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Abstract: Agricultural non-point source pollution (ANPSP) is a primary cause of watershed water
quality deterioration, and over 50% of NPS pollutants are estimated to come from ANPSP. Based on
the “source-sink” theory and minimum cumulative resistance (MCR) model, ANPSP source and key
resistance factors were integrated to identify areas at risk of ANPSP production and transportation
into the waters of the upper Yangtze River basin. The results showed a spatial difference in the
agricultural pollution sources of the basin, which were determined using both ANPSP loads and
land-use types. Soil type, rainfall erosivity, and elevation were the three most important resistance
factors in pollution transportation, weighting 0.373, 0.241, and 0.147, respectively. There was a spatial
effect on the comprehensive resistance of ANPSP transportation, which was lower in mountainous
terrain at the central basin. On the coupling of source and resistance processes, regions at serious risk
of ANPSP were found to be concentrated in the southwest area. Areas at very high risk of NH3-N
and TP pollution accounted for 37.6% and 38.1%, respectively, in the total town/street area. The
spatial risk patterns identified in this study could be used for decision making and policy regulation
of ANPSP and for aquatic environmental protection.

Keywords: agricultural non-point source pollution; spatial risk pattern; source–sink theory; minimum
cumulative resistance; water quality

1. Introduction

Agricultural non-point source pollution (ANPSP), which is a crucial risk factor for
surface water eutrophication and groundwater pollution, has become an international
research hotspot [1]. Approximately 50% of NPS pollutants are estimated to come from
agricultural production in Europe [2]. In China, the ANPSP load shows a staged growth
trend. Agricultural nitrogen (N) and phosphorus (P), which are the two main pollutants
contributing to eutrophication, are estimated to comprise 57% and 67%, respectively, of
the total load [3,4]. Most of these ANPS pollutants come from agricultural areas, that is,
farmland, animal manure, and aquaculture [5], and runoff, such as direct surface runoff
from rainfall. There are a wide range of uncertainties involved in ANPS processes, and the
identification, monitoring, prevention, control, and management of ANPSP are therefore
connected issues that need to be addressed systemically. An in-depth understanding of the
characteristics of ANPSP at multiple basin scales and the influence of natural and social
processes in the basin are an essential first step.

It is impossible to effectively carry out large-scale control of ANPSP with the limited
available human and financial resources. Identifying the hotspots (areas at high pollution
risk) of ANPSP can help distribute the limited resources and governance into these areas
and provide cost-effective solutions to reduce the risk of eutrophication in receiving water
bodies [6]. Various models have been developed in recent decades to evaluate the risk of
ANPSP. The most typical methods are physically based models or empirical models [7,8].
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These models have an established capacity to reproduce hydrological processes. During
terrestrial ANPS pollutants’ occurrence and transport to receiving water, they will pass
through a series of terrestrial ecological processes and certain spatial distances, including
land use, agricultural management practices, and natural environments, among others [9].
Focus on the influence of terrestrial resistance processes could provide quantitative results
of ANPSP occurrence and transport in the basin.

The agricultural geographic landscapes related to ANPSP influence the distribution
form and composition of surface resources, biogeochemical cycles, and other environmental
processes [10], which are important for the description of terrestrial resistance process
effects on ANPSP. Several studies have attempted to simulate these processes through
“source-sink” landscape theory and by applying the minimum cumulative resistance (MCR)
model [9,11]. According to the “source-sink” theory, “source” landscapes are those that
promote the development of ANPSP, while “sink” landscapes are those that prevent and
delay the development of ANPSP [12]. The MCR model comprehensively considers the
horizontal connections and ecological processes between landscapes by analyzing the
resistance of matter and energy diffusing through landscape space from the source [13].
The “source-sink” landscape theory combined with the MCR model can help obtain an
effective simulation of the actual situation, identify the transportation process of ANPSP,
and evaluate critical spatial risks [14]. Such information will aid in the development of
ANPSP control and management approaches.

