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Abstract: High-throughput phenotype monitoring systems for field crops can not only accelerate
the breeding process but also provide important data support for precision agricultural monitoring.
Traditional phenotype monitoring methods for field crops relying on artificial sampling and measure-
ment have some disadvantages including low efficiency, strong subjectivity, and single characteristics.
To solve these problems, the rapid monitoring, acquisition, and analysis of phenotyping information
of field crops have become the focus of current research. The research explores the systematic framing
of phenotype monitoring systems for field crops. Focusing on four aspects, namely phenotyping
sensors, mobile platforms, control systems, and phenotyping data preprocessing algorithms, the
application of the sensor technology, structural design technology of mobile carriers, intelligent
control technology, and data processing algorithms to phenotype monitoring systems was assessed.
The research status of multi-scale phenotype monitoring products was summarized, and the merits
and demerits of various phenotype monitoring systems for field crops in application were discussed.
In the meantime, development trends related to phenotype monitoring systems for field crops in
aspects including sensor integration, platform optimization, standard unification, and algorithm
improvement were proposed.

Keywords: data processing algorithms; field crops; phenotype monitoring; phenotyping sensors;
phenotyping platforms

1. Introduction

Crop phenotypes refer to all (or some) of the discernible crop characteristics and
traits determined or influenced by their genotypes and the environment. These traits
include the shape, structure, growth, and pigment content of crop plants [1,2]. By acquiring
crop phenotyping information, crops can be presented from macroscopic to microscopic
scales, which allows efficient understanding of the relationship between gene functions and
environmental factors. The phenotyping information can also be used to guide germplasm
screening in the early stage of breeding and assess field performance of various varieties in
the later popularization and planting. It is also an important basis for precision management
and control of crops [3,4].

Phenotype monitoring of field crops requires acquisition of multi-scale, multi-sequential,
and multi-source phenotyping information in a non-invasive, high-throughput manner
in the real growth environment of crops. In recent years, research on phenotyping traits
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of field crops has transformed from low-throughput and extensive monitoring in a sin-
gle environment to high-throughput precision monitoring for group shapes in complex
environments [5]. To meet the demand for high-throughput phenotype monitoring for
field crops, researchers have made great efforts to develop diverse phenotype monitoring
systems for field crops. In the transition from “Agriculture 1.0” to “Agriculture 4.0”, pheno-
type monitoring of field crops has gradually developed from artificial measurement using
a ruler and a steelyard to multi-scale, high-precision, high-throughput, and intelligent
phenotype monitoring modes, as shown in Figure 1.
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Phenotype monitoring systems for field crops tend to integrate four parts: phenotyping
sensors, mobile platforms, platform control systems, and data processing algorithms,
thus achieving high throughput and automatic sampling of phenotyping data (Figure 2).
Phenotyping sensors are core devices in phenotype monitoring systems. To adapt to
phenotype information monitoring in different spatial domains, multi-scale platforms
were employed to carry phenotyping sensors in phenotype monitoring systems. These
platforms include Internet of Things (IoT)-based, track-type (gantry or suspension-type),
vehicle-mounted, and drone-borne devices.
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Figure 2. Composition of a phenotype monitoring system.

Based on the motion control system of platforms, the multi-source phenotype infor-
mation could be obtained in a short time, and phenotyping traits of crops were resolved
using phenotype data processing algorithms [13].

Internationally, many research institutions and commercial corporations have actively
studied crop phenotypes and invested time and funds into the field to build phenotype
monitoring systems, to good effect. Typical phenotyping sensors and phenotype mon-
itoring systems as well as their research and development (R&D) institutions are dis-
played in Figure 3. The common physiological phenotyping sensors of crops include the
single-leaf SPAD [14], Dualex [15], canopy-level ASDs (Analytical Spectral Devices) Field
Spec Pro [16–18], CGMD-402 (Crop Growth Monitoring and Diagnosis 402) [19], and so
on [20–23]. Phenotyping sensors of crop morphologies are mainly multiple types of image
collectors. Based on the integration and application of hardware such as these phenotyping
sensors, CropDesign in Belgium took the lead to develop a high-throughput phenotyping
platform that can evaluate crop traits at large scale, namely the Trait Mill system [24,25].
The Plant Accelerator developed by the Australian Plant Phenomics Facility, a leading
international research organization on plant phenotypes, is one of the most complex and
expensive facilities for plant phenomics studies [26,27]. Lemna Tec in Germany devel-
oped Scanalyzer 3D and Greenhouse Scanalyzer, which is a high-throughput phenotyping
platform [28,29].
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2. Phenotyping Sensors for Field Crops
2.1. Classification of Crop Phenotyping Traits

Yield, resistance, quality, and nutrition are the ultimate aims of modern agriculture,
so crop phenotyping traits can be classified into four types, including those relating to the
yield, resistance, quality, and nutrition. These phenotyping traits are strongly associated
with the morphological and structural traits of crops (crop height, crown breadth, coverage,
biomass, leaf length, leaf width, and fruit characteristics), as illustrated in Figure 4. These
traits can be measured using advanced imaging and spectrum technologies [30].
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Yield, in essence, reflects biomass. The crop yield is extremely significantly associated
with the harvested organs. The morphological parameters of some important organs and
important agronomic traits of crops are all strongly associated with the yield and have been
extensively applied to yield monitoring and research into a wide range of crops [31].

Phenotyping traits relating to resistance are complex traits of crops under various envi-
ronmental factors including biological stresses (disease, insect pests, and weed) and abiotic
stresses (drought, salt and alkali, and flood) unfavorable to crop survival and growth. Anal-
ysis of phenotyping traits pertaining to resistance calls for multi-dimensional phenotype
information. By acquiring the spectral reflectance of crops under multiple spectra and
developing specific image analysis algorithms, one can dynamically and quantitatively
analyze phenotyping traits relating to the resistance of plants under stress [32].

