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Abstract: With advances in precision agriculture, autonomous agricultural machines can reduce
human labor, optimize workflow, and increase productivity. Accurate and reliable obstacle-detection
and avoidance systems are essential for ensuring the safety of automated agricultural machines.
Existing LiDAR-based obstacle detection methods for the farmland environment process the point
clouds via manually designed features, which is time-consuming, labor-intensive, and weak in terms
of generalization. In contrast, deep learning has a powerful ability to learn features autonomously.
In this study, we attempted to apply deep learning in LiDAR-based 3D obstacle detection for the
farmland environment. In terms of perception hardware, we established a data acquisition platform
including LiDAR, a camera, and a GNSS/INS on the agricultural machine. In terms of perception
method, considering the different agricultural conditions, we used our datasets to train an effective
3D obstacle detector, known as Focal Voxel R-CNN. We used focal sparse convolution to replace
the original 3D sparse convolution because of its adaptable ability to extract effective features from
sparse point cloud data. Specifically, a branch of submanifold sparse convolution was added to the
upstream of the backbone convolution network; this adds weight to the foreground point and retains
more valuable information. In comparison with Voxel R-CNN, the proposed Focal Voxel R-CNN
significantly improves the detection performance for small objects, and the AP in the pedestrian class
increased from 89.04% to 92.89%. The results show that our model obtains an mAP of 91.43%, which
is 3.36% higher than the base model. The detection speed is 28.57 FPS, which is 4.18 FPS faster than
the base model. The experiments show the effectiveness of our model, which can provide a more
reliable obstacle detection model for autonomous agricultural machines.

Keywords: obstacle detection; LiDAR; point clouds; focal voxel R-CNN; farmland

1. Introduction

Autonomous agricultural machines can effectively improve the efficiency of agricul-
tural production and reduce the labor intensity of agricultural practitioners [1]. However,
there is still a need for a human operator to monitor the environment and respond to
potential obstacles and hazards during the operation in a timely manner. In order to fully
automate agricultural machines, accurate and reliable obstacle detection and avoidance
systems are essential to alleviate safety concerns. At present, autonomous agricultural
machines mainly rely on positioning technology (e.g., global navigation satellite system
(GNSS)) to plan their operating paths; efforts are underway to fully automate this process,
but safety concerns are currently hindering progress in this regard—especially the sudden
appearance of dynamic obstacles [2], such as humans crossing the road or other agricultural
machines operating in the field. Therefore, in sensing the surrounding environment of
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autonomous agricultural machines, the detection and localization of such obstacles is a
crucial step.

Currently, research on obstacle detection for autonomous agricultural machines is
receiving increasing attention [3]; such studies mainly focus on computer vision [4–6]
and LiDAR [2,7,8]. Compared to 2D images, LiDAR can better perceive the surrounding
environment, as it generates 3D point cloud data with rich geometric, shape, and scale
information. In addition, it is not susceptible to light and, thus, it has better reliability.
In agriculture, LiDAR is used to detect the category and location of obstacles to ensure
the safety of autonomous agricultural machines during their operation [9]. In practice,
3D point cloud processing faces challenges, such as the unstructured and sparse nature
of the point cloud data. The accuracy of traditional machine learning workflows no
longer meets the needs of autonomous agricultural machines’ operation [9]. Because
such methods are feature-based—which means that the point features require manually
designed parameters—it often takes a lot of time to extract effective features, and as the
environmental complexity increases, the detection accuracy decreases considerably.

As 2D object detection using deep learning methods has achieved remarkable success,
many 2D-image-based detectors have been applied in point cloud data-processing for
3D object detection [10]. The most commonly used methods can be classified into two
categories: voxel-based methods [11,12], and point-based methods [13,14]. Voxel-based
methods convert sparse point clouds into regular representations, such as 3D voxels or 2D
bird’s eye views (BEVs), which are later processed using 3D or 2D convolutional neural
networks to learn point cloud features; these are more efficient in feature extraction, but
voxelization inevitably leads to the loss of some location information, resulting in lower
accuracy. Point-based methods extract features directly from the point clouds, generally
using PointNet [15], which takes the original point cloud as an input and extracts the
point set features via iterative sampling and grouping. These methods can better retain
accurate location information, but they have a higher computational complexity, leading
to a slow detection speed. The 3D obstacle detection using deep learning with 3D point
clouds is still in its infancy in the domain of autonomous agricultural machines. To the best
of our knowledge, no similar research has been conducted for autonomous agricultural
machines. In this study, for the first time, we attempted to conduct 3D obstacle detection
for autonomous agricultural machines with point cloud data.

We chose Voxel R-CNN [16], which is a high-performance voxel-based 3D object
detector, as a baseline; it takes 3D sparse CNNs as its backbone for feature extraction,
and then it uses a Voxel RoI Pooling module to take full advantage of voxel features by
using the nearest neighbor perceptual properties of the voxels to extract the neighboring
voxels’ features. It is notable that the Voxel RoI Pooling module does not need pointwise
information, enabling the detector to perform faster than previous state-of-the-art detectors
(e.g., PVRCNN [14]); hence, it can better balance efficiency and accuracy.

