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Abstract: The aim of this study was to provide an overview of the approaches and methods used
to assess the dynamics of soil organic matter (SOM). This included identifying relevant processes
that describe and estimate SOM decomposition, lability, and humification for the purpose of sus-
tainable management. Various existing techniques and models for the qualitative and quantitative
assessment of SOM were evaluated to gain a better understanding of advances in organic matter
transformation. This evaluation aimed to identify the strengths, limitations, and applications of these
techniques and models, and to highlight new research directions in the field. Quantitative analysis
of SOM can be performed using various parameters, including oxidation kinetics, lability, carbon
management index, humification degree, humification index, and humification ratio. On the other
hand, qualitative evaluation of SOM can involve techniques such as oxidizability, high-performance
size-exclusion chromatography, electrospray ionization Fourier transform ion cyclotron resonance
mass spectrometry, visual examination, smell, assessment of microorganism content, plant growth,
cation exchange capacity, type of organic material, and decomposition. These techniques and pa-
rameters provide valuable insights into the characteristics and transformation of SOM, enabling a
comprehensive understanding of its dynamics. Evaluating SOM dynamics is of utmost importance as
it is a determining factor for soil health, fertility, organic matter stability, and sustainability. Therefore,
developing SOM models and other assessment techniques based on soil properties, environmental
factors, and management practices can serve as a tool for sustainable management. Long-term
or extensive short-term experimental data should be used for modeling to obtain reliable results,
especially for quantitative SOM transformation analysis, and changes in the quality and quantity of
SOM should be considered when developing sustainable soil management strategies.

Keywords: humification; lability; modeling; quantitative approaches; soil organic matter dynamics;
sustainable management

1. Introduction
Importance and Overview of the Advances in Evaluating Soil Organic Matter

Soil organic matter plays a vital role in maintaining and improving soil health and
fertility [1–3]. It is also recognized as a key component for sustainable agriculture, con-
tributing to soil productivity, agroecosystem functioning, and climate stability [4–6]. Higher
levels of SOM are associated with improved water management, soil aggregate stability, hy-
draulic conductivity, ease of processing, rapid warming, nutrient retention, and increased
productivity [7]. These benefits would be compromised without SOM [8–10]. Additionally,
the quantity of organic carbon in the soil has implications for carbon sequestration and its
impact on climate change [11]. Hence, it is recommended to apply and maintain organic
fertilizers for SOM enhancement. However, their effectiveness depends on factors like quan-
tity, quality, and environmental conditions [12,13]. It is important to consider the regulating
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mechanisms between soil, plants, and the environment, as excessive SOM accumulation
is unlikely. Different agricultural practices have varying effects on SOM dynamics, with
conventional methods accelerating decomposition and practices like reduced tillage, crop
rotations, cover crops, mulching, intercropping, and balanced fertilization enhancing SOM
pools [14]. Global research highlights the influence of land use, land type, and management
practices on the change in resource quality, productivity, and stability [15–20]. One of the
many reasons put forward to explain this dynamicity is the depletion or reduction in the
quantity and/or quality of soil organic matter [14]. To explore and estimate these effects of
organic matter dynamics, it is important to develop techniques, models, and indicators that
would accurately describe the cause–effect relationship, the impact on the whole ecosystem,
and the potential remedial actions.