Pollutant mobilization processes and transport to the water network vary by region
and river [15]. The Yangtze River is the third largest river in the world and the largest river
in China, feeding >450 million people [16]. It has a very important strategic position in
terms of economic and social development and for ecological environmental protection. An
agricultural basin of the upper river is a source of ANPSP, and it plays a critical role in the
water quality of the Yangtze River. The discharged ANPS pollutants may increase the risk
of eutrophication and pose a threat to the health of aquatic ecosystems and to humans. In
the upper area of the Yangtze River, the Linjiang River basin is a high-crop-plantation and
a dense aquaculture area. ANPSP in this river basin is particularly serious [17]. From the
perspective of the overall ecosystem, the analysis of ANPSP hotspots in agricultural basins
can aid in the formulation of effective targeted policies. Integrating these policies with
the comprehensive management of basins is conducive to improving the local ecological
economy and social benefits.

The Linjiang River basin in the upper area of the Yangtze River, with rich agricultural
activity, was selected as the study area. By using the “source-sink” theory and the MCR
model, the terrestrial processes on ANPSP occurrence and transport in the basin can be
quantitatively and intuitively displayed, and this is indispensable for spatial management.
The main objectives of this study were: (1) to compare the spatial patterns of ANPSs
according to the loading data from the “Linjiang River (Yongchuan) Deadline Compliance
Planning (2020–2023)” and land-use types, (2) to build high-performance comprehensive
resistance surfaces for the MCR model, and (3) to identify risk areas for ANPS pollutant
production and transportation by using the MCR model and to provide a scientific basis for
the prevention and control of aquatic environment pollution. Our study provided practical
guidance for ANPSP planning and constitutes an important supplement to government-
dominated planning.

2. Materials and Methods
2.1. Site Description

The Linjiang River, a first-level tributary of the upper reaches of the Yangtze River, has
a total length of 96.4 km. Its total drainage covers an area of 730 km2, of which 655.8 km2 is
in the Yongchuan Distinct, Chongqing City, China (28◦56′–29◦34′ N, 105◦38′–106◦05′ E). The
Linjiang River basin in Yongchuan District was selected as the study area (Figure 1). Within
Yongchuan, the length of the river is about 86.2 km, and it flows through 13 streets/towns,
including Zhongshanlu, Shenglilu, Nandajie, Chenshi, Weixinghu, Qingfeng, Linjiang,
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Hegeng, Xianlong, Jian, Wujian, Laisu, and Baofeng. The basin area accounts for 41.5% of
the total area of Yongchuan District. It is characterized by a subtropical humid monsoon
climate, with an annual average temperature of 17.8 ◦C, ranging from −2.9 ◦C (extreme
minimum temperature) in the winter to 40.8 ◦C (extreme maximum temperature) in the
summer. The annual precipitation averages 1042.2 mm, with about 841.1 mm in the summer
half-year (May to October) accounting for 80.7% of the annual precipitation and about
201.1 mm in the winter half-year (November to April) accounting for 19.3% of the annual
precipitation. The annual evaporation averages 1061.7 mm, the annual relative humidity
averages 82%, and the frost-free period averages 312 days.
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Figure 1. Location of the study area and land-use types in 2019.

The study area lies in the parallel ridge valley of east Chongqing. Hills, gentle hills
and flatlands, and low mountains are the three major types of landforms. The main soil
types are paddy soil, alluvial soil, purple soil, yellow soil, and red soil. Based on the second
soil census report in Yongchuan of Sichuan Province conducted in 1982, soil erosion is
prevalent in the region. The agricultural land area is large, accounting for 72.1% of the total
basin area, and the main plantation crops are rice and vegetables. The area also has a long
history of livestock farming and aquaculture, with 24 km2 of freshwater aquaculture in the
basin. ANPSP is therefore a major issue for water pollution in this basin. N and P are the
major pollutants, with inputs from chemical fertilizers, livestock farming, aquaculture, and
soil erosion, among others.

