The second, more financially practical way is to attach sensors to agricultural machin-
ery, other agricultural equipment, or even drones, known as on-the-go sensors. The last
approach entails the placement of soil and plant sensors across the area, which can share
data in real time [50,51]. This is the only approach capable of providing continuous, real-
time data without the need for human intervention. These sensors do, however, have some
drawbacks, such as the need for protection from wild animals and the need to occasionally
remove them from the field during crop cultivation and harvest to prevent damage from
agricultural machinery. Depending on the period of removal, this may result in gaps and
data loss for several hours or days.

Real-time soil nutrient sensing has a lot of potential for the future of agriculture because
nitrogen leakage and groundwater pollution have developed into significant problems for
society. Nitrate sensors can be used for a variety of purposes, such as monitoring nitrate
concentrations in groundwater by mounting them to groundwater pumps or estimating
nitrate leaching more precisely by installing them in leaching water collectors in fields [52].
The real-time measurement of soil nutrient content, particularly nitrogen, phosphorus, and
potassium, is critical for fertilization. These detectors are still in the experimental stage [53].

Utilizing in situ and on-the-go sensing systems that could record significant data and
soil parameters in a short period of time is one of the needs of precision farming and crop
production. This representative data collection results in average cost-effectiveness, but by
analyzing the data and taking additional measurements, it could also improve our current
knowledge. Vis-NIR spectroscopy can be used to measure the soil’s pH, organic matter
concentration, and moisture content [54]. In general, the more complicated the problem
to be solved, the more data are required [55]. The analysis of big data sets is a way to
identify relationships, patterns, and trends in the data [7]. Incorporating observations
from farms and in situ sensing systems with current databases presents an opportunity
not only to predict yields using traditional statistical techniques or DSS Decision Support
Systems but also to explore the potential of machine learning (ML). This provides an
avenue for more advanced and sophisticated yield prediction models to be developed [43].
For both in situ and on-the-go sensing systems the diverse and unstructured nature of
the data produced by these sensors presents a significant challenge and requires the use
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of advanced tools for analysis, and because of the enormous volume of data, traditional
storage and processing systems must be scalable. When dealing with data from different
sensor types and manufacturers, interoperability concerns may occur, making integration
more difficult. Furthermore, protecting data privacy and security is essential considering
the sensitivity of agricultural information. To enable efficient and secure big data use in
precision agriculture, it is necessary to create strong data management strategies, implement
standardized protocols, and give security measures top priority.

The integration of microchips and broadband networks with farm equipment, crops,
animals, machines, and products through an IoT platform is a technological advancement
that offers real-time connectivity between devices [56]. The application of IoT is particularly
relevant in sustainable agriculture, given the diversity of factors involved in the agricultural
ecosystem, including biodiversity, stochastic weather patterns, and the interdependence
of living and non-living systems. As a result, a comprehensive approach is necessary
to address these complexities. In addition, IoT and AI can help reduce the effects of
climate change and greenhouse gas emissions, further emphasizing the significance of these
technologies in modern agriculture [57–60]. The research studies’ comparisons illustrate
multiple approaches for soil and plant sensing systems in precision agriculture, each with
unique benefits and limitations. Using multi-spectral images from satellite imaging to
monitor soil and plant quality is highly expensive and limited to certain countries. Real-
time data can be obtained through on-the-go sensors that are installed on machinery or
drones, but these sensors must be protected from wildlife and occasionally removed during
cultivation. Real-time soil nutrient sensing is currently in the experimental stage but is
crucial for solving environmental challenges. With their diverse and unstructured data,
in situ and on-the-go sensing systems provide a challenge that requires scalable storage
and advanced analytical tools. For effective big data use in precision agriculture, both
studies emphasize the value of robust data management, standardized protocols, and
security measures.