Phenotyping traits relating to quality are mainly studied by focusing on the morpho-
logical and structural variation and physiological and biochemical indices of harvested
organs. It is difficult to evaluate quality traits of field crops based on morphological and
structural characteristics. Phenotypic traits related to quality are often analyzed through the
integration of nutritional contents and morphological features of crop plants. This approach
is commonly used to achieve non-destructive testing in agricultural applications [33].

Phenotyping traits relating to nutrition comprehensively reflect the soil nutrient supply,
nutrient demand of crops, and nutrient absorption capacity of crops. Crops lacking certain
nutritional elements generally demonstrate different phenotyping traits in their appearance,
color, and size. Crop phenotyping traits can be obtained to further aid the diagnosis of the
nutriture in crops, which serves as a basis for agricultural management decisions such as
topdressing of crops.

2.2. Common Phenotyping Sensors for Crops

A wide variety of phenotyping sensors used for monitoring of field crops are available
(Table 1). According to the difference in the usage, sensors can be roughly classified into
four types, namely those for monitoring phenotyping traits relating to the yield, quality,
nutrition, and resistance [34]. In accordance with the area of the sensing field, sensors
can also be classified into sensors for detecting information at certain points of crops and
imaging sensors that provide the spatial distribution of detected objects.
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Table 1. Application of phenotyping sensors to crop phenotype monitoring.

Phenotyping Traits
Phenotyping Sensors

RGB
Camera

Imaging
Spectrometer

Thermal
Camera Fluorescent Imager Depth-Sensing

Camera Lidar Scanner Spectral Sensor

Phenotyping traits
relating to yield

Plant density � � �

Canopy coverage � � � � � �

Canopy height � � � �

Cover fraction � � �

Grain number and size �

Biomass � � � � �

Chlorophyll content � � �

Phenotyping traits
relating to quality

Fruit/inflorescence size � �

Grain quality � �

Water content � � �

Phenotyping traits
relating to resistance

Canopy temperature � �

Leaf rolling � � � � �

Leaf wilting � �

Lodging � � � � � �

GNDVI (green
normalized difference

vegetation index)
�

Phenotyping traits
relating to nutrition

Nitrogen content � � �

LAI (leaf area index) � �

PNA (plant nitrogen
accumulation) �

Commercialized or not Y Y Y Y Y Y Y

Models of sensors
Canon;

Nikon; and
Sony

MS3100 Duncan
Camera;

SOC710E; and
Hyper Spec VNIR

FLIR T series Multiples 2, 3
RealSense series;

CamCube 3.0;
SR4000; and

Kinect 2.0

LMS series;
VLP-16; and

HDL-32E

GreenSeeker RT 100, 200;
CropCircle ACS 210, 430,

470; and
N-sensor

Whether supporting secondary development
or not Y N Y N Y N N
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Point sensors for detecting information at certain points of crops acquire reflectivity
at corresponding bands mainly based on optical radiation information in characteristic
spectral bands. Phenotyping parameters of crops can be attained based on the strong
regularity between reflectivity in characteristic spectral bands and phenotype information
of crops. The commonly used spectral sensors in this type include the handheld chlorophyll
sensor SPAD-502 (Konica Minolta, Tokyo, Japan) [14], RapidSCAN CS-45 canopy monitor
(Holland Scientific, Lincoln, NE, USA) [35], and the GreenSeeker spectrometer based on
active light sources (Oklahoma State University and N-tech, Okmulgee, OK, USA) [21].
Spectral sensors show high sensitivity and low cost, while they set strict requirements for
the light and generally need to measure phenotype information in specific time frames on
sunny days [36].

Spatially distributed imaging-type phenotyping sensors mainly acquire and store
image information based on the photoelectric properties of semiconductor elements. Mod-
ern phenotyping imaging technology with high resolution can realize the visualization of
multi-dimensional and multi-parameter data. Accurate, intuitive, and comprehensive crop
phenotype data capture aids in more deeply understanding crop growth characteristics
and adaptability to the environment.

Acquisition of visible images using a color digital camera is the most widely used
imaging technology at present, which is at low cost and can obtain information including
the size, shape, color, and structure of crops by analyzing color images. However, such
methods call for tedious post-processing, sunshine or shading also may induce overexpo-
sure or underexposure, and interpretation of the data is complicated [37,38]. Apart from
obtaining image information in a single band, multispectral and hyperspectral imaging
techniques can also attain the spectral absorption curves of crops. By analyzing images and
spectral information, real-time and in situ observations of phenotype information involving
spectral vegetation indices (the normalized difference vegetation index (NDVI) and ratio
vegetation index (RVI)) of crops can be realized [39–46].

Near-infrared and infrared cameras are digital imaging devices that are sensitive to
electromagnetic waves with wavelengths in the range of 400 to 14,000 nm, showing the
technological advantages of stable and reliable performance. They are commonly used to
monitor phenotyping traits such as grain quality of crops [47] and so on [48–50]. Thermal
cameras can detect and visualize the invisible infrared radiation of detected objects, which
is consistent with object temperature and is commonly used to monitor traits including the
early thermal reaction [51,52] and lodging resistance [53] of crops under stress. However,
such devices are affected by extraneous noise, and errors arise due to mixed pixels [54–56].
Fluorescence sensors adopt an active measurement method while facing some difficulties
in fluorescence excitation, so their in situ application is limited [57]. Depth-sensing cameras
can output the depth, amplitude, and intensity images and have been widely applied to
crop phenotype monitoring to solve problems arising from leaf occlusion [58–62]. Lidar
scanners, characterized by high precision and strong anti-jamming capability, acquire the
3D point cloud data by scanning the crop canopy or plants and obtain parameters including
the canopy height [63] and so on [64,65] by analyzing point cloud data.