However, it uses 3D sparse CNNs for feature extraction, but such 3D sparse CNNs
treat every feature equally, ignoring the fact that obstacles and background points have a
different importance and that distance affects the sparsity of the point cloud. In agricultural
scenes, the background is more widespread compared to obstacles, and the posture of
pedestrians in the field is uncertain, making obstacle detection more difficult. To improve
this, we used a focal sparse convolutional network [17] instead of the original sparse CNN
to assign a different importance to each feature during the convolution process and increase
the proportion of valuable features, improving the detection accuracy of small, distant
objects while removing a large number of background voxels and improving the final
detection without requiring too much computational effort to achieve high representation
capability and efficiency.

This paper focuses on improving the precision and robustness of 3D obstacle detection
for autonomous agricultural machines to better ensure their safety. We improved Voxel
R-CNN to increase the detection performance of small, distant objects while ensuring
overall accuracy. To test the performance of the model, a solution was presented from data
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acquisition and preparation of datasets for model training. Two representative obstacles—
pedestrian and tractor—were chosen to conduct different comparison experiments. The
main contributions of this study are as follows:

(1) We first attempted to combine a deep learning method with point clouds to perform
3D obstacle detection for autonomous agricultural machines, using its powerful
feature-learning capability to generate more robust obstacle-perception models;

(2) We proposed a Focal Voxel R-CNN network with a focal, sparse convolutional neural
network instead of 3D sparse CNN, enhancing the learning of valuable features to
improve the accuracy of the model;

(3) A multi-modal dataset for 3D obstacle detection for autonomous agricultural machines
was constructed using the KITTI Vision Benchmark, which represents a wide range of
real agricultural environments containing static and dynamic obstacles in multiple
scenarios. Finally, the effectiveness of the proposed method was evaluated using the
collected datasets, and the results show that our model outperformed the other 3D
object-detection network.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.1.1. Platform Setup

A JD1204 tractor was used as the acquisition platform, and it was modified and
retrofitted to install each hardware device used for the data collection on the tractor. Using
the original structure of the tractor, such as the head counterweight ends of the screw
holes, aluminum profiles were added to build the sensor bracket. The acquisition system
consisted of four parts: (1) a tractor position acquisition system; (2) a LiDAR system; (3) a
vision system; and (4) a data processing system. The installation position of each hardware
device is shown in Figure 1.

The tractor’s position acquisition system uses a CHC CGI-610 GNSS/INS integrated
sensor, which combines satellite positioning and inertial measurement to provide high-
precision carrier position, altitude, and speed information in real time to meet the needs of
long-term, high-precision, and high-reliability positioning applications for autonomous
agricultural machines. The acquisition frequency is 100 Hz.

The LiDAR system uses the Velodyne VLP-16 3D LiDAR. Its laser emission beams
consist of 16 lines, and each laser beam can provide distance information and reflectivity
information. The vertical field of view is 30◦ (+/−15◦), the horizontal field of view is
360◦, ~300,000 points of data output per second can be acquired, the maximum distance
measurement is 100 m, and the acquisition frequency is 10 Hz.

The vision system uses a FLIR BFS-PGE-23S3C model color camera; its resolution is
1920 × 1200, the maximum frame rate is 53 FPS, and the acquisition frequency is 20 Hz.

The data processing system uses a Nuvo-810GC IPC with the Ubuntu 18.04 operat-
ing system, which is installed in the cockpit and connected to a display to visualize the
collected data. Each of the three sensor modules is connected to the IPC in different ways:
GNSS/IMU combined navigation through the RS-232 serial port, and LiDAR and camera
through an Ethernet protocol for data transfer with the IPC.

2.1.2. Data Acquisition

The experimental data collection was carried out in June 2021 in fields in Miyun
District, Beijing. The ROS (Robot Operating System) system was built on an IPC with
Ubuntu 18.04 operating system installed. The data of each sensor were recorded in the
form of a bag under the ROS system, i.e., which is a file format for storing ROS message
data named by its bag extension. Figure 2 shows a frame from the bag displayed using
the RVIZ visualization tool, with the image on the left and the corresponding point-cloud
data on the right. The collected bag file can be saved to the IPC, after which the point
cloud (i.e., pcd file) and the image (i.e., jpg file) can be extracted separately from the
bag through the ROS operation command. In the actual tractor-operating scenarios—for
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example, the plowing, planting, and harvesting processes—the tractor is equipped with
different equipment and enters the field from the agricultural road, so these two scenes
were selected for experimental data collection.
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2.1.3. Data Preprocessing

Since the acquisition frequency and coordinates of each sensor are different, to make
the multisource data consistent, it was necessary to carry out the temporal and spatial
synchronization of the sensor data, and the preprocessing of the collected data was a
preliminary step in the construction of the dataset.