2.3. Sensor Development and Sensor Platforms

Sensors are utilized at various stages of the farming process, from planting through
the packaging of the final product. The farming process can be broadly classified into
distinct categories, including planting, soil management, nutrient and water management,
pest and disease management, yield harvesting, and post-harvest processing, all of which
can benefit from the integration of advanced sensing technologies. Figure 3 shows sensing
technologies and their applications in agriculture [61,62].
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Sensors serve a vital function in enabling the conversion of real-world signals into
their digital representations within Ag-IoT systems. The integration of sensors in machine
components has become increasingly prevalent, providing producers with insights into
the systems’ dynamic loading and repetitive biotic and abiotic stresses. By collecting
and comparing data from sensors positioned in the soil, crops, and animals, it is possible
to identify technical improvements that prioritize criteria of ecological and economic
sustainability, ultimately enhancing the soil-, plant-, and animal-friendly nature of precision
agriculture [63].

The appropriate choice of sensors for an application is crucial for both inventors and
users of IoT systems to ensure optimal sensor utilization. Technological advancements in
sensors have significantly influenced the proliferation of the IoT. Key factors that must
be considered when selecting sensors for IoT system development include low power
consumption, information transfer compatibility between the computers and the sensor,
precision, sensibility, repeatability, and durability [47]. Table 1 gives sensor categories and
sensor measurements, and examples from the literature are provided.

Table 1. Sensor categories and measurements [47].

Category of
Physical Parameters Measurement via Sensor Sensors for Measuring

the Measurand

Applications for Soil, Crop, and
Microclimate Monitoring Are Found in

the Literature

Sonic Wave capacity, stage, polarization,
spectrum, and wave velocity

Microphone, ultrasound
distance sensor

Hardwood borer identification [64], estimation
of crop canopy height [65,66] and wind

velocity [67].

Biological Biomass, species kind, number,
density, and level of chlorophyll

RGB camera, multispectral
sensors, and load cell

The wet weight of the plant and estimated
above-ground biomass [68]. Plant weight is

measured continuously [69]

Chemical Air quality, gas type, electrical
conductivity, pH Volatile organic compounds

Air quality [70], soil pH [71], pH of water (for
irrigation), soil conductivity, irrigation water
conductivity, soil gas flux, plant house CO2,

O2 concentration [71].

Electric

Charge, current, potential
difference, electric field, resistance,

conductivity, permittivity,
(amplitude, phase, polarization,

spectrum), and electric field

soil moisture sensor, humidity
sensor (of the capacitive or

resistive variety)

Moisture in the soil [47], air humidity [70],
estimating soil nutrients, measuring stomata
conductance, measuring sap flow, estimating

evapotranspiration, and measuring soil
electrical conductivity [71]

Magnetic

Magnetic field, magnetic flux, and
permeability, as well as

(amplitude, phase, polarization,
and spectrum).

Wind speed parameter Measurement of wind direction and speed
(indirect) [71]

Mechanical

Position, acceleration, force, stress,
strain, density, momentum, rate of

mass transfer, speed of flow,
shape, roughness, orientation,
stiffness, compliance, viscosity,

crystallinity, and
structural integrity

Pressure sensors, pressure gauges,
and load cells

Measurement of air pressure [70],
measurement of fruit growth, wind speed,
stem growth, and continuous plant weight

measurement [69]

Optical
Wave velocity, intensity, energy,

wave amplitude, phase,
and polarization

Sensors for imaging, a thermal
imaging camera, and an

illumination sensor.

Changing light levels over the crop
canopy [72], object detection (e.g., leaves, fruit,
flowers) [68], extraction of plant dimensions,

estimation of chlorophyll type and
concentration, estimation of plant water stress,

detection of leaf disease [73], canopy
temperature [70]

Radiation Type, intensity, and power Neutron probe Estimation of soil water content [74]

Thermal Flux, specific heat, temperature,
and thermal conductivity Temperature sensor

Forecasting production based on leaf
temperature, evapotranspiration, irrigation,

and variety breeding [75]; sap flow rate
estimation [76]
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When deployed on UAVs (drones, airplanes), UGVs (tiny, intelligent robots), and
satellites, cameras with the Normalized Difference Vegetation Index (NDVI) can be utilized
to estimate yield and using hyperspectral cameras and NDRE (normalized difference red
edge) cameras can improve the estimates’ accuracy. Principal Component Analysis (PCA)
and an Artificial Neural Network (ANN) can be used to perform color-based crop (fruit)
maturity checks. Gloves with various sensors integrated, including touch pressure sensors,
imaging, inertia measurement, location, and RFID (Radio Frequency Identification), are
used to classify fruits and have been applied in fungal disease classification [77–82]. Sensors
that move both vertically and horizontally within the soil or remain stationary in the ground
have the potential to collect critical data. With the emergence of nanotechnology, the use of
increasingly smaller sensors is becoming commonplace [83]. The implementation of such
sensors, coupled with the resulting data collection, can significantly reduce losses during
agricultural operations and increase their effectiveness. Furthermore, the data collected
facilitates the establishment of clear classification conditions based on the inherent quality
of the crop, thereby mitigating the risk of incorrect classification and associated losses [34].

