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Abstract: China’s field crops such as cotton, wheat, and tomato have been produced on a large scale,
but their cultivation process still adopts more traditional manual fertilization methods, which makes
the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological en-
vironmental damage. To address the above problems, a hybrid optimization of genetic algorithms and
particle swarm optimization (GA–PSO) is used to optimize the initial weights of the backpropagation
(BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed
to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertil-
ization control system for field crops. At the same time, the STM32 microcontroller-based precision
fertilizer application control system for integrated water and fertilizer application of large field crops
was developed and the performance of the controller was verified experimentally. The results show
that the controller has an average maximum overshoot of 5.1% and an average adjustment time
of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network
(BP–PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP
neural network by particle swarm optimization and genetic algorithm(GA–PSO–BP–PID) controller
has the best-integrated control performance when the fertilizer application flow rate is 0.6m3/h.

Keywords: water–fertilizer integration; hybrid optimization algorithm; BP neural network; precision
control

1. Introduction

Water–fertilizer integration is a modern agricultural technology that mixes the right
amount of fertilizer with irrigation water and uses an irrigation system to irrigate the
mixed water–fertilizer solution directly in the vicinity of the crop roots, thereby saving
water resources, reducing fertilizer loss, and improving crop yield and quality [1–3]. This
technology is widely used in modern agricultural farming because it can supply water and
fertilizer to the crop precisely throughout the whole process; thus it can be designed for
different growth periods according to water laws and the fertilizer requirements of the
crop, regularly quantify water and nutrients, and provide them to the crop in proportion,
which reduces labor costs and greatly improves the efficiency of agricultural farming [3–5].
This technology is widely used in modern field crop cultivation because it not only greatly
reduces the waste of fertilizer caused by rough manual application, but also improves the
efficiency of field crop cultivation [6].

Precision fertilization can reduce costs and also improve crop yield and quality, thus
increasing agricultural efficiency [7]. However, the regulation process of fertilizer flow in
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the integrated water and fertilizer control system has the problem of volume delay in the
transmission pipeline, which leads to time varying, lagging, and non-linear characteristics
of the system, and there are still significant problems in precision and intelligence [8–10].
In the face of these problems, the traditional PID control gradually reveals its shortcomings
and cannot obtain the expected control effect. Therefore, combining an intelligent optimiza-
tion algorithm with PID technology to improve the performance of traditional PID systems
and effectively solve the problem of precise control in integrated water and fertilizer control
systems is of great significance to improve the quality of field crops, increase farmers’
income, and improve economic benefits as well as improve the soil environment and realize
the ecologically sustainable development of field crop production [11–13].

Section 1 of this paper introduces the advantages and problems of water–fertilizer
integration technology; Section 2 introduces the working principle of water–fertilizer in-
tegration system for field crops, establishes the mathematical model of precise fertilizer
application in water–fertilizer integration systems for field crops, and gradually derives the
principle of hybrid optimization algorithm; Section 3 uses Matlab software to establish the
PID, BP–PID, and GA–PSO–BP–PID controller simulation models using Matlab software,
analyzes the four transient performance indexes of the three control algorithms respectively,
and builds a flow regulation test platform to experimentally verify the dynamic perfor-
mance of the controller; in Section 4, the experimental results are analyzed and summarized;
Section 5 summarizes the obtained conclusions.

2. Materials and Methods
2.1. Structural Components of Integrated Water and Fertilizer System for Field Crops

The water–fertilizer integrated system adopts a system of fertilizer and water co-
delivery, that is, water and fertilizer are mixed and delivered for irrigation, which can make
the fertilizer more evenly distributed in the soil and avoid fertilizer loss and waste caused
by uneven fertilization in the traditional fertilizer application method [14–17]. In practice,
since irrigation is a continuous action and the irrigation volume of each irrigation partition
is controlled by a wireless electric valve, it is not necessary to think too much about the
precision of irrigation in the water–fertilizer integrated precision control system, but the
demand for nutrients of different crops has obvious differences, and even for the same crop,
its demand for fertilizer is different during different growth periods [18]. Only through
precise fertilization can we meet the needs of different crops in different growth periods
and thus improve the yield and quality of crops, so the main research of this paper is about
precise fertilization in an integrated water and fertilizer system for field crops [19]. The
integrated water and fertilizer system for field crops consists of a reservoir, pump, filter,
flow meter, fertilizer storage tank, peristaltic pump, control center, wireless electric valve,
and drip irrigation belt. The regulating device mainly consists of a pump, peristaltic pump,
flow sensor, wireless electric valve, and other devices, and the outlet is connected to the
field drip irrigation belt, which constitutes a field crop water and fertilizer control system.
As shown in Figure 1, the structure of the integrated water and fertilizer system for field
crops is shown.