2.2. Data Source

Several datasets were employed to conduct this study. (1) The 30 m × 30 m resolution
Landsat8 remote sensing image and digital elevation model were derived from the geospa-
tial data cloud (http://www.gscloud.cn, accessed on 13 October 2022). (2) The administra-
tive boundary and land-use types of the Linjiang River basin in Yongchuan were obtained
from the Planning and Natural Resources Bureau of Yongchuan. (3) The soil type was
obtained from the Agriculture and Rural Affairs Committee of Yongchuan. (4) The Meteoro-
logical data were obtained from the Meteorological Bureau of Yongchuan. (5) Road network

http://www.gscloud.cn
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data were provided by the Open Street Map website (https://www.openstreetmap.org,
accessed on 14 July 2023). (6) ANPSP load data were obtained from the Linjiang River
(Yongchuan) Deadline Compliance Planning (2020–2023) (http://www.cqyc.gov.cn/, ac-
cessed on 14 July 2023). The collected data were standardized, the coordinate system and
attribute structure unified, and the data processed into unified 30 × 30 grid data [18].

2.3. Methodology
2.3.1. Minimum Cumulative Resistance Model

The MCR model was first proposed by Knaapen et al. [19]. It is a derivative of the
depletion distance model, which has been widely used in ecology. The model considers the
“source”, the spatial distance, and the basic resistance value. For this method, the regional
ANPSP index system was constructed, and each index weight was calculated. This was
followed by the superposition of each resistance factor on the spatial distance. The MCR
value was determined as follows [20]:

MCR = fmin

i=m

∑
j=n

(
Dij × Ri

)
(1)

where MCR is the minimum cumulative resistance value; f is an unknown function of the
positive correlation, min denotes the minimum value of cumulative resistance produced by
the different processes of location i transforming into a different source j, Dij is the spatial
distance from location i to source j, and Ri denotes the resistance encountered in the process
of migration.

There are three main parts to the MCR model: (1) defining the “source” and “sink”
(destination), (2) obtaining the basic resistance values of each individual factor that influ-
ences the diffusion from the “source”, and (3) calculating the MCR from the “source” to the
“sink” using the MCR model [9].

2.3.2. Source Identification

ANPSP sources differ greatly in their expansion capacity across locations [21]. ANPS
pollutants are transported from source to sink and eventually enter into the Yangtze River,
threatening the water quality. In the present study, terrestrial areas of various landscapes
that influence the production and transport of ANPS pollutants into the Yangtze River were
considered the “source”, and the water (rivers and lakes) in the basin was considered the
“sink”. We superimposed the regional ANPSP load data from 2019 (Table S1) on the land-
use type data and used the union of the two as the ANPSP source data. The normalized
values of the source were then calculated.

Agricultural structures subject to different management practices can result in different
residues of ANPSP [22]. Agricultural activity is a major source of ANPSP transport into
the water and is therefore important for the assessment of water quality risks. Values
were assigned to different agricultural land-use types in Yongchuan (Figure 1). The values
ranged from 1 to 8 for aquaculture, orchard and tea garden, paddy field and dry land, ditch,
agricultural facility land and other gardens, residential land, main road and rural road, and
forest land and grassland, respectively, with 1 being the most likely to produce ANPSP and
8 being the least likely to produce ANPSP. These values are relative, not absolute.

2.3.3. Determination of the Basic Resistance Surface

The capability of ANPSP expansion or attraction is related to the surrounding me-
dia [21]. The larger the resistance of the surrounding media, the less likely ANPSP is to
occur. On the contrary, the lower the resistance of the surrounding media, the more likely
ANPSP is to occur. The spatial heterogeneity of the land determines the different land units
and their resistance surfaces [23]. ANPSP from source to sink was therefore studied by
determining the resistance surfaces of the surrounding spaces. Resistance surfaces include
natural geographical factors such as topography, meteorology, soil, and vegetation, among

https://www.openstreetmap.org
http://www.cqyc.gov.cn/
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others, as well as human interference, all of which control the transport processes of ANPSP
through terrestrial spaces [9,24].

