Effect of N Fertilizer Dosage and Base/Topdressing Ratio on Potato Growth Characteristics and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Materials
2.2. Experimental Design and Management
2.3. Plant Sampling and Measurements
2.3.1. Agronomic Traits
2.3.2. Photosynthesis, Substance Metabolism, and Accumulation
2.3.3. Yield Component and Yield
2.4. Date Analysis
3. Results
3.1. Agronomic Traits
3.2. Leaf Photosynthetic Traits and Metabolites
3.3. N Content and Dry Matter of Different Organs
3.4. Tuber Quality, Yield, and Yield Components
3.5. Fitting Analysis and PCA Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 March 2023).
- O’Beirne, D.; Cassidy, J.C. Effects of nitrogen fertiliser on yield, dry matter content and flouriness of potatoes. J. Sci. Food Agric. 1990, 52, 351–363. [Google Scholar] [CrossRef]
- Cao, W.; Tibbitts, T.W. Response of potatoes to nitrogen concentrations differ with nitrogen forms. J. Plant Nutr. 1998, 21, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; He, P.; Qiu, S.; Zhao, S.; Ding, W.; Zhou, W. Nutrient management increases potato productivity and reduces environmental risk: Evidence from China. J. Clean. Prod. 2022, 369, 133357. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Nurmanov, Y.T.; Chernenok, V.G.; Kuzdanova, R.S. Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crops Res. 2019, 231, 115–121. [Google Scholar] [CrossRef]
- Rens, L.; Zotarelli, L.; Alva, A.; Rowland, D.; Liu, G.; Morgan, K. Fertilizer nitrogen uptake efficiencies for potato as influenced by application timing. Nutr. Cycl. Agroecosyst. 2016, 104, 175–185. [Google Scholar] [CrossRef]
- Nicholson, H.H.; Pantin, B. The leaching out of autumnal dressings of nitrogenous fertilisers. J. Agric. Sci. 1929, 19, 297–301. [Google Scholar] [CrossRef]
- Abuley, I.K.; Nielsen, B.J.; Hansen, H.H. The influence of timing the application of nitrogen fertilizer on early blight (Alternaria solani). Pest Manag. Sci. 2019, 75, 1150–1158. [Google Scholar] [CrossRef]
- Limaux, F.; Recous, S.; Meynard, J.-M.; Guckert, A. Relationship between rate of crop growth at date of fertiliser N application and fate of fertiliser N applied to winter wheat. Plant Soil 1999, 214, 49–59. [Google Scholar] [CrossRef]
- Zotarelli, L.; Rens, L.R.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Fourman, D. Nitrogen Fertilizer Rate and Application Timing for Chipping Potato Cultivar Atlantic. Agron. J. 2014, 106, 2215–2226. [Google Scholar] [CrossRef]
- Yu, Y.; Jiao, Y.; Yang, W.; Song, C.; Zhang, J.; Liu, Y. Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation. Agric. Water Manag. 2022, 260, 107270. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Robertson, G.P.; Basso, B.; Hamilton, S.K. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest. Sci. Total Environ. 2020, 734, 139379. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.-M.; Qi, X.-C.; Wang, J.; Chen, Q.; Li, C.-L. Effects of nitrogen application rate and topdressing times on yield and quality of Chinese cabbage and soil nitrogen dynamics. Environ. Pollut. Bioavailab. 2018, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhu, X.; He, X.; Li, C.; Chang, T.; Chang, S.; Zhang, H.; Zhang, Y. Scheduling of nitrogen fertilizer topdressing during panicle differentiation to improve grain yield of rice with a long growth duration. Sci. Rep. 2020, 10, 15197. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yao, X.; Liu, W.; Wu, Z.; Zhao, Q.; Zhang, H.; Wang, H.; Ao, X.; Zhao, M.; Xie, F. Precise nitrogen topdressing upregulates nitrogen metabolism and improves soybean (Glycine max) grain yield. Crop Pasture Sci. 2019, 70, 334–343. [Google Scholar] [CrossRef]