In particular, there are check valves on the irrigation mains to prevent the backflow
of water, and similarly, there are check valves on the liquid fertilizer pipes to prevent the
backflow of fertilizer. The fertilizer pump is connected to a flow meter to monitor the flow of
supplied liquid fertilizer and calculate the remaining liquid fertilizer storage in the storage
tank by collecting the applied fertilizer data. When the wireless electric valve is opened, the
integrated water and fertilizer control system for field crops can be irrigated independently.
If the peristaltic pump is powered to rotate its internal rotor, the change of roller position
will cause the hose to be compressed and rebounded, thus causing the pump to suck in and
press out fertilizer, resulting in simultaneous irrigation and fertilization. The control center
uses an STM32F103ZET6 microcontroller combined with a hybrid optimization BP neural
network PID control algorithm, with the set fertilizer flow rate as the desired value and the
actual flow rate collected by the flow meter as the feedback value. When the flow meter
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detects deviation from the set value, the field crop water and fertilizer integration system
changes the frequency of the peristaltic pump inverter to precisely adjust the fertilizer flow
rate at the outlet of the peristaltic pump to achieve a more accurate fertilization effect.
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Figure 1. Structure of water and fertilizer integration system for field crops.

In order to effectively solve the problem of accurate fertilization in the integrated
system of water and fertilizer for field crops, a mathematical model is needed. Considering
the fertilization characteristics of field crops and the complexity of the system, a first-order
inertia plus delay link transfer function is used to describe the mathematical model of the
system [20].

G(s) =
Ke−τs

Ts + 1
(1)

where K is the gain coefficient, τ is the delay time, and T is the time constant.
The fertilizer flow variation data were obtained by sampling the expected value of

fertilizer flow using a 1-s sampling interval and used as input to the open-loop system. The
data were fitted in Matlab using a first-order approximation to obtain K = 1, τ = 11 s, and
T = 3.63. These parameters constitute the mathematical model of the integrated precision
fertilizer application control system for field crops.

2.2. PID Controller Design Based on Hybrid Optimization BP Neural Network
2.2.1. Conventional PID Controller Design

To implement the hybrid optimization BP neural network-based PID controller design,
a conventional PID controller needs to be established first. Conventional PID controller
is one of the most widely used strategies in process control, which can solve most of the
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practical application problems in the field of automatic control, and its controller structure
is shown in Figure 2 [21].
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The PID controller gives the control quantity u(t) based on the deviation e(t)
(i.e., the difference between the set value r(t) and the measured value y(t)) by calculat-
ing the deviation and applying it to the controlled object. u(t) is expressed as:

u(t) = Kp

[
e(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

]
(2)

where Kp is the scaling factor. Ti is the integration time constant and Td is the differential
time constant.

Formula (2) is a continuous PID control algorithm expression, but in the actual field
crop water integration precision fertilization control system, e(t) needs to be obtained by
sampling, so it is necessary to discretize Formula (2). Assuming that the sampling period is
T and a total of k samples are performed, it is obtained that:

∫ t

0
e(t)dt ≈ T

k

∑
j=0

e(j) (3)

de(t)
dt
≈ e(kT)− e[(k− 1)T]

T
=

ek − ek−1
T

(4)

where Formula (3) is the integral part, and Formula (4) is the differential part; brought into
Formula (2), the PID control algorithm expression can be obtained:

u(k) = Kpek + Ki

k

∑
j=0

ej + Kd(ek − ek−1) (5)

where Kp is the proportionality factor, Ki is the integration factor and Kd is the differentiation
factor; Ki = KP

T
Ti

, Kd = KP
Td
T .

Conventional PID control is divided into two types: position-based PID control and
incremental PID control. Position-based PID control is commonly used for electro-hydraulic
servo valves, while the controlled object in the precision fertilizer control system for
integrated fertilizer application to field crops is the motor driving the peristaltic pump,
which is suitable for incremental PID control, so incremental PID control is selected in this
paper. The continuous time t is discretized and k is assumed to be the current sampling
moment, which can be obtained recursively according to Formula (5).

u(k− 1) = Kpek−1 + Ki

k−1

∑
j=0

ej + Kd(ek−1 − ek−2) (6)

Subtracting Formula (5) from Formula (6) yields:

∆u(k) = Kp(ek − ek−1) + Kiek + Kd(ek − 2ek−1 + ek−2) (7)
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Thus u(k) can be expressed as:

u(k) = u(k− 1) + ∆u(k) (8)

The KP, Ti, Td, three parameters of the PID controller are the core part of the design of
the integrated water and fertilizer precision fertilizer control system, this paper uses the
Cohen-Coon method for the initial adjustment, and the adjustment formula is shown in
Formula (9): 

Kp = T
Kτ

(
4
3 + τ

4T

)
Ti = τ

(
32+ 6τ

T
13+ 8τ

T

)
Td = τ

(
4

11+ 2τ
T

) (9)

The mathematical model of the control object is shown in Formula (1), and the cor-
responding parameters are brought into the equation to obtain Kp = 0.69, Ki = 0.05, and
Kd = 1.78.