The authors of [84] have provided comprehensive information on techniques for
disease identification in plants, emphasizing the significance of remote sensing methods. In
a similar vein, ref. [85] have described an automated system for detecting facial expressions
of pain in sheep with the aim of identifying diseases. Many different parameters can be
measured with chemical sensors, including soil pH, soil salinity, soil nutrients, oxygen (O2),
carbon dioxide (CO2), methane (CH4), the pH and conductivity of irrigation water, and
photosynthesis. The pH of soil and water is a critical parameter to determine, as it affects the
solubility of nutrients, which in turn has a significant impact on plant growth and nutrient
uptake. The two main categories of chemical sensors are photochemical and electrochemical.
Electrochemical sensors evaluate the electrical properties of chemical reactions or the
presence of substances, whereas photochemical sensors monitor the spectral signature of
chemicals or chemical [86]. Some researchers attempt to continuously determine grain
quality characteristics (protein content, mass density, and moisture content) because these
affect the market value of the harvested crop. Grain quality factors can additionally assist
in clarifying grain yield variation [87].

Another type of sensors recently under study are soil-degradable sensors that have
emerged as a specialized sensing technology designed for monitoring soil parameters,
including moisture content, temperature, pH levels, and nutrient concentrations. These
sensors possess the unique ability to naturally degrade over time within the soil envi-
ronment. Soil-degradable sensors offer several potential advantages, such as eliminating
the need for sensor retrieval, minimizing soil pollution risks, and providing insights into
soil dynamics without disrupting the ecosystem [88]. Inexpensive and low-maintenance
biodegradable soil moisture sensors could improve existing knowledge on the spatial and
temporal variability of available soil water at the field scale [89].

In their study, Sui et al., 2021 [88] developed and evaluated a biodegradable soil
moisture sensor using stencil-printing. The sensor was made of environmentally friendly
materials and consisted of slowly degrading encapsulants and rapidly degrading electrodes
and substrates. The chosen materials allowed the sensor to function reliably in the presence
of soil microbes and then quickly failed after the encapsulant degraded. The sensor
eventually decomposed completely, eliminating the need for retrieval. The sensor’s material
selection did not hinder crop growth, as confirmed via ecotoxicity testing. Different
thicknesses of encapsulants were used, and the sensor’s sensitivity to volumetric water
content (VWC) was measured. Accelerated degradation tests under elevated temperature
conditions assessed the sensor’s long-term stability. The breakdown of the sensor was
characterized by showing stable performance during its functional lifetime and rapid
degradation afterward. The encapsulation with a slowly degrading wax blend provided
protection, reduced drift, and controlled degradation time. A linear capacitance response
was observed for VWC, ranging from 0 to 72% in soil samples. Overall, these biodegradable
sensors have the potential to enable maintenance-free, cost-effective, and real-time soil
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moisture measurement at high spatial density for precision irrigation control in agriculture.
Figure 4 presents an illustration of the mechanism for moisture sensor degradation. Wax
covers the sensor while it is functional, but after the encapsulation fails, it quickly degrades.
The sensor’s encapsulant and other functional parts degrade in the soil.
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These printed sensors have shown reliable performance in laboratory settings, but
they still have some drawbacks, such as (1) the potential for fouling in soil over time,
which could affect performance and signal drift; (2) the need for maintenance or the
eventual removal of the sensors to prevent accumulation in the field; and (3) the potential
toxicity of the conductive components to soil microbes and crops [90,91]. Previous papers
have highlighted the changing landscape of sensor applications in precision agriculture,
including yield estimation, disease diagnosis, animal health monitoring, and innovative
soil parameter monitoring using biodegradable sensors. The incorporation of advanced
technologies has the potential to revolutionize the collection of data in order to improve
agricultural practices, which will enhance crop productivity. It has also identified challenges
such as successfully integrating diverse technologies, processing huge amounts of data,
ensuring standardization for connectivity, addressing high implementation costs, securing
data privacy, evaluating environmental impacts, educating farmers for technology adoption,
navigating regulatory constraints, ensuring sensor reliability in harsh conditions, and
scaling solutions for widespread agricultural application.