Imaging-type phenotyping sensors which show high efficiency and strong visuality
can acquire large-scale image information in a short time. However, a large amount of
image information is acquired, and the real-time transmission function is limited. In
addition, test results generally call for offline processing by professionals and software. As
a result, a significant delay arises.

3. Mobile Phenotyping Platforms for Field Crops

With the rapid development of aviation, automation, and electronic information tech-
nologies, these technologies have provided many conveniences for the development of
phenotype monitoring systems for field crops. For accurate, continuously collected pheno-
type information from the proximity to long distance at multiple scales including single
leaves or plant organs, single plants, small plots, or farms, different types of platforms have
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been developed. They are mainly classified into IoT-based, track-type, vehicle-mounted,
and drone-borne types (Figure 5).
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2. fixed-wing drone phenotyping platform [67]; 3. multi-rotor drone phenotyping platform [68];
4. multi-rotor drone phenotyping platform [68]; 5. multi-rotor drone phenotyping platform [12];
6. multi-rotor drone phenotyping platform [69]; 7. FieldScan [70]; 8. Field Scanalyzer [10]; 9. Field
Phenotyping Platform [71]; 10. NU-Spidercam [72]; 11. RobHortic [73]; 12. an agricultural mobile
robot [74]; 13. Ladybird [75]; 14. Flex-Ro [76]; 15. Ted [77]; 16. FieldFlux [11]; 17. Phenomobile V2 [78];
18. Prospero [79]; 19. Vinbot [80]; 20. Robotanist [81]; 21. Vinobot [82]; 22. OZ [77] 23. RowBot [83];
24. TERRA-MEPP [84]; 25. a self-propelled electric platform [85]; 26. buggies [86]; 27. a proximal
sensing system [87]; 28. Phenomobile Lite [8]; 29. Phenocart [88]; 30. motorized pushcart [89];
31. Avenger-tractor-based system [90]; 32. BreedVision [91]; 33. LeeAgra 3434 DL open rider
sprayer-based system [92]; 34. Bowman Mudmaster sprayer-based system [9]; 35. Phenoliner [93];
36. GPhenoVision [94]; 37. CropQuant [95]; 38. CropSight [96].

3.1. IoT-Based Platforms

IoT-based platforms generally refer to IoT systems that realize the interconnection and
verification of multi-location data [97] and connect various information acquisition sensors
including temperature sensors, infrared and light sensors, and RGB or spectral cameras
by using wireless communication methods such as WIFI, ZigBee, and LoRa. IoT-based
platforms use independent small field workstations to monitor the growth environmen-
tal parameters of crops in plots and crop phenotype information, showing advantages
including easy installation and flexible layout [98]. Ji Zhou developed an IoT-based crop
phenotyping platform, CropQuant [95], which is a mature small IoT-based phenotype
monitoring system. This system integrates multiple sensors using industrial single-board
computers to form a scalable multi-point monitoring network for large-scale crops. It
can dynamically support high-resolution data acquisition of crop microenvironments and
multiple key growth phenotypes at multiple points. The platform has been applied to
phenotyping in the spike area of wheat (Triticum aestivum) in fields [99]. Masayuki Hi-
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rafuji developed an IoT-based open field server (OpenFS), which uses the cloud service
X (formerly Twitter) to achieve long-term monitoring of different environments in fields
on the basis of integrating multiple low-cost sensors. The platform was deployed in an
orangery in Japan and collected environmental and phenotype data [100]. Specific stations
in IoT-based platforms can be dynamically allocated according to the demands, and they
can be flexibly and conveniently networked. However, a single IoT-based platform only
covers a small area, and a whole plot cannot be detected unless a network is formed. In
addition, such platforms acquire information through sampling and fail to achieve full
coverage of all individuals.

3.2. Track-Type Mobile Platforms

Track-type platforms scan and monitor crops by building fixed tracks in the field to
drive sensor systems using motors and cables. They can achieve all-weather measurement
in the fixed area without physical contact with soil or crops. They also avoid the mechanism
shaking, which is similar to the ground mobile platform. Track-type platforms are ideal
field platforms for collecting high-resolution phenotype information.

The first commercialized high-throughput track-type phenotyping platform for field
crops in the world was developed by PhenoSpex in The Netherlands. By paving fixed
tracks in the field, the platform drives gantry cranes for movement and scanning using
a driving motor, thus achieving fully automatic, high-throughput measurement across
a 16 m × 200 m range [70]. LemnaTec developed the Field Scanalyzer, a track-type high-
throughput phenotyping platform for field crops, the main body frame of which is a gantry
crane measuring 125 m × 15 m × 6 m. The platform is capable of realizing 24 h high-
resolution automatic monitoring across a 10 m × 110 m range [10,101]. ETH Zurich created
a track-type multi-sensor platform FIP (Field Phenotyping Platform) hung with cables,
which can cover a rectangular field of one hectare, in which four poles (24 m high) are
erected at each corner of the field. The pulleys on the top and winches on the bottom of
poles are used to drive the movement of cables, thus driving the integrated sensor device
carried by the cables to scan and monitor crops.

Track-type platforms can carry multiple types of sensors to move in a flexible, stable
manner above the monitoring area, which overcomes the inconvenience of ground-based
mobile platforms in crossing crop rows. In addition, these platforms are slightly disturbed
by external factors (terrain and vibration) and show high positioning accuracy and re-
peatability. However, the cost of customizing track-type platforms is high, and subsequent
maintenance is difficult. Professional teams are required to provide technical support in
installation, debugging, operation, maintenance, and late analysis. Considering this, it
is generally difficult to apply such platforms to large-scale multi-location breeding and
cultivation projects [102,103].