PID control in the field of linear system control technology is mature and commonly
used, but there are shortcomings. For example, when the controlled object has complex
nonlinear characteristics, it is difficult to establish an accurate mathematical model, and
due to the uncertainty of the object and the environment, it is often difficult to achieve
satisfactory control results.

2.2.2. BP Neural Network-Based PID Controller Design

BP neural network-based PID control algorithm (hereinafter referred to as BP–PID) is
a control strategy proposed to address the above problem. The nonlinear fitting capability
of BP enables it to approximate any nonlinear continuous function with arbitrary accuracy,
which gives it the ability to solve complex nonlinear systems and can be used for PID
control [22]. Therefore, combining PID control and BP neural networking according to
the characteristics of the three parameters of PID control with each other and mutual
constraints, and using the mapping ability of BP neural network to nonlinear functions,
makes the precision fertilizer application control system for integrated water and fertilizer
of field crops adaptive, meaning it can automatically adjust the control parameters, adapt
to the changes of the controlled process, improve control performance and reliability, and
effectively improve the PID. It can effectively improve the limitations of PID control in
complex nonlinear systems. The BP–PID controller structure is shown in Figure 3.
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The BP neural network algorithm includes two processes: forward propagation of
the sample input signal and backward transmission of the error. In forward propagation,
the input sample data is passed to the output node through the implicit layer and then
transformed nonlinearly to produce the corresponding output signal, which will enter
the backward propagation of the error process if the true result is not consistent with the
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predicted result. The backpropagation of error is to reverse the output error through the
hidden layer to the input layer by layer, assign the error to each layer, and use the error
signal received by each layer as the basis for adjusting the weight of each unit. By adjusting
the strength and threshold of the coupling between the input nodes and the hidden layer
nodes, as well as the hidden layer nodes and the output nodes, the error is allowed to fall
down the gradient, and the network parameters corresponding to the minimum error are
obtained through repeated training and learning [23]. In this paper, a 4-5-3 style BP neural
network structure is used as shown in Figure 4, i.e., 4 input layers, 5 hidden layers, and
3 output layers. The 4 input layers correspond to the desired set value r(k), actual output
value y(k), deviation value e(k), and bias term, and 3 output layers correspond to Kp, Ki and
Kd of PID. j is the number of neurons in the input layer, i is the number of neurons in the
hidden layer j is the number of neurons in the input layer, i is the number of neurons in the
hidden layer, and l is the number of neurons in the output layer.
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The BP neural network input layer output and the implicit layer input and output are:
Oj

(1) = x(j)(k)(j = 1, 2, . . . , M)

neti
(2)(k) = ∑M

j=1 ωij
(2)Oj

(1)(k)

O(2)
i (k) = f

(
net(2)i (k)− θ(2)

)
(i = 1, 2, . . . , Q)

(10)

where the superscripts (1) and (2) denote the input layer and the hidden layer respectively;
M is the number of variables in the input layer of the neural network; θ(2) is the threshold
of the hidden layer; ωij

(2) is the connection weight of the neurons in the input layer and
the neurons in the hidden layer; Q is the number of neurons in the hidden layer; f (x) is the
activation function of the hidden layer; and its expression is as follows:

f (x) = tan h(x) =
ex − e−x

ex + e−x (11)

The inputs and outputs of the output layer are:{
netl

(3)(k) = ∑Q
i=1 ωli

(3)Oi
(2)(k)

Q(3)
l (k) = g

(
net(3)l (k)− β(3)

)
(l = 1, 2, 3)

(12)

where the superscript (3) represents the output layer, ωli
(3) is the connection weight of the

neuron in the hidden layer and the neuron in the output layer, the three outputs of the
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output layer correspond to the three adjustable parameters Kp, Ki and Kd of PID controller,
so l = 1, 2, 3; β(3) is the output layer threshold; g(x) is the output layer activation function,
Kd cannot be negative, its expression is transformed using the Sigmoid function as follows:

g(x) =
1
2
[1 + tan h(x)] =

ex

ex + e−x (13)

The above is the forward propagation process, when the difference between the actual
output and the desired output value is not 0, the difference in the form of mean square
value, as a variable to correct the connection weights, so that the error mean square value
approaches 0, that is, the reverse error adjustment process, the error mean square value can
be calculated from the performance indicator function, the expression is as follows:

E(k) =
1
2
[r(k)− y(k)]