Early SOM quantitative and qualitative evaluation studies included analyzing sub-
stances extracted from the soil [21–23] and measuring carbon dioxide fluxes at the soil
and plant interaction level [24,25]. Later, studies on SOM dynamics were developed using
improved physical, chemical, biological, spectroscopic, and thermal approaches [26–36].
Assessment of the soil organic carbon stocks at the global level and mathematical modeling
were then introduced [37–39]. Several advanced analytical and simulation models are
developed today to better understand SOM decomposition and transformation, including
well-known models such as those developed by Stéphane Hénin in the 1940s and Parnas
in the 1970s [40–42]. These models were first based on simple exponential decomposition
functions and, later, on complex functions with concentration-dependent rates of decompo-
sition [41,43–45]. Most analytical models have historically considered soil organic matter
as a single homogeneous pool that decomposes with varying relative rates of decomposi-
tion over time. However, advancements in knowledge about computers, modeling, and
simulations [46,47] have led to the development of different simulation models. It was
not until the 1970s that Hanna Parnas first used a simulation model to describe SOM
decomposition, which considered SOM as a heterogeneous mixture of different pools that
decompose at varying relative rates over time [42]. Since then, various models with simple
regression equations and complex designs have been developed to study and quantify SOM
transformation [48–50]. To model and study the decomposition, lability, stability, and humi-
fication rate of the soil organic matter pool, different kinetics equations are used, including
zero-order, first-order, and Michaelis–Menten equations. Zero-order kinetics describes the
soil organic matter decomposition reaction as independent of substrate concentration and
proceeds at a constant rate over time. It is expressed as

dC
dt

= −k0, (1)

where dC/dt is the rate of change of soil organic matter (substrate) concentration and k0
is the rate constant. First-order kinetics describes the soil organic matter decomposition
reaction as substrate-concentration-dependent, and the rate varies according to changes in
substrate concentration, temperature, and time. This is expressed as

dC
dt

= −k1C, (2)

where C is the substrate concentration and k1 is the relative rate constant. Michaelis–
Menten kinetics describes the soil organic matter decomposition reaction as dependent on
the size and activity of the microbial biomass involved in substrate decomposition. The
rate of decomposition is expressed as

dC
dt

= −(

(
dC
dt

)
max

× C
Kc + C

), (3)

where (dC/dt)(max) is the maximum rate of substrate decomposition, Kc is the half-saturation
concentration, and C is the substrate concentration [28,51–55].
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For sustainable SOM management, two categories of factors affecting the balance
of SOM—natural and anthropogenic—need to be considered. Natural factors, such as
climate, soil parent material, biota, and topography, regulate the input, output, and rates
of decomposition of organic matter [56–62]. Anthropogenic practices that affect SOM
balance include those that reduce SOM, such as the reduction in biomass production,
organic matter input, and increased rates of decomposition and mineralization. These
practices include conventional tillage, overgrazing, crop residue removal, and burning
practices. Practices that increase SOM are those that increase biomass production and
organic matter input, and decrease decomposition rates, such as balanced fertilization, cover
crops, agroforestry, afforestation, regenerative agriculture, and pastoral practices [5,63–65].
Contrary to certain practices like conventional farming, sustainable regenerative activities
support and maintain soil biological processes, increase biomass production, and help
build soil organic matter. It is important to focus on reducing the rate of organic matter
decomposition and increasing the input of organic matter by managing crop residues, using
animals and green manures, avoiding burning, and adopting minimal soil disturbance
practices [5,66–68].

Early indicators proposed to monitor the changes and transformation of organic matter
include the carbon pool index (CPI), lability (L), lability index (LI), carbon management
index (CMI) [69], carbon stock change [70,71], humification index (HI), humification degree
(HD), humification rate (HR), oxidizability, soil cation exchange capacity, infrared and
fluorescence spectroscopy, nuclear magnetic resonance, and visual examination [54,72–77].

The objective of this study was to identify and review relevant models, processes, ap-
proaches, and methods used for the quantitative evaluation of soil organic matter dynamics
in different land use/land cover for effective management. Although few studies have
addressed and assessed the advances in the modeling of soil organic matter transforma-
tions and its effects, this study provides a comprehensive overview of the current state of
knowledge in this field and proposes further research directions.