2.4. Data Transmission Technologies

One of the most significant advancements in infield monitoring over the past 10 years
has been the replacement of wired-based complex systems with wireless sensor networks
(WSN), complemented by effective power management techniques [92]. Sensor networks
are used in precision agriculture to monitor field environmental conditions and other
parameters. These sensors connect with one another, producing a network that collects
environmental data collaboratively. WSNs are naturally specialized and have a simpler
infrastructure, allowing them to transfer data easily and efficiently from the field to a
remote user [93]. For the real-time monitoring of critical parameters like soil moisture and
crop health, wireless sensor networks (WSN) have become essential in agriculture. They
enable the effective use of water, fertilizer, and pesticides through optimizing resource
management. WSNs improve data accuracy by efficiently distributing frequencies to reduce
interference. Precise monitoring over large agricultural landscapes is made possible by
considering signal intensity, bandwidth usage, and adaptation to changing transmission
ranges. Energy efficiency is a top priority for WSNs for long-term deployment. They
are essential for implementing precision agriculture and promoting sustainable farming
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practices due to their scalability and strong system models that adapt to various farm sizes
and changing conditions.

Data transmission via wireless constitutes a crucial component of an IoT system,
particularly in the agricultural domain. Designing an effective Ag-IoT system requires
comprehending the contributing elements pertaining to radio frequency (RF) that impact
signal strength, interference, system model, bandwidth, and transmission range. Moreover,
a thorough understanding of the advantages and disadvantages of different wireless com-
munication technologies is important for optimal device selection. Wireless IoT sensors can
track environmental factors such as humidity, temperature, luminosity, and soil moisture
in real time [94–99]. Agricultural data collected with sensors will be delivered in a variety
of forms based on the required level of precision and resolution, necessitating the use of
appropriate interfaces to ensure compatibility. In the realm of IoT-based intelligent farm-
ing, communication protocols are essential for covering both short-range and long-range
distances on the land [100].

ZigBee, Bluetooth, NB-IoT (Narrowband LPWAN technology which can coexist in
LTE or GSM under licensed frequency bands) [101], and Wi-Fi are used for short ranges,
while LoRaWAN, Sigfox, LTE m (Long-Term Evolution for Machines) [102] and LPWAN
protocols in mobile communication networks are utilized for long ranges. The LoRaWAN
(Long Range Wide Area Network) is designed to function with low power consumption
and is capable of transmitting sensor signals to a central server from up to 30–40 km away
on level terrain [103]. In terms of communication technologies employed for node and
gateway/base station interactions, half of the reviewed literature utilized LoRa/LoRaWAN.
The selection of an appropriate communication technology depends on the unique char-
acteristics of the project, such as the required range and data rate, and thus a variety of
options are available for consideration [104]. A WSN-based application was presented
by [105,106], who discussed some of the scheme’s advantages, Fuzzy-based Clustering
Scheme, for example, attempts to reduce the deployment cost, propagation delay, and
energy consumption while enhancing the reliability of the network. It is particularly well
suited for large-scale monitoring applications of WSNs with higher node density. Will,
real-world performance evaluation, addressing hardware and software requirements, com-
paring comparison with existing schemes, responding to network dynamics, and ensuring
scalability in large-scale WSNs are all potential challenges should be discussed. Wi-Fi,
Bluetooth, GPRS/3G/4G, ZigBee, LoRa, and SigFox were among the wireless technologies
and protocol suites compared by the authors. Because of their suitable communication
range and low power consumption, they demonstrated that LoRa and ZigBee wireless
technologies are highly efficient for precision agriculture. It is mentioned that numerous
strategies and algorithms linked to the energy efficiency of wireless sensor networks are
classified. They also discussed the approaches that can be applied in PA. In the agricultural
industry, 4G/3G wireless network technology is used to connect IoT-based smart devices
for data sharing, precise assessment, accurate calculation, and so on. While the 3G/4G
connectivity paradigm has shown great promise, there are some limitations that prevent
the technology from reaching its full potential in the agricultural sector. One of the most
significant limits is the operational area [107–110]. The comparison of various protocols is
shown in Table 2.
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Table 2. Communication technologies and their advantages [111].