2
=

1
2

e2(k) (14)

The connection weights ωil
(3), ωli

(3) are adjusted with E(k) as the variable, and based
on the negative gradient rule, the inertia term is adopted and α is added as the inertia
factor to increase the convergence speed and reduce the probability of falling into a dead
loop [24]. The output layer, implicit layer connection weights are updated as follows:

ω
(3)
li (k + 1) = −η1

∂E(k)

∂ω
(3)
li

+ α1∆ω
(3)
li (k− 1) + ∆ω

(3)
li (k)

ω
(2)
ij (k + 1) = −η2

∂E(k)

∂ω
(2)
ij

+ α2∆ω
(2)
ij (k− 1) + ω

(2)
ij (k)

(15)

where α is the inertia factor; η is the learning rate.
Since the partial derivatives in Formula (15) are difficult to calculate directly, the

following deformation calculation is done:
∂E(k)

∂ω
(3)
li

= ∂E(k)
∂y(k) ∗

∂y(k)
∂∆u(k) ∗

∂∆u(k)

∂O(3)
l (k)

∗ ∂O(3)
l (k)

∂net(3)l (k)
∗ ∂net(3)l (k)

∂ω
(3)
li (k)

∂E(k)

∂ω
(2)
il

= ∂E(k)
∂y(k) ∗

∂y(k)
∂∆u(k) ∗

∂∆u(k)

∂O(3)
l (k)

∗ ∂O(3)
l (k)

∂net(3)l (k)
∗ ∂net(3)i (k)

∂O(2)
i (k)

∗ ∂O(2)
i (k)

∂neti(k)
∗ ∂neti

(2)(k)

∂ω
(2)
il

(16)

After simplification, approximation and other calculations, the updated formula for
the output layer and implicit layer connection weights of the traditional BP neural network
PID controller is obtained as follows:

w(3)
li (k + 1) = α1∆w(3)

li (k− 1) + η1δ
(3)
l O(2)

i (k) + w(3)
li (k)

δ
(3)
l = e(k)sgn

(
∂y(k)

∂∆u(k)

)
∂∆u(k)

∂O(3)
l (k)

g′
[
net(3)l (k)− β(3)(k)

]
w(2)

ij (k + 1) = α2∆w(2)
ij (k− 1) + η2δ

(2)
i O(1)

j (k)− w(2)
ij (k)

δ
(2)
i = f ′

[
net(2)i (k)− θ(2)(k)

] 3
∑

l=1
δ
(3)
l w(3)

li (k)

(17)

In summary, the control process of the BP–PID control method can be summarized as
follows:

(1) determine the BP neural network structure, and determine the initial values of con-
nection weights and thresholds by the mathematical model of the controlled object,
select the appropriate inertia factor α and learning rate η, and determine the initial
values of the proportional, integral and differential coefficients of the PID;

(2) the flowmeter collects the actual instantaneous flow value of liquid fertilizer at the
current moment, inputs the desired instantaneous flow value of liquid fertilizer, and
calculates and inputs the metering deviation value of liquid fertilizer;
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(3) according to Formula (8), u(k) is calculated and input to the controlled object to obtain
the actual instantaneous flow rate value of liquid fertilizer at the moment k = 1;

(4) The learning update of the BP neural network part is carried out, and the parameters
of the modified PID control are obtained according to Formulas (10)–(17) to realize
the adaptive adjustment of the PID parameters.

(5) When k = k + 1, return to Formula (8).

Through the process of adjusting the weights of the BP learning algorithm, the ideal
data of the posting and model are trained, and the adaptive capability of online adjustment
of the parameters is used to adjust the parameters of the PID in real time to achieve the
optimization of the parameters by constantly adjusting the weights online, so that the
control and identification effects can be obtained adaptively, quickly, and accurately.

BP–PID can use its learning ability to adjust the system parameters, but its algorithm
for adjusting the weights and thresholds of the network is in the negative gradient direction,
which leads to slow convergence of the algorithm in the training process. In the process of
network learning training using the gradient descent method, the further ability is needed
to make the training results reach the global optimum [25]. To address the defects of the
BP neural network such as slow convergence speed and easy falling into local minima,
the advantages of the strong global search ability of the genetic algorithm and strong local
search ability and fast convergence speed of the particle swarm algorithm are used to
optimize the BP neural network weights to obtain a new control method and form a hybrid
optimization algorithm to improve the BP neural network.