Based on data availability, operability, and comprehensiveness, as well as observations
of the study area, a total of seven basic resistance factors were selected: elevation, slope,
rainfall erosivity, soil type, vegetation cover, distance from waters, and distance from main
roads. These factors affected the spread of pollutants as well as their interception, absorp-
tion, and transformation [25]. Elevation (m) and slope (◦) were used to represent physical
geographic resistance factors. Generally, land with higher elevations and steeper slopes was
more conducive to ANPS pollutant transport and therefore had lower resistance [26,27].

For rainfall erosivity (MJ·mm·hm−2·h−1·a−1), a modified version of the annual R-
value estimation formula used in Chongqing was applied [28]. The higher the value, the
lower the resistance, and the higher the risk of ANPSP:

R = 5.249×


12

∑
i=1

Pi
P

Pi


1.205

(2)

where R is the annual rainfall erosivity (MJ·mm·hm−2·h−1·a−1), Pi is the monthly rainfall
(mm), and P is the annual rainfall (mm). The rainfall data used in the calculation were
obtained from three hydrological stations in the basin in 2019. The spatial distribution of
rainfall erosivity was obtained through interpolation analysis.

According to the second soil census report in Yongchuan of Sichuan Province con-
ducted in 1982, soil type is correlated with ANPS pollutant loss. In total, 31 soil types in
the Yongchuan Linjiang River basin (Figure S1) were divided into five categories based
on soil fertility characteristics and environmental conditions. The values assigned were
from 1 to 5, with 1 being the best and 5 the worst. The higher the value, the higher the risk
of ANPSP.

Vegetation cover intercepts the transportation of pollutants to a certain extent. The
higher the vegetation cover, the more significant the interception of pollutants [27]. Vegeta-
tion cover was measured using remote sensing imagery (2 May 2020) and obtained as the
normalized difference vegetation index (NDVI). The image with less than 5% cloud cover
was selected.

The distance relative to the waters and roads influences ANPSP in the basin [25]. The
shorter the distance from the water, the more likely the pollutants will enter the water
and vice versa [11]. Land closer to main roads is more conducive to surface runoff and to
human interference and thereby has smaller resistance [29]. Similarly, the farther away
from waters and main roads, the lower the risk of ANPSP is considered to be [27].

Because the indicators have different dimensions, they were not comparable and had
to be converted to dimensionless parameters. A linear normalization method was used to
convert their raw values to normalized values ranging from 0 to 1 [13]:

X∗ =
X−min

max−min
(3)

X∗ =
max− X

max−min
(4)

where Formula (3) is a direct indicator, Formula (4) is a contrary indicator, X* represents
the normalized value of the deviation, max represents the maximum value of the data, and
min represents the minimum value of the data. In this study, a value of 1 represents the
maximum resistance to ANPSP transport through media. These resistance values are only
a reflection of the relative resistance, as the purpose of resistance surface constructions is to
reflect the relative spatial distributions of resistance [25].
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2.3.4. Weight of the Basic Resistance Surface

The contribution of basic resistance surfaces to pollutant losses is different among
basins. Standardization to each basic resistance surface is therefore required, and this can
be performed by assigning a weight [30]. In this study, the spatial principal component
analysis (SPCA) was used to determine the weight of each basic resistance surface. This
method compressed the information of multiple raster layers into several representative
composite variable layers, which circumvented the variable selection redundancies and
correlations [29].

The comprehensive resistance surface was calculated according to the weighted sum
of the principal component, and the ability to reuse a variance contribution rate of each
principal component is related to each other. The following formula can be used to calculate
the resistance surface [31]:

Ri =

n

∑
j=1

(Wj × Aij) (5)

where Ri represents the resistance value of the i-th grid unit, Wj represents the weight of
the j-th factor, Aij represents the resistance value of the j-th factor in the i-th grid unit, and n
represents the total number of resistance factors.