Frequency Data Rate Range Advantages Reference

Bluetooth 2.4 GHz

Bluetooth 4.0+ (25 Mbps)
Bluetooth 5 (50 Mbps)
Bluetooth Low Energy

(BLE) (10 kbps)

Bluetooth 4.0+
(50 m) Bluetooth 5
(250 m) Bluetooth
Low Energy (BLE)

(50 m)

Low latency, improved
responsiveness, scalability,
reliability, and robustness

[111]

ZigBee
Global 2.4 GHz US

915 MHz EU
868 MHz

2.4 GHz (250 kbps)
915 MHz (40 kbps)
868 MHz (20 kbps)

10–100 m
Better scalability,

randomization, and long
battery life

[104]

LoRa
150 MHz–GHz
Depending on

the country
0.3–50 kbps

Urban area
(2–5 km) Suburban

area (15 km)

Long range, bidirectional,
high-security, and

seamless go-to-market
communication

[104]

2G–3G–4G

900 MHz
1800 MHz
1900 MHz
2100 MHz

GPRS (35–170 kbps)
EDGE (120–384 kbps)

UMTS (384 kbps–2 Mbps)
HSPA (600 kbps–10 Mbps)

LTE (3–10 Mbps)

GSM (35 km)
HSPA (200 km)

Superior battery life,
wider deployment,
and dependability

[107,110]

LTE-M 100 bps–1 Mbps 10 k

Supports machine-type
communications (mMTC)
for the Internet of Things,
supports a large number

of devices

[102]

Wi-Fi 2.4 GHz or 5 GHz 1 Mbps–2.4 Gbps 100 m

Faster data transfers,
simple installation and

connection, data security
and privacy protection

[111]

Sigfox
868 MHz
915 MHz
433 MHz

100 bps 10 km urban
40 km rural

Good battery life,
long-range [101]

NB-IoT Licensed LTE
frequency band 200 kbps 1 km urban

10 km rural

High scalability, allows
connectivity of more than

100 K devices per base
station, maximum

payload length,
guaranteed quality

of service

[101]

Despite the high speed and good connectivity provided by the 4G network, it is not
feasible to interconnect all the smart farming devices in remote locations at a low installation
and maintenance cost. To conduct demanding computational operations and run loaded
services, a growing number of devices and a vast amount of research on IoT devices
for smart farming are required. These devices also require increased intelligence, speed,
scalability, secure communication capabilities, and processing power. Ultra-low latency and
high connectivity are required for IoT devices to achieve quick performance and low costs.
The utilization of 4G and 3G communication technologies has proven inadequate for real-
time precision practices, primarily due to issues such as bandwidth limitations, connectivity
issues, and slow data transfer speeds. In contrast, the integration of 5G technology within
the agricultural sector has had a significant impact on various aspects, including real-
time monitoring, unmanned aerial vehicles, virtual consultation, predictive maintenance,
artificially intelligent robotics, data analytics, and cloud repositories. Consequently, the
incorporation of 5G structures has facilitated improved speed, connectivity, scalability, and
processing power, thereby enabling the resolution of existing limitations [100,112–114]. The
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important areas in the agriculture sector where the development of a 5G mobile network
could be beneficial are highlighted in Figure 5.
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While 3G may have coverage limitation, the adoption of 4G in IoT-based smart farming
ensures reliable connectivity. The anticipated release of 5G revolutionized data transport
with its ultra-fast, low-latency communication. However, extensive infrastructure develop-
ment is needed for 5G implementation. The decision between various technologies requires
balancing elements like coverage, speed, and the infrastructure’s preparedness, reflecting
the shifting connectivity environment in precision agriculture.