• Temporal synchronization:

Temporal synchronization allows multiple sensors of different frequencies to be syn-
chronized to a uniform frequency. It can also be divided into hard and soft synchronization.
Hard synchronization refers to the use of hardware triggers to directly activate multiple
sensors through physical signals so that multiple sensors can trigger for sampling at the
same moment. Soft synchronization entails synchronizing the data of each sensor to the
unified timestamp for each frame of data. In this study, we adopted the soft synchro-
nization method for temporal synchronization due to feasibility concerns. By using the
communication mechanism of the ROS, we subscribe to the topic of the camera and LiDAR
sensor—which store the corresponding image and point cloud data, respectively—and
encapsulated the data as messages for delivery. When a frame of LiDAR point cloud data
was received, we would find the nearest image data for matching. Finally, after encapsu-
lating the synchronized point cloud and image data into messages, we published them
with different topics and then recorded the new time-synchronized data through the ROS
bag, which is the primary mechanism for data logging in the ROS, thereby completing the
temporal synchronization for different frequency sensors.

• Spatial synchronization:

Spatial synchronization uses the coordinate transformation relationship between
different sensors to convert them to the same coordinate system. In this study, we adopted
an offline calibration tool to calibrate the sensor, using Autoware’s open-source calibration
toolkit to calibrate the LiDAR and camera. The camera’s intrinsic matrix was calculated
first, after which we calculated the camera-to-LiDAR extrinsic matrix. The intrinsic matrix
represents the transformation relationship between the camera coordinate system and the
pixel coordinate system, which is built into the camera settings and can be obtained using
the aforementioned open-source tools. The extrinsic matrix consists of a rotation matrix
and a translation matrix. First, we calculated the rotation matrix of the camera and the
LiDAR, and then we optimized the translation matrix. The dimensions of the two matrices
are as follows:

Rcam
velo ∈ R3×3 (1)

tcam
velo ∈ R1×3 (2)

After the intrinsic calibration, the position and orientation of each checkerboard in the
camera coordinate system can be obtained, while the grasping point corresponding to each
checkerboard is extracted from the LiDAR point cloud. Therefore, the optimization goal
is to align these planes by adjusting the camera’s extrinsic parameters, and the rotation
translation matrix between sensors is obtained after iterative optimization; this matrix is

Tcam
velo =

(
Rcam

velo tcam
velo

0 1

)
(3)

Finally, a 3D point x = (x, y, z, 1 )T in the LiDAR coordinate system is projected to the
point y = (u, v, 1) T in the 0th camera image, with the following formula:

y = P(i)
rectR

(0)
rectT

cam
velox (4)

where P(i)
rect is the projection matrix of the camera, as follows:
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P(i)
rect =


f (i)u 0 c(i)u

0 f (i)v c(i)v

0 0 1

− f (i)u

0

0

 (5)

where R(0)
rect is the corrected rotation matrix, which is set as a unit matrix, leaving the image

uncropped in size.

2.2. Dataset

This paper refers to the driving of autonomous vehicles; this kind of application
requires real-time object detection to ensure safe driving, which is consistent with the need
for the sensing of obstacles by autonomous agricultural machines in farming work. By re-
ferring to the standards provided by the KITTI Vision Benchmark Suite [18]—a benchmark
dataset for autonomous vehicle driving—we generated a 3D obstacle-detection dataset
for agricultural scenarios. After the data preprocessing operation in Section 2.1.3, the
temporally and spatially synchronized multisource data were obtained. Then, the anno-
tation of images and point clouds was performed using the Bayside annotation software,
and the fusion annotation-required camera parameters, which could be obtained from the
aforementioned calibration results of the LiDAR and camera. As shown in Figure 3, the
labeling was based on the calibration parameters, and the point cloud was labeled with a
3D box (Figure 3a), which could be automatically mapped to the 2D image (Figure 3b) to
generate a rectangular box. These 2D images were later processed to generate labels, and
they were also better for visualizing the labeling results.

The final labeling result is given in JSON file format, including the center point of the
3D box; the length, width, height, and rotation angle of the 3D box; the type of obstacle
information; and the coordinates of the upper-left and lower-right corners of the 2D box.
Finally, the JSON file of the labeling results is rewritten to a txt file in KITTI format using
Python script. As shown in Table 1, the format of the dataset labels was set with nine
values, including the 2D bounding box information for the final visualization, and the class
types were set to Tractor and Pedestrian according to the importance and probability of an
obstacle’s appearance. A total of 1450 frames of point cloud samples were obtained and
divided into training, validation, and test sets at an 8:1:1 ratio.
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Figure 3. Examples of labeling operations. (a) Point cloud labeling; (b) Image labeling.

As shown in Figure 4, the labeled ground-truth boxes were displayed visually using
MATLAB (2022, MathWorks Inc., Natick, MA, USA). The figure shows that two types
of obstacles are labeled—namely “tractor” and “pedestrian”—which are projected onto
the image from the point cloud in order to facilitate the visualization of the 3D ground-
truth boxes.
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Table 1. Dataset label format.