- Rodriguez, D.G.P.; Bullock, D.S.; Boerngen, M.A. The Origins, Implications, and Consequences of Yield-Based Nitrogen Fertilizer Management. Agron. J. 2019, 111, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Haverkort, A.J.; Linnemann, A.R.; Struik, P.C.; Wiskerke, J.S.C. On Processing Potato: 1. Survey of the Ontology, History and Participating Actors. Potato Res. 2022. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Lyu, D.; Su, F.; Liu, S.; Li, H.; Wang, X.; Liu, Z.; Hu, L. Effects of Different Nitrogen Application Rates on Starch Accumulation, Starch Synthase Gene Expression and Enzyme Activity in Two Distinctive Potato Cultivars. Potato Res. 2018, 61, 309–326. [Google Scholar] [CrossRef]
- Assunção, N.S.; Fernandes, A.M.; Soratto, R.P.; Mota, L.H.S.O.; Ribeiro, N.P.; Leonel, M. Tuber Yield and Quality of Two Potato Cultivars in Response to Nitrogen Fertilizer Management. Potato Res. 2020, 64, 147–166. [Google Scholar] [CrossRef]
- Huang, W.W.; Su, X.F.; Ratkowsky, D.A.; Niklas, K.J.; Gielis, J.; Shi, P.J. The scaling relationships of leaf biomass vs. leaf surface area of 12 bamboo species. Glob. Ecol. Conserv. 2019, 20, e00793. [Google Scholar] [CrossRef]
- Pang, W.; Crow, W.T.; Luc, J.E.; McSorley, R.; Giblin-Davis, R.M.; Kenworthy, K.E.; Kruse, J.K. Comparison of Water Displacement and WinRHIZO Software for Plant Root Parameter Assessment. Plant Dis. 2011, 95, 1308–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalowski, T.; Asuero, A.G.; Wybraniec, S. The Titration in the Kjeldahl Method of Nitrogen Determination: Base or Acid as Titrant? J. Chem. Educ. 2013, 90, 191–197. [Google Scholar] [CrossRef]
- Clegg, K.M. The application of the anthrone reagent to the estimation of starch in cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Jackson, D.S.; Wehling, R.L.; Geera, B. Comparison of Amylose Determination Methods and the Development of a Dual Wavelength Iodine Binding Technique. Cereal Chem. 2008, 85, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Van Gelder, W.M.J. Conversion factor from nitrogen to protein for potato tuber protein. Potato Res. 1981, 24, 423–425. [Google Scholar] [CrossRef]
- Vinklarkova, B.; Chromy, V.; Sprongl, L.; Bittova, M.; Rikanova, M.; Ohnutkova, I.; Zaludova, L. The Kjeldahl Method as a Primary Reference Procedure for Total Protein in Certified Reference Materials Used in Clinical Chemistry. II. Selection of Direct Kjeldahl Analysis and Its Preliminary Performance Parameters. Crit. Rev. Anal. Chem. 2015, 45, 112–118. [Google Scholar] [CrossRef]
- Aly, M.M.; Hassan, M.K.; Souliman, R.M. Simple and rapid spectrophotometric and titrimetric methods for the determination of ascorbic acid in pharmaceutical preparations. J. Chem. Technol. Biotechnol. 1980, 30, 435–439. [Google Scholar] [CrossRef]
- Brown, K.; Braun, H. Grading Criteria for Judging Potatoes for Chip Quality and Yield. HortTechnology 1992, 2, 408–412. [Google Scholar] [CrossRef]
- Millard, P.; Robinson, D.; Mackie-Dawson, L.A. Nitrogen Partitioning within the Potato (Solarium tuberosum L.) Plant in Relation to Nitrogen Supply. Ann. Bot. 1989, 63, 289–296. [Google Scholar] [CrossRef]