3.3. Vehicle-Mounted Mobile Platforms

Vehicle-mounted mobile platforms mainly refer to commercial agricultural
tractors [91–93,104], independently developed trolleys, and mini-robot chassis or chas-
sis with a large ground clearance [85,88,89,105,106]. Sensors are arranged on such carriers
according to characteristics including the crop variety, cultivation agronomic characteristics,
and growth stages. In addition, these platforms are also equipped with data memory and a
global positioning system (GPS); therefore, they carry a large load and can substantially
improve the phenotype monitoring efficiency [92,107]. Vehicle-mounted platforms based
on agricultural machinery are relatively easily achieved, which reduces labor intensity and
improves working efficiency; however, the volume of agricultural machinery is so large
that these platforms show poor field trafficability and commonly cause soil compaction,
thus damaging the crops. In addition, because of the limited height of chassis, they are
mainly applicable to the early growth stages of low-growing crops such as wheat and cotton
(Gossypium hirsutum) [108]. Additionally, most vehicle-mounted platforms are powered
by internal combustion engines, so the vehicle body and spray rod vibrate, which is not
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conducive to accurate data acquisition and also limits the high-throughput phenotyping
ability of the method [109]. Independently developed, hand-pushed vehicle-mounted
platforms can decrease the research and development cost and decrease soil compactness
(lightweight architecture), whereas these platforms still require artificial driving, and the
stopping–measurement–movement mode and slow response speed cannot guarantee the
efficient collection of crop trait data.

To further reduce the cost, enhance field trafficability, and improve the automation
degree and measurement accuracy, researchers have begun to use mini-robot chassis or
independently designed mobile platforms with a high ground clearance to carry pheno-
typing sensors and acquisition systems [110,111]. Mini robots, with their small size, light
weight, mature technology, and easy refitting, have been widely applied to field pheno-
type monitoring. Phenotyping research has also been conducted on crops with large row
spacing, such as corn (Zea mays) and broomcorn [84]. Limited by the ground clearance
and bearing capacity, mini robots generally run between crop rows with large row spacing,
while they find it more difficult to undertake cross-row monitoring in fields with small row
spacing [77,80,83,112,113].

Mobile platforms with high ground clearance or adjustable chassis can solve problems
in the aforementioned carriers, improve the field trafficability of platforms, and achieve
cross-row scanning and monitoring. Therefore, such platforms have become a research
hotspot in recent years [75,77,114]. Tabile et al. [74,115] developed a field agronomy informa-
tion collection platform with high ground clearance, which has a ground clearance of 1.8 m
and uses the sleeve-type wheel track adjustment device. It can manually adjust the wheel
track according to the plant morphology and row spacing of plants. Likewise, various field
phenotype monitoring platforms such as MARS X [116], Ted [77], and MYCE Vigne [114]
adopt the gantry device, and they are characterized by the high ground clearance, simple
structure, and strong field trafficability. This is a common carrier structure for phenotype
monitoring. Due to the interaction of field environmental factors and high-density planting,
the motion of vehicle-mounted platforms in the field still faces many limitations. Limited
by body size and ground clearance, mini robots with low chassis are limited in their uni-
versality. Mobile carriers with a high ground clearance or adjustable chassis significantly
improve the field trafficability and universality. In addition, by using the open trusswork
or integrating sensors in the front of the platforms, the platform structure of these carriers
avoids casting a shadow; however, vibration due to soil heterogenization also exerts certain
adverse effects on phenotype monitoring [76,111,117–120].

3.4. Drone-Borne Mobile Platforms

Drone-borne phenotyping platforms carry diverse lightweight sensors on fixed-wing
or multi-rotor drones and use technologies including remote communication to realize
rapid, lossless acquisition of phenotype information [121–123]. Drone-borne mobile plat-
forms overcome the above limitations of various factors including the platform acquisition
speed and field environment, and they are also flexibly controlled, portable, and cheap.
Hence, they have been widely applied to monitor large areas of field phenotype informa-
tion [124,125].

Li et al. used a small electric drone, Free Bird, as the carrier of a remote-sensing
platform, which takes off by being thrown and lands by running on the ground. Being able
to carry a payload of 0.4 kg, the drone carries a Ricoh GXRA12 non-mapping digital camera,
which acquires image features of corn lodging in the pustulation period and extracts the
corn lodging area by using an image analysis method [126]. By carrying image and GPS
sensors on a two degree-of-freedom (DOF) cradle head at the head of a fixed-wing drone,
Andrea S. Laliberte collected images of field crops over a total area of 130 ha and developed
segmentation and classification rule sets, realizing the high-accuracy classification at the
crop level [66]. By using a four-rotor drone, the team led by Zhu installed a single- axis
cradle head to carry an RGB camera, which obtained aerial images of corn (Zea mays L.)
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population in the seedling stage in a field and constructed the structural model of the
canopy [127].

Due to an inability to hover and their high flight speed, fixed-wing drones set onerous
requirements for the sensitivity of sensors. For this reason, these drones are less commonly
used in crop phenotype monitoring platforms. Due to advantages including portability,
hovering capability, beyond terrain limitation, and rapid acquisition of large ranges of
phenotype information, rotary-wing drones have become the first choice of drone for crop
phenotype monitoring. Despite these, rotary-wing drones still have some insurmountable
defects, including low bearing capacity, short endurance, and susceptibility to weather
conditions, which have become main problems that limit their wider application.

4. Phenotype Monitoring Control System for Field Crops

Motion control systems are core components of the motion and task execution of
phenotyping platforms for field crops and are also key to achieving the consistency and
validity of phenotype monitoring data. Motion control systems of phenotyping platforms
for field crops are generally composed of three parts, namely the actuator driver, controller,
and navigation and pose sensors. The controller receives the input signals of the sensors and
runs the motion control algorithm, followed by outputting commands to adjust actuating
equipment, so as to maintain various parameters of the platform at the needed motion state.
The control algorithm achieves accurate motion control strategies using the controller and
computer program, so they are a key in the controller design. Advantages and limitations
of common control algorithms and controllers are listed in Table 2.