Label Parameter Explanation

Type Tractor, Pedestrian
Truncation degree 0 (untruncated)–1 (truncated)

Occlusion rate Degree of occlusion (0 means no occlusion)
Observation angle Observation angle of the object, range: −π ~ π

2D bounding box Coordinates of the upper-left and lower-right corners of the 2D box
3D box size 3D box height, width, and length

3D box position Coordinates of the 3D box’s center in the camera coordinate system
Target orientation Spatial orientation of the 3D object

Score Confidence in the training results used to evaluate the
detection performance
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The agricultural road scene mainly records the data of tractors stopping at the roadside
and pedestrians crossing the road dynamically; the field scene mainly records the data
of multiple tractors operating in the different field waylines and pedestrians crossing the
farming field dynamically in multiple postures.

2.3. Focal Voxel R-CNN

The Focal Voxel R-CNN is designed based on Voxel R-CNN and we modified its
architecture to fit farmland conditions. The original Voxel R-CNN and the proposed Focal
Voxel R-CNN are both voxel-based two stage 3D object detectors. As shown in Figure 5,
they share a similar framework.

In the first RPN stage, the input point clouds are voxelized into voxels, then these
voxelized inputs are gradually converted into volumetric features by the 3D backbone
network. After that, BEV feature maps are produced by stacking the 3D volume feature
along the Z axis. In the 2D backbone network, features are extracted from the BEV pseudo-
images, and then proposals are generated. In the second RCNN stage, the Voxel RoI Pooling
is used to extract RoI features, which are then fed into the detect head for prediction box
refinement. In Algorithm 1, we show the complete pseudocode of our method.
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Algorithm 1 Focal Voxel R-CNN training procedure

Inputs: Dataset D, batch size B, iteration maximum N, model M parameterized by β, learning rate α.
Outputs: updated model M with new parameter β∗

1: for n = 1 to maximum iteration N do:
2: Take one batch of point cloud files P from dataset D
3: Voxelize the point cloud as P∗

4: Extract 3D volume feature F from P∗ by 3D backbone
5: Compress the height of F into BEV form
6: Extract 2D feature Fb by 2D backbone

7:
Generate proposals and scores from Fb by RPN

Select the top 128 proposals by scores
NMS(threshold = 0.7) -> top 100 proposals S

8: Extract RoI feature FR from S and F by Voxel RoI Pooling

9:
Predict refined 3D bounding boxes and confidence scores from FR by Detect head

NMS(threshold = 0.1) -> final results
10: Compute loss with Eq 12.
11: Update the parameter β

12: end for
13: Return updated model M parameterized by β∗

We will discuss the detailed architecture of the Focal Voxel R-CNN in the following
sections:

1. Voxelization:

In order to extract features from the sparse point cloud, a 3D space is divided into
equally spaced voxels along x, y, and z axes. In this way, we are able to use the regular voxel
as an input for the 3D convolution feature extraction. The original feature of each point
is represented by a four-dimensional vector with its x, y, and z coordinates and intensity.
Each non-empty voxel is represented by the mean value of the point cloud feature.

2. The 3D backbone:

The 3D backbone network usually uses sparse convolution [17] to abstract non-empty
voxels into 3D feature volumes via convolutional multiplication operations; as shown in
Figure 6a, there are typically one stem and four stages layer in a 3D backbone. Except for
the first stage, each stage includes a regular sparse convolution for downsampling and
two submanifold blocks. The Subm block is a conv-bn-relu layer, its structure is shown in
Figure 6d, which consists of one submanifold sparse convolution followed by batchnorm
and ReLU activation. The Reg block’s structure is similar to the Subm block, except for the
submanifold sparse convolution being replaced by the regular sparse convolution.
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In our work, we added the focal sparse convolutional neural network [17] in the
last layer of Stages 1 and 2 based on the original network, which can make the feature
learning process focus on more valuable foreground point data. As shown in Figure 6c,
the focal sparse convolutional network adds a branch of submanifold sparse convolution
upstream of the main convolution to dynamically output the shapes of features with
different importance. It uses the predicted cubic importance to dynamically determine
the output shape of the input features. It mainly includes three steps: first, the cubic
importance map Ip is constructed by making dynamic predictions for each input feature
through the sigmoid function, which includes the importance scores of the output features
around the input features at position p. Next, the important input features are selected as
shown in Equation (6), where Pim is a subset of the input features (Pin) containing relatively
important input features, Ip

0 is the center of the importance cube map at position p, and τ
is a predefined threshold, where this equation becomes a regular or submanifold sparse
convolution when it is 0 or 1, respectively. Finally, a dynamic output shape is generated, in
which the Pim features are reshaped according to the predefined threshold τ, and the final
output shape Kd

im(p) is shown in Equation (7).