5G technology allows the increasing usage of IoT applications in digital agriculture and
the advancement of precision farming technologies, allowing spot spraying and real-time
image collecting without latency. As a result, overall agricultural efficiency, resource opti-
mization, and sustainability improve. The use of 5G in agriculture represents a paradigm
change, providing farmers with advanced technologies to handle the problems of modern
farming while also contributing to global food security [100,114].

6G provides better connectivity and faster, more reliable communication. It pro-
vides higher data rates for real-time transmission, lower latency for near-instantaneous
responses, and supports massive IoT connectivity, which allows to increase the productivity
of Agricultural applications. 6G also seeks to increase energy efficiency, optimize resource
consumption, and extend device battery life [115].

The constraints and challenges of implementing 5G in precision crop production
include low coverage in rural regions, reliability and latency-related issues, energy con-
sumption challenges, and implementation costs that have not been highlighted. 6G, which
is still in its early stages, may face hurdles in infrastructure deployment, moving from
5G, unclear adaptation to environmental conditions, and resolving data security and pri-
vacy concerns. The precise constraints in the expanding field of precision agriculture are
dependent on ongoing improvements and the specifics of different implementations.

The comparison of 3G, 4G, 5G, and 6G in precision agriculture discussed in the
previous works reveals a changing landscape. While 4G promises a reliable connection in
IoT-based smart farming, 5G transforms real-time data transit with ultra-fast, low-latency
communication, although at the expense of significant infrastructure construction. The
widespread implementation of 5G in agriculture has a beneficial impact on sustainability,
resource optimization, and efficiency. In order to increase productivity in agriculture, the
expected 6G technology intends to provide better connectivity, faster and more dependable
communication, higher data rates, lower latency, and extensive IoT support. Both 5G
and the potential 6G network have challenges, such as coverage limitations, problems
with reliability, latency concerns, energy consumption issues, infrastructure deployment
difficulties, and data security and privacy issues in precision crop production.

For agricultural sensor data to be presented in a variety of ways, communication
protocols and interfaces are essential. Wu et al., 2023 and Chen et al., 2015 [116,117]
presented a cyber–physical infrastructure that enables the seamless integration of diverse
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sensors and transparently handles their physical differences throughout the World Wide
Web (WWW). The infrastructure makes it possible to utilize sensor web accessibility and
web processing services, which allow applications to access sensor data without knowing
its physical details. IoT communication protocols (such as, MQTT, TLS, DTLS, and AES)
are crucial for enabling secure communication between resource-constrained devices and
services on fog, edge, and cloud nodes, as well as HTTP/HTTPS and WebSockets, make
it possible to transmit data over the web [118]. A lot of Dashboards and standardized
models improve the visualization of data. The selection depends on sensor types, network
architecture, and the most appropriate data presentation style chosen to support decision
making in precision agriculture.

3. Discussion
3.1. Amount of Needed Data for Precision Crop Production

Precision crop production involves the use of advanced technologies to optimize
crop yield and reduce waste. Among the key components of precision crop production
is the collection of data from multiple sources (sensors, satellites, etc.). The amount of
data needed from sensors in precision crop production is related to many aspects. On
the one hand, collecting large amounts of data is essential for achieving the best possible
results in precision crop production. Sensors should be used to collect data on a wide range
of variables, including soil moisture, temperature, and nutrient levels, as well as plant
health indicators such as leaf color, height, and growth rate [43]. One important principle
is that the amount of data needed will depend on the specific crops being grown as well
as the environmental conditions in which they are being grown. It also depends on the
goals of the farmer. For example, crops that are more sensitive to changes in temperature
or moisture levels may require more frequent data collection than crops that are more
resilient. If the goal is to increase yield, then collecting a large amount of data may be
necessary to identify the factors that are most important for achieving this goal. The
authors of [119] examine in their article the use of affordable air pollution sensors for air
quality monitoring and how machine learning techniques can increase the accuracy of
the sensor data. The study shows data from two low-cost, self-built air pollution nodes
that were installed at a Barcelona official reference station for four months and collected
high-resolution data from five electrochemical sensors as well as temperature and humidity
measurements. During the four months of testing, they gathered about 5.5 million samples
of row data from each sensor. The Field Monitoring Laboratory in Mosonmagyaróvár has
been operating in two experimental fields since April 2020. The primary goal is to build an
IoT data collection technology based on site-specific precision crop production demand.
The laboratory produces more than 100 sensed data points; the data are collected with the
LoraWan communication protocol in 10–15 min intervals, depending on sensor type. A
system structure was designed that can integrate the database from different sensors (from
different producers). The server development is implemented in the .NET language. MS
SQL databases are used to store sensor data. There were more than 2 million raw data
collected in the maize vegetation season, and more than 3 million raw data were collected
over the last three years [43].