Table 2. Advantages and limitations of common control algorithms and controllers.

Control Algorithms
or Controllers Advantages Limitations

PID control algorithm Easy-to-use, flexibility, and
convenient adjustment Low regulation precision

Fuzzy control algorithm
Easy realization, high
robustness, and strong
fault-tolerant ability

Low dynamic quality and lack
of systematicity

Neural network control
algorithm

Non-linearity, high
fault-tolerant ability, and
strong expansibility

Proneness to overfitting

Programmable logic
controller (PLC)

High reliability, high
protection class, and
good stability

High hardware cost and
difficulties in programming
and maintenance

Single-board computer
High integrity, low cost, high
flexibility, and
good portability

Long response time and
narrow application range

Industrial personal
computer (IPC)

High applicability, good
expansibility, and
powerful functions

Poor compatibility and
high price

4.1. Motion Control Algorithms of Phenotyping Platforms for Field Crops
4.1.1. PID Control Algorithm

The proportion, integral, and derivative (PID) control algorithm is a closed-loop
control algorithm commonly seen in control systems. The PID control algorithm shows
favorable control characteristics, sets low requirements for models, and is easily realized. It
has found good application in aspects including controlling the motion speed, navigation,
and flight attitude of phenotyping platforms for field crops.

Kang [128] used the PID control algorithm to control the wheel speed of the platform
in a bid to ensure stationarity of the motion speed of the acquisition platform of crop
phenotype information and improve the accuracy of collected data. The relay feedback
method was also adopted to achieve the online self-tuning of PID parameters, and tests were
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conducted to verify that the online self-tuned PID adjustment algorithm can realize precise
control over the wheel speed of phenotyping platforms. Bakker et al. [129] developed a
robot platform used in a sugar beet field based on RTK-GPS, which achieves precise control
over the wheel speed by virtue of the controller. Zhang et al. [130] designed a control
system for agricultural four-wheel-independent-driven robots and applied the PID control
algorithm to analyze and verify the effectiveness of the four-wheel-independent-steering
control strategy. In the steering process within 0◦ to 360◦, the maximum mean absolute
error (MAE) for controlling the rotation angle is 0.1◦, indicative of high control accuracy of
the steering angle. Based on a multi-rotor drone platform and a PID double closed-loop
control strategy, Liao et al. [68] rapidly adjusted the motor speed and guaranteed stability
and balance of the drone pose. The drone also shows strong anti-jamming performance
and meets the requirements of collecting field phenotype information at a low altitude.

The PID control algorithm, not relying on a mathematical model, shows high robust-
ness, has a small steady-state error, and is beneficially applied to the environment of linear
systems. However, a phenotyping platform is a non-linear system with a large time delay,
and the pose of the platform is likely to be affected by multiple environmental factors
including the center-of-gravity position of the platform and the road condition.

4.1.2. Fuzzy Control Algorithm

Fuzzy control is a control technique formed based on the fuzzy mathematical theory.
Although it is not necessary to establish an accurate mathematical model for the controlled
object, the algorithm has higher controllability, adaptability, and rationality. Thus, fuzzy
control has become an important branch for controlling field-mobile platforms. It is highly
applicable to processes that are difficult to acquire in agricultural production and processes
showing dynamic characteristics that are difficult to master or change to any extremely
significant extent.

Ding et al. [131] obtained the status information of field information acquisition plat-
forms to serve as the input of motion controllers, by using low-precision Beidou positioning
modules, electronic compasses, rotary encoders, and angle sensors. By constructing a mo-
tion controller with lateral correction and longitudinal constant-speed walking, the lateral
correction and longitudinal constant-speed walking in the platform’s walking process were
achieved. In this way, the stability of the platform meets the demand for field information
acquisition. Kanan et al. [132] designed an agricultural vehicle for field environment de-
tection and used a fuzzy controller to change the driving wheel speed, thus enabling the
vehicle to reach the expected steering angle and improving the motion efficiency of the
vehicle. To allow field robots to walk between crop rows, Bengochea-Guevara et al. [133]
devised two fuzzy controllers: one used for steering control and the other for speed control.
Test results show that the fuzzy controllers enable the robots to follow crop rows to avoid
rolling the crops. At present, mobile platforms based on fuzzy controllers generally use the
lateral deviation and the course deviation of current location from the targeted paths as the
input of fuzzy controllers while the wheel speed difference or expected steering angle is
the output. Fuzzy control algorithms are generally based on the experience and knowledge
of experts and can rapidly compensate for systematic errors and retain their innate high
stability, while the following error at the zero position is generally so high that it cannot be
rapidly corrected.

4.1.3. Neural Network Control Algorithm

Neural network control, which refers to using a neural network to model non-linear
objects in the control system, shows strong applicability and learning ability. Considering
the complexity of the agricultural environment, neural network technology can make
reasonable and accurate decisions, control, and learn about the uncertainty of the control
system and the varying environment. Neural network control is one of the important
technologies for the intelligent development of mobile platforms for field crops.
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Jodas et al. [134] developed a navigation system that controls mobile robots through
paths in plantations, which uses a neural network algorithm to search for the effect of the
most appropriate path, with an accuracy rate of 90%. Eski et al. [135] used the PID control
algorithm based on neural networks of models to control unmanned agricultural vehicles,
under which the transient and steady responses of the control mechanism were detected.
Chen et al. [136] established a 4-4-4-3 BP neural network algorithm by using the distance
from the target path, heading angle, steering angle, and variation in steering angle of an
agricultural vehicle as the input, while the distance from the target path, heading angle,
and variation in steering angle of the vehicle at the next sampling point was the output.
The algorithm achieves high-accuracy straight driving in the field, with 95% absolute
values of variation of less than 50 mm. Neural network control does not need an accurate
mathematical model, shows strong non-linear fitting ability, and is easily achieved using a
computer. When controlling the navigation of a mobile platform in the field, the deviation
is generally used as the input while the expected steering angle is used as the output to train
the neural network, or the neural network is used to learn and optimize the proportion,
integral, and derivative coefficients in PID control, so as to improve the accuracy of PID
control. The limitation is that training of neural networks calls for lots of samples, and the
output of neural networks is uncertain.