2.3.5. Spatial Risk Assessment of ANPSP

In the MCR model, the resistance surface is used as the cost grid of the source and is
gradually expanded to obtain the MCR surface [32]. A MCR surface for the ANPSP risk
pattern in the Linjiang River basin was thus generated. This surface reflected the spatial
trend and risk patterns of ANPSP. ArcGIS 10.8 and natural breaks from the breakpoint
method (Jenks) were used to classify the ANPSP risk into five levels: very high, high,
medium, low, and very low [14].

3. Results
3.1. ANPSP Source Distribution

The spatial trends of NH3-N and TP NPS loads into waters (total of planting, live-
stock, aquaculture, and soil erosion) at the street/town scale were consistent (Figure 2a,b).
Relatively higher values were identified in Hegeng, Xianlong, and Laisu, and relatively
low values were identified in Zhongshanlu and Shenglilu. Land-use data calculated using
ArcGIS (Figure 1) showed that paddy field and dry land dominated the main farmland
types in the basin, accounting for 21.5% and 20.6%, respectively, of the total area. Orchard
was the next prevalent agricultural land type (7.1%), followed by aquaculture (4.5%) and
tea garden (0.2%). Water as the sink type in the basin accounted for 2.5% of the total area.
Considering the regional status, and based on the ANPSP production level, values were
assigned to terrestrial land-use types (Figure S2c). The smaller the value, the easier it was
to generate and transport ANPSP.

The regional ANPSP load was superimposed on the land-use type source level to
obtain the regional ANPSP source level (Figure 2). Generally, consistent spatial trends
of NH3-N and TP source levels were observed. Relatively high levels were observed in
Hegeng, Xianlong, and Laisu, followed by Weixinghu and Linjiang, and relatively low
levels were observed in Zhongshanlu and Shenglilu.
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3.2. Comprehensive Resistance Evaluation

In this study, resistance factors were calculated based on seven natural and social
factors (Figure 3). Based on individual factors, the elevation and slope were higher in the
central and southeastern parts of the basin, where the resistance values were low. The
resistance value of rainfall erosivity in the western regions was relatively lower, and that
of the eastern regions was higher. In most parts of the basin (67.4% of the total area), the
evaluation class and the resistance values of soil type were high, whereas in other areas,
especially in the yellow soil on low mountains (3.5% of the total area), the resistance values
were low. The resistance of vegetation cover in the basin was moderate. The maximum
resistance values for ANPSP were distributed in the urbanized areas, where no agriculture
was carried out. The waters and main roads were densely arranged in the basin, and the
resistance values generated by the distance elements were relatively low. The low resistance
values showed a radial distribution around the waters and a striped distribution along the
main roads.

The comprehensive resistance surface was calculated according to the weight of each
factor (Table 1). As determined from the distribution of the comprehensive resistance values
(Figure 4), relatively high resistance areas were mainly concentrated in the eastern side of
the basin, including Chenshi, Weixinghu, Linjiang, and Hegeng. Moderate resistance areas
were concentrated in the western side. Relatively low resistance values were observed in the
central regions, including Shenglilu, Nandajie, and Jian, and they were therefore conducive
to the spread of nutrients and the dispersal of ANPS pollutants, representing potential risks.
The phenomenon was mainly dominated by soil type (weight = 0.373), rainfall erosivity
(weight = 0.241), and mountainous terrain (elevation weight = 0.147), while vegetation
cover had a weak influence (weight = 0.005) due to its relative homogeneity.

Table 1. Weight of each basic resistance surface.