The high-resolution data enables an analysis of signal processing, sensor sampling
approaches, filtering, and calibration of low-cost sensors. In the same context, it would be
clear how crucial it is to analyze and clarify the data acquired to determine how factors
like atmospheric, soil, and plant characteristics affect the development of precision crop
production. The development of big data and IoT has led to an explosion in the number
of connected devices and sensors, generating vast amounts of data that can be analyzed
for insights. While these technologies have numerous advantages, they also present some
significant disadvantages that need to be addressed.
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3.2. Advantages and Disadvantages of IoT Sensors and Big Data in Precision Crop Production

The implementation of IoT and big data analytics in agriculture has yielded notable
benefits. IoT sensors and stations facilitate the real-time tracking and monitoring of various
processes, leading to improved operational efficiency and enhanced crop yield optimiza-
tion. Decision makers can utilize big data analytics to make informed and data-driven
decisions. Moreover, big data analytics can enhance accuracy by providing accurate pre-
dictions, trends, and insights. Cost savings are also achieved using IoT sensors, which
minimize waste, improve asset utilization, and reduce energy consumption. These sensors
generate data that can be utilized to adjust irrigation and fertilization schedules, ensuring
that crops receive appropriate amounts of water and nutrients at the optimal time. It also
has some notable drawbacks; one of the primary limitations is the high cost associated
with implementing these technologies. Additionally, managing the vast amounts of data
generated by these sensors can also be complex and challenging, requiring the necessary
infrastructure and expertise to manage and analyze the data effectively. Moreover, the
reliability of IoT sensors and stations is not always guaranteed, and they are prone to errors
and failures, which can lead to incorrect data and flawed decision making. Another disad-
vantage is the potential for data overload, whereby the sheer volume of data collected can
be overwhelming and challenging to process, resulting in difficulty filtering out irrelevant
data and identifying critical data points. This can cause delays in decision making, leading
to missed opportunities or increased costs this is consistent with [120–122].

Challenges with IoT integration in precision agriculture include knowledge gaps
among farmers, a decrease in agricultural area, and the effects of climate change. Data
privacy issues highlight the necessity for efficient approaches. Future prospects include de-
velopments in machine learning, AI, and sensing technologies aimed at enhanced proactive
decision making. It is crucial to fill the knowledge gap and provide scalability for various
farming needs. The agriculture industry, technology developers, and authorities may work
together to promote an environment that encourages greater adoption. Opportunities will
be opened for a sustainable and technologically advanced future in precision agricultural
production by overcoming challenges and continued research.

4. Conclusions

The collection of data on various crop-related variables provides farmers with a
comprehensive understanding, allowing them to make informed decisions for optimized
yields. However, caution is required, as a large amount of data can lead to information
overload, requiring a focus on relevant information. The vast amount of raw data provides
an excellent platform for in-depth research of crops such as maize vegetation seasons,
providing significant insights into growth, development, and long-term performance.
This dataset can be used for trend analysis, pattern recognition, and potential predictions
to enhance maize cultivation practices. The amount of data needed for a field plot is
determined by the research objectives, precision requirements, and available resources.
While more data points improve the representativeness and accuracy, practical factors like
plot size and study complexity also play a role. It is important for researchers to carefully
plan their data collection strategy, taking into consideration the specific research goals and
the trade-off between data quantity and quality. This ensures that an adequate amount
of data are collected to provide meaningful insights and draw reliable conclusions while
also considering practical constraints. Furthermore, the real-time monitoring of IoT sensors
improves agricultural operating efficiency by giving valuable data for informed decisions.
Despite the benefits, big data and IoT sensor adoption requires careful consideration due to
associated challenges such as security, complexity, privacy concerns, and reliability issues,
necessitating a thorough review of their benefits and drawbacks before implementation.
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