- Parenteau, M.T.; Gu, H.; Zebarth, B.J.; Cambouris, A.N.; Lafond, J.; Nelson, A.; Nyiraneza, J.; Davidson, C.; Lagüe, M.; Galvez, J.H.; et al. Data Mining Nitrogen-Responsive Gene Expression for Source–Sink Relations and Indicators of N Status in Potato. Agronomy 2020, 10, 1617. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Ma, Z.; Fan, M. Improving Potato Yield, Water Productivity and Nitrogen Use Efficiency by Managing Irrigation Based on Potato Root Distribution. Int. J. Plant Prod. 2022, 16, 547–555. [Google Scholar] [CrossRef]
- Braun, H.; Fontes, P.C.R.; da Silva, T.P.; Finger, F.L.; Cecon, P.R.; Ferreira, A.P.S. Carbohydrates Concentration in leaves of potato plants affected by nitrogen fertilization rates. Rev. Ceres 2016, 63, 241–248. [Google Scholar] [CrossRef]
- Xiong, D.; Flexas, J.; Sharwood, R. Leaf anatomical characteristics are less important than leaf biochemical properties in determining photosynthesis responses to nitrogen top-dressing. J. Exp. Bot. 2021, 72, 5709–5720. [Google Scholar] [CrossRef] [PubMed]
- Sattelmacher, B.; Marschner, H. Tuberization in potato plants as affected by applications of nitrogen to the roots and leaves. Potato Res. 1979, 22, 49–57. [Google Scholar] [CrossRef]
- Li, W.; Xiong, B.; Wang, S.; Deng, X.; Yin, L.; Li, H. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage. PLoS ONE 2016, 11, e0146877. [Google Scholar] [CrossRef] [Green Version]
- Vos, J. Split nitrogen application in potato: Effects on accumulation of nitrogen and dry matter in the crop and on the soil nitrogen budget. J. Agric. Sci. 1999, 133, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Alva, A.K.; Hodges, T.; Boydston, R.A.; Collins, H.P. Dry Matter and Nitrogen Accumulations and Partitioning in Two Potato Cultivars. J. Plant Nutr. 2002, 25, 1621–1630. [Google Scholar] [CrossRef]
- Millard, P.; Marshall, B. Growth, nitrogen uptake and partitioning within the potato (Solatium tuberosum L.) crop, in relation to nitrogen application. J. Agric. Sci. 1986, 107, 421–429. [Google Scholar] [CrossRef]
- Rens, L.R.; Zotarelli, L.; Cantliffe, D.J.; Stoffella, P.J.; Gergela, D.; Burhans, D. Rate and timing of nitrogen fertilizer application on potato ‘FL1867’ part II: Marketable yield and tuber quality. Field Crops Res. 2015, 183, 267–275. [Google Scholar] [CrossRef]
- Jansky, S.; Fajardo, D. Amylose content decreases during tuber development in potato. J. Sci. Food Agric. 2016, 96, 4560–4564. [Google Scholar] [CrossRef] [PubMed]
- Ayyub, C.M.; Wasim Haidar, M.; Zulfiqar, F.; Abideen, Z.; Wright, S.R. Potato tuber yield and quality in response to different nitrogen fertilizer application rates under two split doses in an irrigated sandy loam soil. J. Plant Nutr. 2019, 42, 1850–1860. [Google Scholar] [CrossRef]
- Boyd, D.A.; Dermott, W. Fertiliser requirements of potatoes in relation to kind of soil and soil analysis. J. Sci. Food Agric. 1967, 18, 85–89. [Google Scholar] [CrossRef]
Nitrogen Input | Treatment | Nitrogenous Fertilizer | Phosphate Fertilizer | Potassic Fertilizer | |||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | ||||
N75 | B | 15 | 37.5 | 60 | 75 | 60 | 300 |
T | 60 | 37.5 | 15 | 0 | 0 | 0 | |
N150 | B | 30 | 75 | 120 | 150 | 60 | 300 |
T | 120 | 75 | 30 | 0 | 0 | 0 | |
N225 | B | 45 | 112.5 | 180 | 225 | 60 | 300 |
T | 180 | 112.5 | 45 | 0 | 0 | 0 |
Stage | Budding Stage | Tuber Maturation Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Root | Stem | Leaf | Plant | Root | Stem | Leaf | Tuber | Plant | |
N75 | T1 | 1.24 a | 3.36 b | 6.18 b | 10.78 b | 2.99 a | 18.96 ab | 18.96 a | 127.39 a | 168.31 a |
T2 | 1.01 b | 4.13 a | 6.21 b | 11.35 b | 2.59 ab | 18.00 b | 16.26 b | 133.60 a | 170.45 a | |
T3 | 0.91 b | 4.35 a | 7.67 a | 12.93 a | 2.33 b | 13.50 c | 13.61 c | 135.05 a | 164.50 a | |