Factor Elevation Slope Rainfall
Erosivity Soil Type Vegetation

Cover
Distance

from Water
Distance from

Main Road

Weight 0.147 0.082 0.241 0.373 0.005 0.129 0.022
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3.3. Spatial Risk Pattern Identification

Based on the MCR model, this study integrated ANPSP source identification and
comprehensive resistance surface evaluation to reflect the risk of ANPSP generation and
transport to the basin (Figure 5). After standardization, the spatial risk patterns were
divided into five levels using the natural breakpoint method. The results showed that the
areas at very high, high, medium, low, and very low risk of NH3-N pollution accounted
for 8.5%, 24.9%, 34.1%, 21.3%, and 8.8%, respectively, of the study area, while that of TP
accounted for 8.1%, 25.5%, 32.2%, 22.6%, and 9.2%, respectively. To ease the ANPSP opera-
tions for local administration, this study analyzed patch distribution at the street/town
scale (Figure 6). Generally, Xianlong had the largest ANPSP risk among the streets/towns
studied, and the area most at risk for NH3-N and TP pollution accounted for 37.6% and
38.1%, respectively. Other NH3-N risk areas were mainly distributed in Laisu (16.9%),
Hegeng (13.5%), Jian (12.4%), and Nandajie (10.5%), and other TP risk areas were mainly
distributed in Hegeng (14.5%), Laisu (12.2%), and Jian (11.8%). The proportion of area at
very high risk accounted for >10%. The very low ANPSP risk area was mainly distributed
in Zhongshanlu of the built-up area.
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4. Discussion

Intensive agricultural activities affect the environment and the water quality in nearby
basins [33]. One of the most significant effects occurs through ANPSP loading into water
bodies. A previous study showed that even slight changes in ANPSP loading caused
considerable changes to water quality in agricultural watersheds [34]. Heterogeneous
spatial distributions of natural and human conditions within a basin influence ANPSP
loadings. In this study, relatively higher NH3-N and TP loads were identified in Hegeng,
Xianlong, and Laisu, Zhongshanlu and Shenglilu were mainly urban, with relatively
small agricultural land areas, and the ANPSP loads were relatively small. Control and
prevention of ANPSP should therefore be adapted to local conditions [35]. The ANPSP
loads entering into the waters were closely related to the land-use types. The larger the area
from which ANPSP was generated, the greater the effect on water quality. The different
natural and socio-economic factors among streets/towns, such as land-use types, tillage,
and management practices, and in particular, the strength of fertilizers, had a direct effect
on the composition of runoff and basin water quality [36,37].

Different land-use types exhibit significantly different source strengths during the
formation of ANPSP [38]. In agriculture-dominated basins, intensive land use, cultivation
methods, pesticides, and fertilizers coupled with runoff have a strong effect on basin
water quality [36,39]. Generally, agricultural land area accounted for a relatively large
proportion in the basin, resulting in a high likelihood of ANPSP contribution. Frequent
tillage activities may accelerate soil erosion, and this can also exacerbate ANPSP. Forest
and grasslands provide various ecosystem services and play a critical role in the balance of
regional ecosystems [40]. Generally, the more forest and grasslands in a basin, the smaller
the nutrient loads in the water [41]. In this basin, however, forest and grasslands accounted
for a relatively small proportion of the total area, that is, 10.5% and 0.1%, respectively. In
the present study, land-use types were classified based on the ANPSP source level. In some
studies, however, forest and grasslands were classified as sink landscapes [14].

The spatial risk patterns of ANPSP are not only decided by the ANPSP source but also
by spatial location, topography, rainfall, soil attributes, and mutual relations with other
spatial elements [14]. Differences among these factors influence runoff intensity and affect
the transition and migration of N and P pollutants [42,43], as well as the biogeochemical
processes occurring within the basin. In this study, the distance from water bodies reflected
human disturbance, and the distance from roads reflected human activities [44]. We added
the two factors to represent regional social factors. Under the influence of rainfall, the
characteristics of ANPSP should be explored, which can reflect the impact on the water
quality of the basin. Soil type had a strong influence (weight = 0.373) on the comprehensive
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resistance surface and should be considered as a priority factor in the ANPSP management
of the basin. In the urbanized areas, ANPSP was low, but impervious surfaces reduced
water infiltration and storage, thus negatively affecting pollutant sequestration [45].