Pim =
{

p
∣∣∣Ip

0 ≥ τ, p ∈ Pin

}
(6)

Kd
im(p) =

{
k
∣∣∣p + k ∈ Pin, Ip

k ≥ τ, k ∈ Kd
}

(7)
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As a result, the network’s downsampling process gradually increases the valuable
information, improving the recognition accuracy of small objects while removing a large
number of background voxels and improving the final detection without causing too much
computational burden. The modified 3D backbone structure is shown in Figure 6b.

3. The 2D backbone and Region Proposal Network

After being processed by the 3D backbone, the sparse 3D feature volumes are stacked
in the Z-axis and transformed into a bird’s-eye view (BEV) form, and then the 2D backbone
network extracts 2D features from the BEV pseudo-image feature map. There are two
components in the 2D backbone: two blocks of 3× 3 convolution layers, and an upsampled
and concatenated multi-scale feature fusion network. Finally, the RPN is applied to generate
3D region proposals.

4. Voxel RoI Pooling

Voxel RoI Pooling Layer is used to extract RoI features from proposals that are gen-
erated in the RPN stage. First, a region proposal is divided up into 6 × 6 × 6 regular
sub-voxels. Then, a voxel query is used to integrate the neighboring voxel features. The
neighboring voxel features are subsequently aggregated to a more multi-scale manner
using an accelerated PointNet Module.

5. Detect Head

In this step, we will use the RoI features extracted by the Voxel RoI Pooling and feed
them into the detect head for box refinement, which will be divided into two branches: one
for bounding box regression and the other for confidence prediction.

2.4. Loss Function

We trained the proposed network by an end-to-end approach with the region proposal
loss Lrpn and the proposal refinement loss Lrcnn. The total loss is calculated by the sum of
the region proposal loss Lrpn and the proposal refinement loss Lrcnn, as:

Ltotal = Lrpn + Lrcnn (8)

In the first RPN stage, we adopted the same Lrpn with [16], which is the sum of
classification loss and box regression loss, as:

Lrpn =
1

N f g
[∑

i
Lcls(li, l∗i ) + σ∑

i
Lreg(γ

1
i , γ∗i )] (9)

where N f g is the number of foreground proposals; li represents the prediction value of the
classification category; l∗i represents the target value of the ground truth category. σ denotes
that only foreground proposals are used to calculate box regression loss. γ1

i indicates the
prediction value of box regression; γ∗i indicates the ground truth value of box regression.
For classification, we used Focal Loss [19] and for box regression, we used Huber loss.

In the second RCNN stage, the proposal refinement loss was calculated by confidence
score prediction loss Liou and box refinement loss Lreg. In the confidence prediction branch,
the target value is an IoU-guided value, as:

c∗i =


0 IoUi < θL,
IoUi−θL
θH−θL

θL ≤ IoUi < θH ,

1 IoUi > θH ,

(10)

where c∗i represents the IoU between the i-th proposal and its ground truth box; θL and
θH are thresholds for foreground and background IoU, respectively. In this case, we used
Binary Cross Entropy Loss for confidence prediction, and Huber Loss for box refinement;
the losses of the RCNN stage are computed as:
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Lrcnn =
1

Ns
[∑

i
Liou(ci, c∗i ) + ε∑

i
Lreg(γi

2, γ2
∗)] (11)

where Ns represents the number of proposals that were sampled during training; ci repre-
sents the prediction of the confidence score; c∗i represents the ground truth of the confidence
score; ε denotes that only foreground proposals contribute to the box regression loss; γi

2 de-
notes the prediction value of box regression; γ2

∗ denotes the ground truth of box regression.

2.5. Evaluation Metrics

The evaluation metrics used in this experiment included recall (R), and mAP score—
the same as the KITTI evaluation. The formulae for recall and mAP are as follows:

Recall =
TP

TP + FN
=

TP
all ground truths

(12)

mAP =
1
C

|C|

∑
i=1

APi (13)

AP =
1
N ∑

r∈S
P(r) (14)

P(r) = max
r̃:̃r≥r

P(r̃) (15)

where TP stands for true positives, which indicates that the model correctly predicts
positive cases, i.e., the number of correctly detected tractors or pedestrians; FP stands for
false positives, which indicates the number of wrong detections by the model; and FN
stands for false negatives, which indicates the number of missed detections. The mean AP
(mAP) can be obtained by averaging the AP of all categories in a given dataset. C is the
number of categories being detected, in this study we had two categories—namely tractor
and pedestrian—so C = equals 2. KITTI adopts the AP@SN metric, and we followed the
same metric to evaluate our model. The AP followed the AP@S40 metric [20], so N = equals
40, which means that 40 recall levels were evaluated, where S40 = [1/40, 2/40, 3/40, . . . ,
1]. P(r) calculates the area under the precision-recall curve, taking the maximum precision
whose recall is greater than the threshold r̃.