2.2.3. Design of Hybrid Optimization BP Neural Network-Based PID Controller

The particle swarm optimization algorithm is an optimization algorithm that simulates
the phenomenon of biological clusters in nature, which has a fast convergence speed at the
early stage of evolution, but a slow convergence speed and low convergence accuracy at
the late stage of evolution, and falls easily into the situation of local minima; the genetic
algorithm has good parallel computing ability and strong global search ability. Given their
complementary advantages, the two algorithms are combined, and the hybrid optimization
of genetic algorithms and particle swarm optimization (hereinafter referred to as GA–PSO)
algorithm optimizes the connection weights of the BP neural network and applies the
optimized optimal weights to the BP neural network. Thereafter, the BP neural network
adjusts the weighting coefficients by its self-tuning capability and automatically adjusts
the PID control parameters to achieve the goal of optimal control parameters. The hybrid
optimization of PID control algorithm based on BP neural network by particle swarm
optimization and genetic algorithm (hereinafter referred to as GA–PSO–BP–PID algorithm)
is a hybrid algorithm that combines genetic algorithm (GA), particle swarm optimization
(PSO), backpropagation (BP), and proportional-integral-derivative (PID) control to optimize
a parametric PID controller. The GA–PSO-BP–PID controller structure is shown in Figure 5.

Since most of the GA–PSO improvement algorithms make the algorithm itself compli-
cated, the GA–PSO hybrid optimization algorithm proposed in this paper uses crossover
and mutation operations instead of the terms in the standard particle swarm algorithm for-
mulas for particle updates through the crossover and mutation ideas of genetic algorithms.
Therefore, it simplifies the algorithm and avoids using the formula to calculate the particle
positions, which not only utilizes the characteristics of the particle swarm algorithm to
quickly converge to the optimal solution position in the early stage, but also brings into
play the global search ability of the genetic algorithm and effectively avoids the premature
phenomenon of the population [26].
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The velocity and position of any particle in the PSO algorithm is updated during the
update process according to the following two Formulas:

Vi(k + 1) = ωVi(k) + c1r1[pi − xi(k)] + c2r2
[
pg − xi(k)

]
(18)

Xi(k + 1) = Xi(k) + Vi(k + 1) (19)

where k is the number of iterations; c1, c2 is the acceleration factor; ω is the inertia coefficient;
r1, r2 are random numbers between [0, 1].

From Formulas (18) and (19), the update of the particle expresses as:

Xi(k + 1) = Xi(k) + ωVi(k) + c1ri[pi − xi(k)] + c2r2
[
pg − xi(k)

]
(20)

In Formula (20), the second term ωVi(k) is the inertia originally possessed by the
particle, which corresponds to the variational operation in GA for the velocity term at the
previous moment; similarly, the first, third, and fourth terms of Formula (20) correspond to
the crossover operation in GA for the particle with the individual extremal particle and the
global extremal particle.

Therefore, firstly, the second term ωVi(k) in Formula (20) is replaced by the variation
operation in GA. Instead of multiplying the velocity term of the particle by the original
velocity using the inertia coefficient, the velocity of the particle is updated by the variation
operation; then the terms 1, 3 and 4 in Formula (20) are replaced by the crossover operation
in GA: the particle is first crossed with its individual extremum and then with the global
extremum. Finally, the particle that completes the crossover operation is added with the
velocity term corresponding to it to complete the particle update.

In the iterative process, the fitness value of each individual is calculated using the
fitness function and is evaluated. The ITAE metric has the advantages of fast, smooth,
and low overshoot, and is adopted in most of the literature, so it is introduced into the
performance evaluation of the precision fertilizer application control system for field crops
in this paper as an important reference index for the controller, and as an important
reference index for the GA–PSO hybrid optimization algorithm as an adaptation function.
The so-called ITAE criterion, i.e., the time multiplied absolute error integral minimization
criterion, can be expressed as:

ITAE =
∫ ∞

0
t | e(t) | dt (21)
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Formula (21) is the mathematical model of the continuous control system, but be-
cause the computer uses digital sampling control, the integral part and differential part
in Formula (21) cannot be identified. Therefore, it is necessary to discretize the sampling
moment points. With T as the period of sampling and k as the serial number of sampling,
the discrete formula of the ITAE function is:

ITAE = ∑n
k=0 | e(kT) |·kT·T (22)

where T is the sampling period and k is the sampling moment.
Instead of the gradient descent method of the traditional BP algorithm, the above

GA–PSO hybrid optimization algorithm is used for the parameter optimization process
of the BP neural network to search for all the weights of the BP neural network and use
them as the coded information of the particle swarm individuals. This not only avoids the
problem of large computational effort caused by the gradient descent method of derivation
but also reduces the risk of falling into local minima. In the optimization process, the
memory function of the particle swarm algorithm is used to retain the global optimum,
so that each particle quickly approaches the global optimum solution and accelerates the
convergence speed. The GA–PSO hybrid optimization algorithm performs an iterative
optimization search with ITAE as the objective function and then obtains the optimal
weights of the BP algorithm for a given number of iterations.