2. Conceptualization and Terminology

Soil organic matter is a heterogeneous mixture of macro- and micro-organisms and
living and non-living organic molecules from animal and plants at various stages of trans-
formation [14,78]. The living fraction is relatively small and consists of plant roots and soil
organisms, while the non-living fraction is more significant and includes light fractions
primarily derived from plants and humus. Humus is composed of humic substances
(humic acids, fulvic acids, and humins) and non-humic substances (carbohydrates, lipids,
proteins, lignin, alkyls, and more) [79,80]. The functional pools of SOM differ in their levels
of decomposition and can be classified as labile or stable fractions [13,32,68]. The labile
fraction, also known as the active fraction, is light, a source of energy, and a substrate for
soil micro-organisms. Importantly, it determines the soil’s fertility regime. In contrast,
the stable fraction is resistant to oxidation and decomposition and determines the long-
term carbon stocks in the soil [16,81]. The stable fraction results from the degradation of
biopolymers of organic materials in the soil and the progressive accumulation of more
hydrophobic and recalcitrant molecules. Since the physicochemical properties and chang-
ing behavior of these fractions are not easily distinguishable, SOM is described according
to its pools’ decomposition and resistance instead of their chemical characteristics. The
most commonly used terms for describing and studying organic matter are summarized in
Table 1 [14,16,70,71].
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Table 1. Terminology and description.

Terminology Description

Litter Organic material onto the soil surface excluding mineral residues.

Microbial biomass The organic matter that is from the dead or cells of living microbial organisms.

Primary soil organic matter

Soil organic elements that are (or are not) partly decomposed and have not humified yet,
comprising dead roots, other plant parts, and soil organisms. They consist of less stable

fractions to biodegradability, they are highly oxidizable, and their cation exchange
capacity is negligible.

Labile SOM Actively decomposing free fractions of SOM.

Free SOM Labile fractions of SOM with a high rate of decomposition.

Free light fraction SOM
Free SOM density fractionation gives free light fraction SOM and then occluded SOM

fractions. The free light fraction is that from the organic matter of the outer surface of soil
aggregates or pseudo-aggregates. They are more labile than occluded fractions.

Occluded SOM

The organic matter trapped inside aggregates is fractionated, resulting from ultrasonic
disintegration of soil stable aggregates, leaving out heavy fractions or organominerals.
They are more stable and their conversion time may range from decades to centuries.

They are degradable once out of aggregates.

Organomineral SOM fractions The SOM found in minerals form organomineral complexes. They are more stable and
their conversion time may range from decades to centuries.

Particulate organic matter Organic material corresponding to particle sizes of 53–2000 µm
(Detritus, Litter of plants . . . )

Stable SOM Resistant, passive, inert fractions of SOM to decomposition

Humus

Humified soil organic elements with stable fractions to biodegradation and oxidation or
hydrolysis and with high cation exchange capacity. They remain in the soil after

macro-organic matter and dissolved organic matter are removed. They are amorphous
colloidal particles less than 53 µm.

Non-humic biomolecules They are biopolymers including polysaccharides and sugars, proteins and amino acids,
fats, waxes, other lipids, and lignin.

Humin Insoluble part of organic matter after extraction of aqueous base soluble part.
Alkaline-solution-insoluble organic material.

Humic Acid Alkaline-solution-soluble organic materials, which precipitate on acidification of the
alkaline extracts.

Fulvic Acid Organic materials that are both soluble in alkaline solution and acidic solution of the
alkaline extracts

Dissolved organic matter Organic compounds that are soluble in water. They are less than 0.45 µm and are mostly
found in soil solution

Resistant or Inert organic matter
They are organic materials with very long chains of carbon (heavily carbonized). They are
materials of high carbon content like charcoal, charred plant materials, graphite, and coal

and have a very long turnover time

Organic matter Biomaterial under different levels of decomposition or decaying process.

Organic matter fractions Measurable organic matter components.

Organic matter pool (stock) Theoretically separated, kinetically delineated components of soil organic matter.

Carbon turnover The average time taken for carbon mineralization and transformation in terrestrial
ecosystem from one pool to another

Decomposition and transformation Physical breakdown and chemical transformation of complex organic substrate into
simpler components molecules.

Humification Process of humic substances’ formation from organic materials.