3. Results
3.1. Multisensor Spatiotemporal Synchronization Results
3.1.1. Time Synchronization Results

To verify the results of multisensor time synchronization, the rqt_bag command of the
ROS was used to visualize the multisensor timestamps.

Figure 7 shows the comparison of the results of multisensor time synchronization.
From Figure 7a, it can be seen intuitively that the two unsynchronized sensor timestamps
do not have the same timing correspondence; for example, at 0.0 s, the green vertical line—
which represents one frame of image timestamp information—and the purple vertical
line—which represents one frame of LiDAR timestamp information—are not consistent,
and the timestamp information of the camera appears more frequently within 1 s, indicating
that the camera has a higher acquisition frequency.

Meanwhile, after time synchronization (Figure 7b), it can be seen that the timestamps
of the two sensors become very close to one another, the frequencies of the two sensors
become identical, and both of them are collected at an interval of 0.1 s.
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Figure 7. Comparison of the results of multisensor time synchronization: The horizontal axis
represents the time, the vertical axis is the sensor topic name, flir_adk/image_raw represents the
image data collected by the camera, and velodyne_points represents the point cloud data collected by
the LiDAR. (a) Unsynchronized multisensor timestamps. (b) Synchronized multisensor timestamps.

3.1.2. Spatial Registration Results

After the calibration of the camera and LiDAR using Autoware’s open-source Calibra-
tion_Toolkit, the results were validated using a visualization tool.

Figure 8 shows the visualization results between the LiDAR and the camera; the
LiDAR line beam is projected onto the image, and the different colored lines represent
different reflectance of the object, where it can be seen that the red line projected onto the
edge of the black and white calibration checkerboard is flat, while the orange line projected
onto the tree also shown in a rough outline, which represents a relatively accurate spatial
synchronization result obtained between the LiDAR and the camera.
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3.2. Comparison between Different Methods

To validate the model’s effectiveness, the improved Voxel R-CNN model was com-
pared with three state-of-the-art models, which comprised two types of representation
of point clouds—namely, point-based (PV-RCNN [14]) and voxel-based (SECOND [12]
Voxel R-CNN [16]) methods—and used the same training parameters and datasets for
training. The results of the experiments comparing different methods for obstacle detection
are shown in Table 2.

As shown in Table 2, the experimental results of our method and the comparison
methods indicate that our Focal Voxel R-CNN method outperforms the other state-of-the-
art methods. For example, in terms of recall, the Focal Voxel R-CNN method has a recall of
90.23%, which is 1.82%, 7.35%, and 1.75% higher than the recall of the original Voxel R-CNN,
SECOND, and PV-RCNN methods, respectively. In terms of mAP values, it improved by
3.36%, 15.38%, and 1.76%, respectively. We found that our method enhanced detection
performance in both classes with respect to current methods. The AP for the tractor class
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increased by 2.86%, 11.88%, and 0.26% in comparison to Voxel R-CNN, SECOND, and
PVRCNN, whereas the AP for the pedestrian class also increased considerably by 3.85%,
18.88%, 3.26%. Although our model’s memory increased by 2.4% compared to the original
Voxel R-CNN model, the frame rate was 4.18 FPS faster in comparison, the single-frame
detection speed is 0.03 s, better balancing the detection accuracy and efficiency. In Figure 9,
we can see that our method converges better than the original Voxel R-CNN, and the final
loss is much lower than the original Voxel R-CNN.

Table 2. Comparative experimental results of different obstacle detection methods.

Method R (%)
AP (%)

mAP (%) Speed (FPS) Model Size (MB)
Tractor Pedestrian

PV-RCNN 88.48 89.70 89.63 89.67 17.67 150.2
SECOND 82.88 78.08 74.01 76.05 42.55 60.9

Voxel R-CNN 88.41 87.10 89.04 88.07 24.39 105.3
Our method 90.23 89.96 92.89 91.43 28.57 107.9

Agronomy 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. Loss curve of Voxel R-CNN and our method. 

3.3. Comparison between Different Voxel Sizes 
To test the robustness of the model, different voxel sizes were selected for compari-

son experiments, and the experimental results are shown in Table 3. 

Table 3. Comparison of model detection results under different voxel sizes. 

Voxel Size (m) Method R (%) mAP (%) Speed (FPS) Model Size (MB) 

(0.05, 0.05, 0.1) 

PV-RCNN 88.48 89.67 17.67 150.2 
SECOND 82.88 76.05 42.55 60.9 

Voxel R-CNN 88.41 88.07 24.39 105.3 
Our method 90.23 91.43 28.57 107.9 

(0.1, 0.1, 0.2) 

PV-RCNN 82.28 84.21 31.34 150.2 
SECOND 79.04 69.09 84.75 60.9 

Voxel R-CNN 84.43 84.63 31.25 105.3 
Our method 86.12 89.11 37.45 107.9 

As can be seen from Table 3, our model still performs well with voxel sizes of (0.1, 
0.1, 0.2) m, and the mAP value is 89.11%, which is an improvement of 4.9%, 20.02%, and 
4.48% compared to the PV-RCNN (84.21%), SECOND (69.09%), and Voxel R-CNN 
(84.63%) methods, respectively. Overall, the accuracy decreases when the size of the di-
vided voxels becomes larger, and the model’s memory remains unchanged, while the de-
tection speed is improved. The detection results of our model for two different voxel sizes 
are improved compared with the other methods, indicating that our model has strong 
robustness. 