In summary, the flow of the BP neural network with hybrid optimization of genetic
algorithms and particle swarm optimization (hereinafter referred to as GA–PSO-BP) algo-
rithm designed in this paper is shown in Figure 6.
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3. Results
3.1. Analysis of Simulation Results

Three different control methods, PID, BP–PID, and GA–PSO–BP–PID, were used
in the simulation experiments in Matlab software, the sampling period was set to 1 ms,
and the system delay time was 11 s. The three controllers were constructed with the
following parameters:

Conventional PID control: According to the parameters obtained in the conventional
PID controller design in chapter 3.1 above, Kp = 0.69, Ki = 0.05, Kd = 1.78, and the input
step signal is simulated.

BP–PID control: For BP neural network PID, the structure of the neural network is
selected as 4-5-3 according to Section 3.2 above, the learning rate η is set to 0.28, the inertia
factor α is set to 0.04, and the initial value of the weighting coefficient is taken as a random
number on the interval [−1.0, 1.0]. Since the adjustable parameters Kp, Ki, and Kd are taken
as non-negative Sigmoid functions, their values are between (0, 1).

GA–PSO–BP–PID control: GA–PSO–BP–PID controller first sets the algorithm param-
eters, where the BP neural network parameters are set in line with the above PID control
for building BP neural networks, the GA–PSO part sets the particle population size to 100,
the number of iterations k to 1000, the value of inertia coefficient ω to 0.6, the acceleration
factor c1, c2 is set to 1.85, and the above algorithm parameters are used to initialize the
population, find the optimal extrema, and update it for iterative optimization search.

Figure 7 shows the iterative optimization search process for the optimal individual
fitness value of the GA–PSO hybrid optimization algorithm and the variation curve of the
steady-state performance index ITAE obtained after 1000 iterations.
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Figure 7. Optimal individual adaptation value iterative optimization search process.

From Figure 7, it can be seen that after the GA–PSO hybrid optimization algorithm
starts, the fitness value ITAE gradually stabilizes and cancan jump out of the local op-
timal solution as the number of iterations increases. At about 190 iterations, the ITAE
metrics stabilized.

To compare more intuitively, the unit step signal is used as the input signal, and
four transient performance indicators, namely rise time, peak time, regulation time, and
maximum overshoot, are added for comparison, and the simulation time is 100 s. The unit
step response comparison simulation results of the three controllers are shown in Figure 8,
and the four transient performance indexes are shown in Table 1.
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Table 1. Transient performance index of three controllers.

Controller Type Rise Time (s) Peak Time (s) Regulation Time (s) Maximum Overshoot

PID 12.42 13.69 25.26 58.61%
BP–PID 27.39 32.96 19.91 1.04%

GA–PSO-BP–PID 11.95 12.50 11.77 3.6%

As can be seen from Figure 8, the GA–PSO–BP–PID algorithm is the first to reach
the reference curve with the shortest rise time, and the overall response is soon stabilized,
although the rise time is not much different compared with the PID algorithm, the PID
algorithm produces larger oscillations and overshoot, and the GA–PSO-BP–PID algorithm
has an obvious overall advantage in performance. The overall advantage of the GA–PSO–
BP–PID algorithm is obvious; the GA–PSO–BP–PID algorithm produces some overshoot
compared with the BP–PID algorithm, but the longer rise time, peak time, and regulation
time of the BP–PID algorithm make its overall performance decrease and inferior to GA–
PSO–BP–PID algorithm.

From the transient performance indexes of the three controllers analyzed in Table 1,
all four transient performance indexes of the PID algorithm are inferior to the GA–PSO–BP–
PID algorithm, and in terms of overshoot, although the overshoot of the BP–PID algorithm
is 1.04%, which is better than that of the GA–PSO-BP–PID algorithm by 3.6%, its rise time
and peak time are much longer than that of the GA–PSO–BP–PID. The GA–PSO-BP–PID
algorithm can balance the response speed and the stability of the control process, and the
overall performance is superior.

3.2. Flow Rate Adjustment Test of Water–fertilizer Integrated Precision Fertilizer Application
Control System
3.2.1. Testing Device and System Design