SOM modeling Process of using mathematical models to analyze and simulate the changes of organic
matter in the soil.
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3. Overview of Measurement Techniques for Soil Organic Matter Assessment

Parameters that determine SOM status, soil health, and functions are generally difficult
to measure directly. Therefore, they are evaluated by deriving indicators that correlate
with soil conditions. Soil condition indicators may be chemical, physical, or biological,
and can be either descriptive or quantitative. Descriptive indicators are qualitative and
are used in the field, while quantitative indicators are assessed by laboratory analytical
procedures [79,82]. Because total soil organic matter is often not sensitive enough to small
and short-term changes due to its complexity levels and background, some studies have
recommended using soil organic matter fractions (sub-pools) as more sensitive indicators to
detect even small changes over a short period of time [19,69]. These fractions or sub-pools
have been classified by various researchers based on their formation, levels, and ease
of decomposition. They include labile, less-stable, and stable fractions. The most labile
fraction can decompose in less than a year or two, while the actively decomposing fraction,
including partially stabilized organic material from plants and microbial metabolites, may
have a turnover of up to 26 years. There is also a chemically stabilized and resistant fraction
with a radiocarbon age of up to 2500 years [28,83–85].

3.1. SOM Fractionation

Soil organic matter can be physically, chemically, and biologically fractionated to help
in better understanding its composition, properties, and functions in soil [79]. Physical
fractionation involves separating SOM based on its particle size, where smaller particles
usually have higher decomposition rates and contain more labile SOM fractions. One of the
commonly used physical fractionation methods is density fractionation, which separates
SOM into different fractions based on their densities using a heavy liquid (e.g., sodium poly-
tungstate) [86–88]. Chemical fractionation separates SOM based on its chemical properties,
where different fractions are at different degrees of decomposition, stability, and reactiv-
ity. The most common chemical fractionation method is the acid hydrolysis or oxidation
method, which separates SOM into different fractions based on their oxidation or solubil-
ity in acid solutions of varying strengths [32,52,56,82]. Biological fractionation separates
SOM based on its microbial accessibility, where different fractions have different micro-
bial decomposability and utilization. One of the commonly used biological fractionation
methods is the substrate-induced respiration (SIR) method, which measures the microbial
respiration rate of SOM fractions incubated with a specific substrate (e.g., glucose). This
method measures fungal, bacterial, and total microbial contributions to glucose-induced
respiration and the potentially active microbial biomass on decaying plant residues of
differing composition [89].

3.2. Quantitative Techniques for SOM Measurement

Quantitative soil organic matter measurement techniques can be broadly classified into
two categories, dry combustion methods and wet oxidation methods [90]. Dry combustion
methods include thermal exchange, loss on ignition (LOI), and Walkley–Black (WB) meth-
ods. These techniques rely on the complete combustion of soil samples to determine the
organic carbon content. Thermal exchange involves heating a soil sample in a furnace under
an inert atmosphere and measuring the evolved CO2. The LOI method involves heating a
soil sample to a high temperature to burn off organic matter, and measuring the weight
loss. The WB method involves adding a dichromate-sulfuric acid reagent to a soil sample,
which oxidizes the organic matter and releases CO2, which is then measured [91,92].

Wet oxidation methods involve the oxidation of dissolved organic material with dis-
solved oxygen at high temperatures. A strong oxidizing agent is used to release carbon
dioxide or to change the absorbance properties of the soil sample. Wet oxidation meth-
ods include wet digestion and near-infrared reflectance (NIR) [93]. Digestion methods
breakdown soil samples using acid (such as hydrochloric acid and hydrogen peroxide)
digestion to release soil organic matter, while the NIR is a non-destructive method that uses
the interaction of infrared light with organic matter to estimate the quantity and quality of
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organic matter by measuring using a spectrophotometer the reflectance or absorbance of
near-infrared light by the soil sample. The choice between dry and wet methods depends
on the accuracy and precision needed, time, resources, and all organic matter properties
needing to be measured [75,94].