T4 | 1.17 a | 4.12 a | 7.32 a | 12.62 a | 2.57 b | 19.33 a | 16.07 d | 133.34 a | 171.42 a | |
Average | 1.08 b | 3.99 b | 6.85 c | 11.92 b | 2.62 b | 17.44 c | 16.23 c | 132.35 b | 168.67 c | |
N150 | T1 | 1.16 a | 5.07 a | 7.69 b | 13.92 a | 2.68 c | 19.99 d | 17.51 c | 127.25 c | 167.45 c |
T2 | 1.40 b | 4.25 b | 7.30 b | 12.94 b | 3.20 ab | 24.01 c | 19.99 b | 157.02 b | 204.23 b | |
T3 | 1.20 a | 4.60 ab | 8.34 a | 14.14 a | 3.49 a | 30.52 b | 23.50 a | 171.92 a | 229.43 a | |
T4 | 1.16 b | 4.50 b | 8.44 a | 14.09 a | 2.98 bc | 36.40 a | 24.05 a | 149.41 b | 212.85 b | |
Average | 1.23 a | 4.61 a | 7.94 a | 13.77 a | 3.09 a | 27.73 a | 21.27 a | 151.40 a | 203.49 a | |
N225 | T1 | 1.27 a | 5.12 a | 7.61 ab | 13.99 a | 3.06 a | 28.45 a | 22.71 a | 118.72 b | 172.95 b |
T2 | 0.95 b | 4.72 ab | 8.15 a | 13.82 a | 2.67 a | 21.90 d | 18.08 b | 129.52 ab | 172.17 b | |
T3 | 0.95 b | 4.90 ab | 7.61 ab | 13.46 ab | 2.89 a | 24.58 c | 18.07 b | 136.00 a | 181.54 ab | |
T4 | 0.93 b | 4.51 b | 7.17 b | 12.60 b | 2.92 a | 26.61 b | 22.84 a | 139.09 a | 191.46 a | |
Average | 1.02 b | 4.81 a | 7.64 b | 13.47 a | 2.89 a | 25.39 b | 20.42 b | 130.83 b | 179.53 b | |
ANOVA | N | 2.14 | 4.41 | 3.70 | 5.68 * | 2.10 | 5.11 | 3.56 | 6.94 * | 5.74 * |
T | 1.02 | 0.26 | 1.02 | 0.51 | 0.07 | 0.96 | 0.64 | 3.79 | 1.51 | |
N × T | 8.65 ** | 4.79 ** | 9.5 ** | 7.23 ** | 5.11 ** | 116.04 ** | 68.44 ** | 4.35 ** | 12.04 ** |
Treatment | Average Tuber Weight (g) | Tuber Number per Plant | Commodity Potato Rate (%) | Average Yield (kg ha−1) | |
---|---|---|---|---|---|
N75 | T1 | 86.19 b | 6.07 c | 81.11 ab | 43,917.58 bc |
T2 | 88.43 b | 6.37 ab | 77.67 c | 47,289.04 a | |
T3 | 92.09 ab | 6.50 a | 83.00 a | 50,237.17 a | |
T4 | 98.3 a | 6.10 bc | 79.67 bc | 50,386.01 a | |
Average | 91.25 a | 6.26 c | 80.42 a | 47,957.45 b | |
N150 | T1 | 83.64 b | 6.47 a | 79.00 b | 45,441.75 b |
T2 | 91.66 a | 6.63 a | 76.00 b | 51,108.46 a | |
T3 | 96.67 a | 6.53 a | 83.33 a | 53,072.10 a | |
T4 | 92.55 a | 6.53 a | 83.33 a | 50,782.84 a | |
Average | 91.13 a | 6.54 b | 80.42 a | 50,101.30 a | |
N225 | T1 | 81.02 b | 6.63 b | 78.67 a | 45,126.68 b |
T2 | 80.24 b | 6.83 ab | 80.67 a | 46,070.78 b | |
T3 | 88.47 a | 6.93 a | 81.67 a | 51,564.81 a | |
T4 | 89.43 a | 6.60 b | 79.00 a | 49,576.50 b | |
Average | 84.79 b | 6.75 a | 80.00 a | 48,084.69 b | |
ANOVA | N | 6.89 * | 26.22 ** | 0.05 | 4.17 |
T | 8.21 * | 5.99 * | 2.39 | 18.92 ** | |
N × T | 1.67 | 0.93 | 3.62 * | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Xiang, Z.; Ma, H.; Wang, F.; Wang, Q.; Li, P.; Zheng, S. Effect of N Fertilizer Dosage and Base/Topdressing Ratio on Potato Growth Characteristics and Yield. Agronomy 2023, 13, 909. https://doi.org/10.3390/agronomy13030909
Fang X, Xiang Z, Ma H, Wang F, Wang Q, Li P, Zheng S. Effect of N Fertilizer Dosage and Base/Topdressing Ratio on Potato Growth Characteristics and Yield. Agronomy. 2023; 13(3):909. https://doi.org/10.3390/agronomy13030909
Chicago/Turabian StyleFang, Xiaoting, Zhuqing Xiang, Haiyan Ma, Fang Wang, Qiang Wang, Peihua Li, and Shunlin Zheng. 2023. "Effect of N Fertilizer Dosage and Base/Topdressing Ratio on Potato Growth Characteristics and Yield" Agronomy 13, no. 3: 909. https://doi.org/10.3390/agronomy13030909
APA StyleFang, X., Xiang, Z., Ma, H., Wang, F., Wang, Q., Li, P., & Zheng, S. (2023). Effect of N Fertilizer Dosage and Base/Topdressing Ratio on Potato Growth Characteristics and Yield. Agronomy, 13(3), 909. https://doi.org/10.3390/agronomy13030909