To be able to accurately simulate the operation of the integrated water and fertilizer
precision fertilization control system for field crops in the laboratory and to test the control
speed and stability of the control algorithm, this paper builds a test platform using the
implementation components for integrated water and fertilizer precision fertilization in an
actual farm environment, connects the flow meter to the test platform, and interacts with
the computer and control system through the RS-485 serial bus to compare test different
control strategies. The schematic diagram of the testbed composition is shown in Figure 9.
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The flow rate adjustment test platform adopts a STM32F103ZET6 microcontroller as
the control element of water and fertilizer integrated precision fertilization control system,
and writes the program with the programming software Keil µVision4; adopts peristaltic
pump as liquid fertilizer conveying device, whose maximum conveying flow rate is 1 m3/h,
rated power is 1.5 kW, rated voltage is 380 V; adopts inverter with rated power of 2.2 kW.
The output frequency is 0–400 Hz, rated voltage is 380 V; a model LDG-MIK electromagnetic
flowmeter with an accuracy of 0.5% is used, as well as a USB3100 model data collector from
Altech with total sampling speed of 20 KS/S, 12-bit resolution, single-ended 8-channel
analog input, 4-channel programmable I/O, and 1-channel 32-bit counter. The AD cache of
4K points FIFO can meet the real-time acquisition of data required in this test and convert
the analog signal to digital for further processing by computer. The flow regulation test
platform is shown in Figure 10.
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A STM32F103ZET6 microcontroller according to the control amount of targeted control
of the system, where the control algorithm uses a hybrid-optimized BP neural network PID
control algorithm, electromagnetic flowmeter signal received by the I/O port, calculated
by the STM32F103ZET6 microcontroller, and then converted into a variable voltage signal
to determine the instantaneous flow rate; the output frequency of the inverter is adjusted
accordingly. Eventually, the fertilizer flow rate at the outlet of the mixing tank is changed.
During operation, the volume of liquid in the mixing tank is kept at 50 L.

3.2.2. Analysis of Test Results

The fertilizer flow rate of the integrated water and fertilizer precision fertilizer control
system for field crops is determined by the fertilizer demand of the field crops planted in
the field, and the fertilizer demand varies from field crop to field crop. The flow rate was
set to 0.3 m3/h, 0.5 m3/h, and 0.8 m3/h to accommodate the demand for fertilizer flow
rate for different crops. The test results of the three controllers are shown in Figures 11–13
as well as Tables 2–4.

Agronomy 2023, 13, x FOR PEER REVIEW 15 of 20 
 

 

3.2.2. Analysis of Test Results 

The fertilizer flow rate of the integrated water and fertilizer precision fertilizer con-

trol system for field crops is determined by the fertilizer demand of the field crops planted 

in the field, and the fertilizer demand varies from field crop to field crop. The flow rate 

was set to 0.3 m3/h, 0.5 m3/h, and 0.8 m3/h to accommodate the demand for fertilizer flow 

rate for different crops. The test results of the three controllers are shown in Figures 11–

13 as well as Tables 2–4. 

 

 

Figure 11. Regulation curves of 0.3 m3/h. 

 

Figure 11. Regulation curves of 0.3 m3/h.
Agronomy 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 

 

Figure 12. Regulation curves of 0.5 m3/h. 

 

 

Figure 13. Regulation curves of 0.8 m3/h. 

Table 2. Transient performance indexes of 0.3 m3/h. 

Controller Type Rise Time (s) Peak Time (s) Regulation Time (s) Maximum Overshoot 

PID 20.02 30.64 81.85 77.4% 

BP–PID 70.91 106.6 109.2 7.37% 

GA–PSO-BP–PID 32.02 74.69 122.3 6.83% 

Figure 12. Regulation curves of 0.5 m3/h.



Agronomy 2023, 13, 1423 15 of 18

Agronomy 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 

 

Figure 12. Regulation curves of 0.5 m3/h. 

 

 

Figure 13. Regulation curves of 0.8 m3/h. 

Table 2. Transient performance indexes of 0.3 m3/h. 

Controller Type Rise Time (s) Peak Time (s) Regulation Time (s) Maximum Overshoot 

PID 20.02 30.64 81.85 77.4% 

BP–PID 70.91 106.6 109.2 7.37% 

GA–PSO-BP–PID 32.02 74.69 122.3 6.83% 

Figure 13. Regulation curves of 0.8 m3/h.

Table 2. Transient performance indexes of 0.3 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation Time (s) Maximum Overshoot

PID 20.02 30.64 81.85 77.4%
BP–PID 70.91 106.6 109.2 7.37%

GA–PSO-BP–PID 32.02 74.69 122.3 6.83%

Table 3. Transient performance indexes of 0.5 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation Time (s) Maximum Overshoot

PID 20.67 30.2 89.26 50.48%
BP–PID 71.76 105.6 61.83 4.5%

GA–PSO-BP–PID 33.45 51.89 28.65 3.16%

Table 4. Transient performance indexes of 0.8 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation Time (s) Maximum Overshoot