3.4. Visualization of Obstacle Detection Results 
In order to qualitatively analyze the Focal Voxel R-CNN method, experiments were 

carried out to visualize the detection results in different scenes, and some of the obstacle 
detection visualization results are shown in Figure 10. 

From Figure 10, it can be seen that when pedestrians and tractors appear in the point 
cloud, the generated 3D bounding box is wrapped around the obstacle. The color of the 
3D bounding boxes for the tractor category is green, while for the pedestrian category, 
they are blue, and the red boxes are the ground truth. From the point-cloud detection 
results in Figure 10, it can be seen that the overlap between the detection boxes and the 
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3.3. Comparison between Different Voxel Sizes

To test the robustness of the model, different voxel sizes were selected for comparison
experiments, and the experimental results are shown in Table 3.

Table 3. Comparison of model detection results under different voxel sizes.

Voxel Size (m) Method R (%) mAP (%) Speed (FPS) Model Size (MB)

(0.05, 0.05, 0.1)

PV-RCNN 88.48 89.67 17.67 150.2
SECOND 82.88 76.05 42.55 60.9

Voxel R-CNN 88.41 88.07 24.39 105.3
Our method 90.23 91.43 28.57 107.9

(0.1, 0.1, 0.2)

PV-RCNN 82.28 84.21 31.34 150.2
SECOND 79.04 69.09 84.75 60.9

Voxel R-CNN 84.43 84.63 31.25 105.3
Our method 86.12 89.11 37.45 107.9

As can be seen from Table 3, our model still performs well with voxel sizes of (0.1,
0.1, 0.2) m, and the mAP value is 89.11%, which is an improvement of 4.9%, 20.02%, and
4.48% compared to the PV-RCNN (84.21%), SECOND (69.09%), and Voxel R-CNN (84.63%)
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methods, respectively. Overall, the accuracy decreases when the size of the divided voxels
becomes larger, and the model’s memory remains unchanged, while the detection speed is
improved. The detection results of our model for two different voxel sizes are improved
compared with the other methods, indicating that our model has strong robustness.

3.4. Visualization of Obstacle Detection Results

In order to qualitatively analyze the Focal Voxel R-CNN method, experiments were
carried out to visualize the detection results in different scenes, and some of the obstacle
detection visualization results are shown in Figure 10.

From Figure 10, it can be seen that when pedestrians and tractors appear in the point
cloud, the generated 3D bounding box is wrapped around the obstacle. The color of the 3D
bounding boxes for the tractor category is green, while for the pedestrian category, they
are blue, and the red boxes are the ground truth. From the point-cloud detection results in
Figure 10, it can be seen that the overlap between the detection boxes and the ground-truth
boxes is high, which indicates that our proposed method can accurately detect the obstacles.
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4. Discussion

In this study, a multi-sensor acquisition device was established and mounted on a
tractor to collect data for agricultural obstacle detection. A spatiotemporal synchronized
dataset was built to implement deep learning for 3D point clouds, and a focal sparse
CNN was added to enhance the extraction of effective features from the original Voxel
R-CNN network. The proposed Focal Voxel R-CNN model achieved good results for
obstacle detection on a point cloud dataset containing pedestrians and tractors, showing
the potential to be able to provide safe and effective sensing information for autonomous
agricultural machines, e.g., as an input to path planning for obstacle avoidance.

4.1. Analysis of Results

Based on the detection results in Table 2, the accuracy and speed of the method are not
easily balanced. Normally, the higher the accuracy, the more features need to be extracted
and the slower the speed. For example, SECOND achieves the highest speed (which is
42.55 FPS), but its mAP is only 76.05%. In contrast, PVRCNN has higher accuracy; its mAP
is 89.67%, but its speed is considerably slow, at only 17.67 FPS. Our Focal Voxel R-CNN
achieves the best results, with a recall of 90.23%, and a mAP of 91.43%, indicating that the
addition of the focal sparse convolutional network concentrates the extraction of features
to more valuable foreground points. It is noteworthy that the AP in the pedestrian class
increased from 89.04% to 92.89%. This indicates that the selection of features based on
the importance cube helps to retain more valuable features and, ultimately, improves the
detection accuracy of the small object. Our model’s detection speed is 28.57 FPS, which is
4.18 FPS faster than the base model. The corresponding model size was also increased as
expected, but the increase was small—from 105.3 MB to 107.9 MB. Meanwhile, different
sizes of voxel divisions were selected; specifically, we used the common division size of
(0.05,0.05,0.1) m and doubled it to (0.1,0.1,0.2) to test the robustness of the model. Based
on the test results in Table 3, the accuracy is also affected when the voxel size increases
from (0.05,0.05,0.1) m to (0.1,0.1,0.2) m, and the mAP decreases from 91.43% to 89.11%.
This is because when the voxels become larger, there will be more point clouds in each
voxel, and some locally effective information may be lost during the feature extraction
process. However, at the same time, the detection speed of the model becomes faster as the
voxel size increases. This is due to the overall reduction in the number of voxels input to
the 3D backbone network for convolutional operations, so the processing time is reduced
accordingly, and the detection speed of the model increases from 28.57 FPS to 37.45 FPS.