Existing research on the control of mobile platforms in the field mainly focuses on
application to the steering, navigation, and path planning of platforms. The PID control
structure is simple and has been the most widely applied; however, the PID control
algorithm is only applicable to linear systems, and its response time is contradictory with
the overshoot. Although fuzzy control is applicable to non-linear systems, it exhibits
low accuracy and needs some experience-based judgment. In recent years, many control
strategies of path tracking have been based on PID control integrating with the fuzzy
control algorithm to optimize PID control. For the course-following control, the domain of
discourse of the fuzzy control system is fixed, and lots of control rules remain idle in the
control process, which leads to low accuracy. Therefore, fuzzy control methods still have
scope for improvement in terms of course-following control. Neural networks show strong
fault tolerance and adaptive learning characteristics. They can better analyze and integrate
perceptual information in the nonstructured environment of fields and are important ways
of improving the navigation and path planning of platforms.

4.2. Motion Controllers of Phenotyping Platforms for Field Crops

Controllers are core components of control systems used to control and monitor
various devices and elements in the system. The performance of controllers directly
influences the reliability of control systems, data processing speed, and timeliness of data
acquisition. In the control system of a phenotyping platform for field crops, industrial per-
sonal computers (IPCs), programmable logic controllers (PLCs), or single-board computers
generally serve as controllers to acquire data recorded by sensors and control the generation
and output of instructions.

Luo et al. [137] developed an intelligent, mobile, agricultural working platform and
designed a navigation control system based on the GPS and electronic compass by using
an IPC as the upper computer while using a single-board computer as the lower computer.
The system is a beneficial attempt in the research on the working platform of “precision
agriculture”. Taking the Raspberry Pi single-board computer as the core controller, Zhang
compiled an autonomous navigation control program using Python and developed a
human–computer interaction interface based on HTML5, which achieves ridge walking,
autonomous navigation, and fast acquisition of agricultural information. Bak et al. [138]
designed a robot platform for detecting field information, in which a PC is used as the
master controller and an RS232 serial port is adopted to receive status information from the
RTK-DGPS, directional gyroscope, and geomagnetic compass. A CAN-Bus control motor is
used to control the four-wheel rotation of the robot, thus achieving the following accuracy
at the centimeter level. For the phenotyping platforms for field crops developed by Lu [139],
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an outdoor controller PLC is used, the four-wheel cooperative motion control of fuzzy PID
is applied, and RGB and thermal infrared cameras are carried to obtain the phenotype
information of cotton. Using the ARM9 embedded mini2440 master controller and Linux
operating system, Zhao et al. [140] designed a variable structure method to prevent integral
supersaturation in PID controllers. In addition, the method is combined with the self-
adaptive filtering algorithm to improve the stability and accuracy of the navigation system
on the agricultural robot platforms. Based on a multi-rotor drone platform, Liao devised
a multi-rotor flight control system with STM32F407 as the master controller, which can
rapidly adjust the pose within 1 to 2 s in the field environment, showing strong anti-
jamming performance. It meets the requirement for acquiring the phenotype information of
field crops using multi-rotor drones at low altitude. Sabanci et al. [141] developed a power
chassis control system based on PLC for collecting field information, which processes the
obtained image data using the host computer and fulfils the field operation based on the
mechanism of execution.

Phenotyping platforms for field crops run in complex environments and integrate di-
verse sensors, which sets high requirements for the timeliness, reliability, and compatibility
of the controllers. PLC controllers show multiple advantages including simple program-
ming, low failure rate, robustness, and convenient usage and maintenance, meaning that
they can be applied to harsh field environments for long-term deployment. They have
become the preferred controller for use on track-type phenotyping platforms for field crops.
Single-board computers are highly real-time, fast, can be used across a wide range, and
are mainly applied to drone-borne and IoT-based phenotyping platforms for field crops.
IPCs are stable, reliable, highly compatible, and applicable to vehicle-mounted platforms
in complex environments. The controllers on phenotyping platforms for field crops have
become an important tool for promoting automatic phenotype monitoring. They can not
only reduce the labor intensity of agricultural production but also improve the efficiency of
information acquisition.

5. Phenotype Data Processing Algorithms for Field Crops
5.1. Phenotype Data Processing Technologies

With the development of artificial intelligence (AI) algorithms, intelligent data pro-
cessing methods including machine learning and deep learning have been applied to the
processing of a bulk of image data of crop phenotypes. This can achieve the full-automatic
and accurate resolution of phenotype information. These algorithms have shown powerful
data processing advantages in image classification, identification, feature extraction, and
high-throughput automatic resolution of phenotyping traits in research on crop phenotypes.
The commonly used data processing technologies for crop phenotypes include machine
vision, 3D reconstruction, machine learning, and deep learning. Table 3 lists the commonly
used phenotype data analysis technologies and the corresponding applications.