PID 20.04 30.92 110.26 75.5%
BP–PID 74.97 106.14 62.91 3.09%

GA–PSO-BP–PID 33.39 53.48 56.02 5.31%

4. Discussion

Comprehensive analysis of the results in Figures 11–13 and Tables 2–4 shows that
the performance of the three controllers also changes under different fertilizer application
flow rates. Although the maximum overshoot of 3.09% at 0.8 m3/h was lower than that
of 5.31% for the BP–PID controller based on hybrid optimization, its rise time, peak time,
and regulation time were longer than those of the BP–PID controller based on hybrid
optimization, and the maximum overshoot of 3.09% at 0.3 m3/h was lower than that of
the PID controller based on hybrid optimization. However, the rise time, peak time, and
regulation time are longer than those of the hybrid-optimized BP–PID controller, and
all transient performance indexes are inferior to those of the hybrid-optimized BP–PID
controller when the fertilizer flow rate is 0.3 m3/h and 0.5 m3/h; the anti-disturbance
ability and robustness are poor. Therefore, from the experimental results of three common
fertilizer application flow rates, by using the hybrid optimization-based BP neural network
PID algorithm to control the precision fertilizer application control system for integrated
water and fertilizer application of field crops, the overall performance is better than the
control using PID algorithm and the control using BP neural network PID.
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To better demonstrate the superiority of the hybrid optimization-based BP neural
network PID algorithm studied in this paper for precision fertilizer application control
system for field crops, we selected similar literature for comparative analysis, in which
Zihao Meng studied the application characteristics of PSO–BP–PID algorithm for precision
fertilizer application control system [27]. In the comparative analysis, the GA–PSO–BP–
PID algorithm proposed in this paper does better in optimizing the regulation time and
maximum overshoot at the same fertilizer application flow rate, but is inferior to the
PSO–BP–PID algorithm in optimizing the rise time and peak time. This is because the
GA–PSO–BP–PID algorithm is more focused on overall optimization and also higher in
accuracy, which allows it to better control the stability and accuracy of the system and
thus better optimize the regulation time and maximum overshoot. However, this may
also lead to a slightly poorer performance in optimizing rise time and peak time, as these
metrics focus more on the dynamic performance of the system, while the GA–PSO–BP–PID
algorithm focuses more on the steady-state performance of the system.

In summary, the control method proposed in this paper combines the advantages of
hybrid optimization techniques and BP neural networks, which can better cope with the
control requirements in practical applications and improve the performance level of the
integrated precision fertilizer application control system for field crops with nonlinear time
lag characteristics.

5. Conclusions

In this paper, a precision fertilizer application control system for integrated water and
fertilizer control of field crops is studied. Firstly, a mathematical model is established for
the precision fertilizer application control system of integrated water and fertilizer system
of field crops, after which the data of flow rate changes are obtained after sampling and the
first-order approximation method is used and fitted to finally derive the transfer function
of the system. Since the self-learning of its BP neural network depends on the selection of
initial weights, which makes the control effect unsatisfactory, this paper adds a GA–PSO
hybrid optimization algorithm based on the PID adaptive control of the BP neural network,
which causes the BP neural network self-learning to speed up. The simulation study of the
hybrid optimization-based BP neural network PID control algorithm is carried out using
MATLAB, and the analysis of the simulation results concludes that its control effect on the
precision fertilizer application control system of integrated water and fertilizer for field
crops is superior.

To further illustrate the superiority of the control algorithm proposed in this paper,
this paper uses the precision fertilizer flow rate adjustment test bench as a platform, which
can monitor the fertilizer flow rate in the integrated precision fertilizer control system
in real-time, and when the fertilizer pump flow rate is set to 0.3 m3/h, 0.5 m3/h, and
0.8 m3/h, the average maximum overshoot is 5.1% and the average adjustment time is
68.99 s. The peak time and regulation time were the shortest at 0.6 m3/h, 51.89 s, and 28.65 s,
respectively, and the maximum overshoot was the smallest at 0.6 m3/h, 3.16%. The results
show that the hybrid optimization-based BP neural network PID control algorithm can
regulate the integrated fertilizer application flow rate of field crops to the desired value in
the shortest time with a small overshoot, while the best effect is achieved at the application
flow rate of 0.6 m3/h, which improves the decision level of the controller and achieves
good control effect.

The hybrid optimization-based BP neural network PID controller for integrated preci-
sion fertilizer application control system for field crops combines the advantages of GA,
PSO, BP, and PID control, which can effectively solve the adverse effects of time varying,
time lagging, and non-linearity of the model on the controller, and has good dynamic
performance and robustness to meet the needs of agricultural production. The integrated
water and fertilizer fertilization of field crops can help reduce the pollution of groundwater
and surface water by chemical fertilizers and protect the ecological environment of farm-
land. The research in this paper provides a theoretical basis for precise control to achieve
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water conservation and weight loss and ecological sustainability of field crop production as
well as to enhance the modernization of smart agriculture for field crops, which promotes
the formation of a modernized smart agriculture system and improves the technical level
of precise fertilizer application control for field crops.
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