4.2. Analysis of Failure Cases

Typical obstacles that fail to be detected correctly are shown in Figure 11.
Occlusion and multiple poses of the detected obstacles cause difficulty in extracting

features, resulting in failed obstacle detections. On the one hand, the occlusion between
obstacles—such as the overlap of moving pedestrians—causes the LiDAR‘s laser beams
to fail to reach the occluded objects, leading to the sparseness of the obtained point cloud
data, which makes the feature extraction process more difficult and, ultimately, leads to
missed detection or reduced accuracy. On the other hand, the protruding limbs of some
pedestrians with multiple postures can be mistakenly detected as pedestrians. This is
mainly because the pedestrian itself is a small target and the point cloud data are sparse,
so the learned features are not very distinguishable, and it is easy to mistakenly detect
some other relatively small targets for pedestrians—such as human thighs—leading to the
false recognition of irrelevant information. It is worth noting that although only two types
of obstacles (i.e., pedestrian and tractor) have been tested so far, we have established a
method to detect specific categories of obstacles for autonomous agricultural machines,
and this method could be applied to more types of obstacles if necessary.
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is 28.57 FPS, which is 4.18 FPS faster than the base model. The corresponding model size 
was also increased as expected, but the increase was small—from 105.3 MB to 107.9 MB. 
Meanwhile, different sizes of voxel divisions were selected; specifically, we used the com-
mon division size of (0.05,0.05,0.1) m and doubled it to (0.1,0.1,0.2) to test the robustness 
of the model. Based on the test results in Table 3, the accuracy is also affected when the 
voxel size increases from (0.05,0.05,0.1) m to (0.1,0.1,0.2) m, and the mAP decreases from 
91.43% to 89.11%. This is because when the voxels become larger, there will be more point 
clouds in each voxel, and some locally effective information may be lost during the feature 
extraction process. However, at the same time, the detection speed of the model becomes 
faster as the voxel size increases. This is due to the overall reduction in the number of 
voxels input to the 3D backbone network for convolutional operations, so the processing 
time is reduced accordingly, and the detection speed of the model increases from 28.57 
FPS to 37.45 FPS. 

4.2. Analysis of Failure Cases  
Typical obstacles that fail to be detected correctly are shown in Figure 11. 

  

(a) 

(b) 

Figure 11. Typical failed detection cases. (a) Under occlusion. (b) Small targets in multiple poses. 

Occlusion and multiple poses of the detected obstacles cause difficulty in extracting 
features, resulting in failed obstacle detections. On the one hand, the occlusion between 
obstacles—such as the overlap of moving pedestrians—causes the LiDAR‘s laser beams 
to fail to reach the occluded objects, leading to the sparseness of the obtained point cloud 
data, which makes the feature extraction process more difficult and, ultimately, leads to 
missed detection or reduced accuracy. On the other hand, the protruding limbs of some 
pedestrians with multiple postures can be mistakenly detected as pedestrians. This is 
mainly because the pedestrian itself is a small target and the point cloud data are sparse, 
so the learned features are not very distinguishable, and it is easy to mistakenly detect 
some other relatively small targets for pedestrians—such as human thighs—leading to the 
false recognition of irrelevant information. It is worth noting that although only two types 
of obstacles (i.e., pedestrian and tractor) have been tested so far, we have established a 

Figure 11. Typical failed detection cases. (a) Under occlusion. (b) Small targets in multiple poses.

5. Conclusions

In conclusion, we presented a LiDAR-based 3D obstacle detector known as Focal Voxel
R-CNN for farmland environment. First, we built a multi-sensor acquisition device on a
tractor to collect data from multiple sensors. Then, a spatiotemporally synchronized dataset
was constructed to implement deep learning for 3D point clouds. Additionally, a focal
sparse CNN was added to the 3D backbone to enhance the ability to extract effective features
from the data. Finally, the comparison experiments show the effectiveness of our modifica-
tions and that our improved model can outperform other state-of-the-art object detectors on
our dataset, showing a higher detection accuracy and better robustness, which can provide
a more reliable obstacle detection model for autonomous agricultural machines.

In future work, we will consider adding more types of obstacles found in farming
operations to the existing dataset and utilizing the image information from the camera for
multimodal fusion to further improve the accuracy of the obstacle detection model.
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