Based on the “source-sink” theory and the MCR model, this study integrated ANPSP
source and resistance factors to identify risk areas of ANPSP production and transportation
into the water of the upper Yangtze River basin and analyzed spatial patterns at the
street/town scale. By identifying the potential risks of ANPSP in the basin, targeted
strategies could be formulated for different regions [46]. The analysis was conducted at the
street/town scale, where ANPSP treatment and protection were relatively flexible and easy
to manage administratively. Focus and limited resources should be prioritized for the most
at-risk areas to provide maximum protection to water quality in the basin, such as Xianlong.
The very low ANPSP risk area was mainly distributed in Zhongshanlu of the built-up area.
Although the ANPSP risk was low, the risk from other sources such as urban NPSs may
be high. This has not been considered in the present study. Spatial ANPSP risk pattern
identification was useful in terms of highlighting priorities in management practices and in
governance. As a result, investment can be improved and pollution control made easier to
implement. The objective of governance can thereby be easily achieved [11].

ANPSP risk assessment plays a crucial role in aquatic environmental protection.
Optimizing the spatial risk can improve the basin water quality and promote regional
ecosystem stability and sustainable development. To achieve high level conservation with
minimum costs, priority restoration areas should be based on the location and land-use
status [45]. Based on the identified high-risk areas, the entire control process of ANPSP
from the source to the water body should be strengthened from multiple angles such as
monitoring, management, and governance. For example, in Xianlong, ANPSP control
and protection should be prioritized to conserve its ecological environment and stability.
For regional ANPSP control, a plan of governance for risk areas should be proposed
based on the combination of ANPSP generation and transportation statuses in different
regions [47]. In areas dominated by planting, the relationship between fertilization and
fertilizer use rate should be balanced. Substituting fertilizers at the source with green
production and implementing ecological interception projects for ANPS pollutants around
the water network should be carried out. Efficient natural materials should be utilized to
enhance soil–plant productivity and to sustainably reduce pollutants [48]. Agricultural
production practices, like precision farming, could help to lower the input of energy,
water, organic matter, and agro-chemicals [49]. Based on terrain characteristics, multi-level
reuse of nutrient treatments could be implemented. In areas dominated by livestock and
aquaculture, drainage management should be carried out. Recycling methods that combine
planting and breeding could also be implemented. Ecological engineering measures such as
vegetation crop isolation and buffer zones should be applied to reduce the pollution caused
by soil erosion [35]. Furthermore, regional environmental legislation and law enforcement
should be formulated to meet the requirements of ecological protection and economic
development [50]. In this study, collected data were primarily used. Data from additional
monitoring and investigation need to be integrated into the identification of ANPSP risk
patterns in future studies.

5. Conclusions

Combined with the regional ANPSP load and the land-use type at the source level,
NH3-N and TP showed consistent spatial trends, with Hegeng, Xianlong, and Laisu hav-
ing a relatively high ANPSP source level compared to other streets/towns. For these
streets/towns, source control should therefore be the focus. The comprehensive resistance
surfaces of ANPSP entering waters were defined by seven critical factors, and the values of
the comprehensive resistance surface in the central part of the basin, including Shenglilu,
Nandajie, and Jian, were small. For these streets/towns, preventing pollutant transporta-
tion should therefore be the focus. On the whole, for Xianlong, which showed a relatively
high percentage of ANPSP risk and occupied a large area among the streets/towns, the
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NH3-N and TP risk area accounted for 37.6% and 38.1%, respectively. The analysis at the
street/town scale suggested differences in the implementability and allocation of responsi-
bilities for ANPSP control among different administrative areas. Studying regional ANPSP
risk patterns is an extremely vital prerequisite for safeguarding the structure and functional
capacity of ecosystems and guaranteeing sustainable regional development.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy13112776/s1, Table S1: ANPSP load entering into the waters
of Yongchuan Linjiang River basin in 2019 (t/a); Figure S1: Spatial distribution of soil types in
Yongchuan Linjiang River basin; Figure S2: Spatial patterns (normalized values) of the regional
ANPSP load and land use type level: (a) NH3-N load entering into waters; (b) TP load entering into
waters; (c) land-use type level.
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