Machine vision refers to simulating the visual system of humans using theories in-
cluding image processing, image identification, and analysis. It is characterized by high
real-time performance, high positioning accuracy, and the ability to enhance the capabilities
of intelligent systems. Machine vision is generally applied to four types of analysis, namely
identification, classification, evaluation, and prediction, and it can acquire phenotype
parameters including the leaf length, leaf width, area, and perimeter. However, due to
the interference of factors including illumination difference and shading, the processing
and analysis technologies of phenotype images of some crops still show the following
disadvantages: difficulty in feature design and limited ability in complex tasks. Machine
vision fails to solve the problem of overlapping and shading of adjacent leaves, spikes,
and fruits.

For the bulk of the data and complexity of phenotype images, deep learning has been
extensively applied to phenotyping research on diverse crops considering its powerful
feature extraction capacity and modeling capacity. Deep learning extracts the height
in target characteristics, thus significantly improving target identification and detection
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accuracy under complex conditions in a real environment. This solves the problem of spike
density among the wheat population in the field and predicts the national- and county-level
corn and soybean (Glycine max) yields [142].

Three-dimensional reconstruction is an important tool for describing the full infor-
mation structure of crop morphologies and can be applied to a wide variety of crops.
However, factors including the difference in features of reconstructed objects, difficulty in
data extraction, and high price of 3D scanners to some extent restrict the development of
3D reconstruction technology.

Table 3. Phenotyping technologies of crops and their application cases.

Phenotyping Technologies Phenotyping Methods Phenotype Parameters Crops

Machine vision Convolutional neural network
Plant height, variety
classification [143], and wheat
spike identification [144,145]

Potato, wheat, and broomcorn

Deep learning and
machine vision

Deep convolutional neural
network (DCNN)

Number of stems, phenotypes
of stem width, and yield trait

Broomcorn, sugarcane, cereal,
corn, and lettuce

Support vector
machine (SVM)

Canopy coverage, vegetation
index, and flowering
phenotype detection

Cotton

Artificial neural
network (ANN) Green area index (GAI) Wheat

Three-dimensional
reconstruction Structure from motion (SFM) Plant height [146,147] and

crop morphology [148] Corn and wheat

5.2. Phenotype Data Processing and Management Software

In recent years, various high-throughput phenotyping analysis platforms have been
equipped with powerful data processing and management software systems, which show
functions including data acquisition and storage, data analysis, and information mining.
Phenotyping data processing and management software integrates these massive initial
data to analyze crop phenotype parameters, mine information of biological significance,
deepen phenotype and genetic research, and accurately manage fields. The commonly used
phenotype data processing and management software is displayed in Table 4. Such software
can automatically or semi-automatically extract digital features of the shape, size, color,
and spectral characteristics from complex images of many crops including corn, barley
(Hordeum vulgare), Arabidopsis thaliana, and wheat. They have integrated functions
of complete image analysis from processing to descriptive statistics and can be run on
platforms including OS X, Windows, and Linux. At present, most commercial phenotypic
data analysis software relies on customization of specific hardware platforms. In addition,
the extracted phenotype data are relatively one-sided, the installation and maintenance
cost of the software is high, and it is difficult to operate. The above problems hinder the
development of phenotype data analysis tools towards the universality, practicability, and
standardization and their wide application.
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Table 4. Crop phenotype data analysis and management software.

Software R&D Institutions (Year) Types of Analyzed Data Obtained Phenotype Information Characteristics

ImageJ version 1.8.0 National Institutes of Health (2007) Visible images Leaf area, leaf perimeter, leaf length, leaf
width, and plant height Public image processing software

IAP (Integrated Analysis Platform) [149] Leibniz Institute of Plant Genetics and
Crop Plant Research (2012)

Visible, fluorescence, near-infrared, and
infrared images

Morphological and structural traits
including plant height, leaf area,
biomass, and leaf inclination, color traits,
fluorescence intensity, and
near-infrared reflectivity

Image data management and
analysis platform

HTPheno [150] Leibniz Institute of Plant Genetics and
Crop Plant Research (2011) Visible images Width, height, and projected shoot area ImageJ plug-in and open-source image

data analysis software system

HPGA (High-throughput Plant Growth
Analysis) [151] Michigan State University (2016) Three digital images Plant area, leaf shape

High-throughput phenotyping
platforms for growth modeling and
function analysis of plants

Leaf Analyzer [152] University of York (2007) 2D or 3D images Leaf shape and size Software for rapid, large-scale, automatic
analysis of variation in leaf shape

Leasyscan [70] ICRISAT—Crop Physiology
Laboratory (2015) 3D point cloud images

3D leaf area, projected leaf area, leaf area
index, leaf inclination, leaf angle, plant
height, maximum plant height, optical
penetration depth, biomass

Commercial integrated analysis software
based on multispectral laser 3D scanning
and measuring instrument PlantEye

LemnaGrid [29] LemnaTec, Germany Visible images Morphological and structural traits
including leaf area and compactness

Commercial integrated analysis software
based on Scanalyzer 3D platform

Leaf-GP [153] Earlham Institute, Norwich
Research Park Visible images

Number of leaves, morphological and
structural traits including projected leaf
area and perimeter, and color traits

Open source, extensibility, easy-to-use,
and ability to simply resolve images of
Arabidopsis thaliana and wheat taken by
low-cost imaging devices such as smart
phones and digital cameras

Phenotiki [154] IMT School for Advanced Studies,
Piazza S. Visible images

Morphological and structural traits,
color traits, number of leaves, dynamic
growth curves of plants

Economy and ease of deployment

HSI-PP [155]
State Key Laboratory of Modern
Optical Instrumentation,
Zhejiang University

Hyperspectral images
Projected leaf area, leaf perimeter, plant
diameter, leaf convex hull, stockiness,
and compactness

Machine learning and deep learning
models that can preprocess
hyperspectral images so that they are
more applicable to training classification
and regression
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6. Pending Problems

Over the years, the emergence of novel phenotyping sensors, intelligent monitoring
systems, and digital processing methods has provided ample carriers and technologies
for the fast, accurate, and non-invasive monitoring of phenotypes relating to morpho-
logical and physical characteristics of whole plants or canopies. However, these sen-
sors, monitoring systems, and methods also remain to be further improved from the
following perspectives:

1. Lack of R&D and integration technologies of novel phenotyping sensors. Break-
throughs remain to be made in the R&D and field application of low-cost phenotyping
sensors for monitoring traits relating to the resistance and nutrition of crops. Most
imaging-type phenotyping sensors are not applicable to the dynamic phenotype mon-
itoring of field crops and cannot overcome sensor shaking due to platform vibration,
so the collected images are blurred and distorted. A single sensor can only acquire
limited data, while the use of multiple sensors together faces technological problems
pertaining to system standards and synchronous calibration. Moreover, technological
problems relating to the integration of multi-source phenotype information at different
scales in different growth stages also pose a challenge for phenotype research teams.