3.3. Qualitative Techniques for SOM Measurement

Qualitative techniques used to assess SOM are descriptive and involve visual exam-
ination. These techniques entail assessing physical properties of the soil such as color,
texture, and structure [95–97]. A positive correlation has been observed between soils with
high organic matter content and darker color, crumbly texture, and granular structure.
Additionally, the smell test can be employed to identify organic matter, as soils with high
organic matter content often have a rich, earthy smell. The number of earthworms, the
soil crumb test, infiltration rate, plant growth, organic matter color, and crop residue de-
composition can all serve as qualitative indicators of soil organic matter quality. Although
cation exchange capacity (CEC) can also be used, other factors such as soil texture, pH, and
mineral content can influence its accuracy [16,54,98–101].

Other important qualitative techniques include using infrared spectroscopy where
infrared (IR) radiation identifies and quantifies functional groups in SOM. It can provide
information on the composition and structure of soil organic matter as it measures the
absorption and transmission of infrared light by soil organic matter functional groups, pro-
viding information on SOM quality, quantity, and composition. IR spectra can be collected
from bulk soil samples, or from specific SOM fractions obtained by soil fractionation [102].
Fluorescence spectroscopy is another technique that uses the fluorescence properties of soil
organic matter to characterize its composition and structure. It can provide information
on the humification degree, aromaticity, and molecular weight of soil organic matter. It
measures the emission of light from soil organic matter after excitation with ultraviolet
or visible light. Fluorescence spectra are sensitive to SOM quality and can be used to
assess changes in SOM quantity and quality due to management practices or environmen-
tal factors [103,104]. Pyrolysis mass spectroscopy (PyMS) is a technique that uses high
temperatures to decompose soil organic matter into smaller fragments, which are then
analyzed using mass spectrometry. It measures the mass and abundance of pyrolysis
products generated from SOM upon heating to high temperatures in the absence of oxygen.
PyMS provides information on SOM functional groups and the distribution of carbon and
nitrogen within SOM molecules [105]. Nuclear magnetic resonance (NMR) is a technique
that uses magnetic fields to analyze the structure and composition of soil organic matter. It
can provide information on the molecular structure, functional groups, and chemical bond-
ing of soil organic matter. It measures the relaxation times of nuclei within SOM molecules
in response to a magnetic field [77]. High-performance size-exclusion chromatography is
another technique that separates soil organic matter into fractions based on their size and
chemical composition. It can provide information on the molecular weight, size distribu-
tion, and chemical composition of soil [106]. Electrospray ionization Fourier transform ion
cyclotron resonance mass spectrometry (ESI-FTICR-MS) is a technique that measures the
mass-to-charge ratios of SOM molecules. It combines electrospray ionization with Fourier
transform ion cyclotron resonance mass spectrometry. It informs us about the molecular
weight, elemental composition, and functional group composition of individual organic
molecules, which helps in processes that control the SOM dynamics [107,108]. Likewise, it
should be noted that the use of both quantitative and qualitative methods is often advised
for a more comprehensive assessment of soil health and organic matter content.

3.4. Lability and Stability of Organic Matter in Soils

SOM is a fraction of soil composed of a heterogeneous mixture of plants and macro-
and micro-organisms at different stages of decomposition. Their quality, quantity, and
decomposition are essential for soil health, nutrients, and carbon cycling. Therefore,
understanding the relationships between SOM fractions (labile fraction, stable fractions,



Agronomy 2023, 13, 1776 7 of 33

and total carbon stock) can help to express the relative degree of lability, stability, and
humification of overall soil organic matter, hence carbon management index development.
It should also be added that variations in these sub-pools have been used in developing
and understanding SOM dynamics models [14,16,19,103]. The constant supply of organic
matter carbon depends on the available stock and estimated turnover speed. Hence,
quantitative assessment of soil organic matter dynamics and its lability and stability could
be monitored early using parameters such as carbon pool index (CPI), lability (L), lability
index (LI), carbon management index (CMI) [69], carbon stock [70,71], humification index
(HI), humification degree (HD), and humification rate (HR) [59,63,104] to be able to manage
the available SOM changes.