2. Urgent need to develop low-cost and highly applicable phenotyping platforms. Phe-
notyping platforms for field crops generally use specific commercial software to fulfil
hardware control, data management, and trait analysis, to which the investment and
maintenance cost are prohibitive. Platforms and sensor systems also cost tens of thou-
sands of dollars. In addition, some phenotyping platforms for field crops are designed
to adapt to specific crops and agronomic traits, which limits their utilization in other
crops and plots with different agronomic designs. In addition, changes relating to the
plant height and size in the crop growth process also limit the utilization of platforms
in all the growth stages.

3. Incomplete development standards for phenotype monitoring systems. Definite
development standards are unavailable for various modules including the sensor
acquisition, communication transmission, and data analysis, so that software and hard-
ware systems of many phenotype monitoring systems follow different development
and application standards. This limits the secondary development and promotion of
the technology.

4. Timeliness of data processing to be improved. It is acknowledged that the interactions
between field crops and environments are complex, and the soil shows heterogeneity.
This means that relevant external environmental factors can all affect the stability and
accuracy of phenotype monitoring systems for field crops in navigation, positioning,
target detection, and data transmission in field crop phenotyping monitoring systems.
Limited by the computer hardware and due to the influences of algorithms and
software, the data processing and phenotyping trait extraction of monitoring systems
are mainly performed offline, during which it is challenging to ensure timeliness and
online control.

7. Prospects

The limitations of phenotype monitoring systems for field crops are all inevitable
problems influencing practical field application. The main development and solution
directions of future research into crop phenotypes include:

1. Multi-sensor integration and multi-source data fusion. A ground-based automatic
acquisition system (e.g., swarm robots) for phenotype information needs to be estab-
lished, and a multi-dimensional phenotype information acquisition system combining
ground-based and aerial platforms is suggested to be deployed. This can realize
data acquisition with full spatial coverage and improve the data throughput of multi-
scale monitoring systems. A multi-sensor integrated system needs to be developed
to achieve high-integration and high-resolution phenotype collection with strong
anti-jamming performance and to fully integrate traits recorded by these sensors,
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so as to realize parallel tests of multiple parameters. Multi-source phenotype data
should be further mined, arranged, and visualized. Additionally, multi-source data
fusion methods should be explored to acquire the correspondence between genetic
characteristics and presentation of phenotyping traits of crops.

2. Optimizing platform mechanisms, improving data quality, and enhancing field appli-
cability of platforms. Design of mobile structures of platforms should be innovated
to enhance the anti-vibration property and stability of platforms and improve the
accuracy of data collected on complex terrains. Automatic regulating devices or
modular mechanism design can be used so that platforms are adaptive to different
planting systems, including the plant height, row spacing, and field layout, and can be
flexibly operated in various environments and can execute tasks to acquire phenotype
information about different crops.

3. Building a unified, open, standardized technological system. The cooperation between
developers of phenotyping platforms and sensors can be enhanced to form the unified
and open platform and sensor standards and provide more opportunities of secondary
development for more researchers. This can also provide technological support for
multi-sensor integration and intelligent acquisition of platforms. Aiming at the
acquired multi-source data, normalized and standardized processing standards and
data management systems should be established to provide data support for the
application of information processing technologies including data storage, sharing,
analysis, and decision making.

4. Optimizing and upgrading data processing software. Processing software should be
developed to meet the demand for efficient data analysis in the context of big data. The
application of emerging technologies such as machine learning and AI to the sensing
and control of phenotyping platforms should be explored to understand scenarios
and extract phenotyping traits more efficiently. Novel data processing algorithms are
suggested to be combined to further improve the speed and accuracy of automatic
information processing of monitoring systems in practical production environments
with varying levels of illumination and backgrounds to achieve high-quality, online,
real-time data processing.

8. Conclusions

High-throughput, automated, high-resolution crop phenotyping platforms and anal-
ysis technologies are key to accelerating crop improvement and breeding processes, in-
creasing the yield, and enhancing the resistance to disease. However, overcoming the
complexities of the field environment, rapidly obtaining complex traits pertaining to the
crop yield, resistance, quality, and nutrition, and storing and analyzing multi-sequence
and multi-source high-throughput phenotypic data in real time remain challenges in the
development of current phenotypic techniques. To solve these problems, for phenotypic
monitoring technologies, multi-sensor integrated systems should be developed, so as to
achieve the goals of high integration and high resolution; for phenotyping platforms, the
mechanisms should be optimized and the development standard should be unified; for the
motion control system of platforms, high-accuracy and automated control systems need
to be constructed for field crops; for data processing, real-time and efficient algorithms
for parsing and managing phenotypic parameters should be developed. With the further
development of relevant technologies in the future, high-throughput, low-cost plant pheno-
typic information collection technologies and platforms will develop from experimental
research into production and application and form a relevant industry based on associated
technologies. This may help to promote the creation of a new state of the art for genomics
as applied to precision agriculture.
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