Carbon stock =
TOC × Ds × e

10
(4)

CPI =
TC in sample

TC in reference
(5)

L =
Labile carbon (oxidized)

Non − labile carbon(non − oxidized)
(6)

LI =
Lability in sample

Lability in reference
(7)

CMI = CPI × LI × 100 (8)

where TOC is total organic carbon, TC is total carbon, Ds is soil bulk density (g. cm−3), e is
the thickness of the layer (cm), CPI is carbon pool index, L is lability, LI is lability index,
CMI is carbon management index.

HI =
NH
H

(9)

HD =
H
TC

× 100 (10)

HR =
H

TOC
× 100 (11)

where HI is humification index, HD is humification degree, HR is humification ratio, NH
is non-humified (labile) fraction, H is humified (Humic acid + Fulvic acid = non-labile)
fraction, TOC is total organic carbon, and TC is total extracted carbon.

4. Modeling as a Tool for Sustainable Soil Organic Matter Assessment and Management

Soil organic matter models are mathematical representations that describe the dy-
namics of organic matter in soils over time. These models can be used to analyze or
simulate the effects of management practices, climate change, and other environmen-
tal factors on available SOM, turnover rates, and other related soil properties (Table 2).
SOM models are typically based on empirical or mechanistic approaches that help in pre-
dicting the future SOM trends [30,105,106]. The development and advancement in soil
organic matter modeling from simple exponential decay functions, more complex functions
with substrate concentration and time-dependent relative decomposition rate, and simple
regression equations to more complex processes-based models have been a success in
understanding and designing sustainable soils, SOM, crops, and climate management
practices [23,47,75,104,107]. The progress in mathematical, computer, and simulation skills
has allowed the development of different SOM analytical and simulation models and, as
the measurement of the impact of a given management practice to SOM changes requires
long-term or extensive short-term data, it is the same for modeling data for reliable re-
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sults [41–43,50]. In this part, the most used analytical and simulation soil organic matter
models are described and discussed according to their targets, importance, shortcomings,
methodologies/theories, and quantitative elucidation. It concentrates on different models
describing the evolution of organic matter in soils on the scale of several years or many
short time scales, although there exist some others not discussed but that have almost the
same characteristics as what is included in this study [49,75,108,109].

It should be noted that simulation models may be divided into two categories, compre-
hensive and summary models. Comprehensive simulation models are detailed models that
attempt to simulate every process and variable involved in SOM dynamics, including plant
growth, nutrient cycling, and microbial activity. These models can be complex and require
a significant amount of data to run. They are designed for research purposes, their essential
elements are thoroughly understood, and the available knowledge is incorporated. On the
other hand, summary simulation models are simplified models that use a small number
of key variables to predict SOM dynamics. These models are generally easier to use and
require less data than comprehensive models. They are formulated with less detail and
they are more suitable for applicative and predictive purposes. Comprehensive models are
typically more accurate but require more data and computational power, while summary
models are simpler and easier to use but may not capture all of the complexity of SOM
dynamics [82,109].

Moreover, SOM models can be either mono or multi-compartmental and the choice
among them depends on the objectives of the study, the amount and quality of available
data, and the complexity of the system being modeled. Mono-compartmental models
assume that all organic matter in the soil is equivalent and represented by a single pool,
with a single set of parameters describing its decomposition and turnover. This type of
model is simple to use and requires less data and fewer parameters, making it suitable
for studies with limited data or when there is a need for rapid simulations. The mono-
compartmental organic matter pool is considered as a single entity with a characteristic
relative decomposition rate (k), which is either constant or changes with time. Multi-
compartmental models, on the other hand, recognize that organic matter in the soil is
composed of different fractions, each with distinct properties and turnover rates. These
models represent different compartments; their decomposition and turnover are modeled
separately, with parameters that describe the properties of each fraction. The existing and
the added materials are partitioned into a number of pools, each with its own specific rate
constant. This type of model is more complex and requires more data and parameters,
making it more suitable for detailed studies that aim to capture the complexity of SOM
dynamics [82].

4.1. Analytical Models

Soil organic matter analytical models are based on mathematical equations and formu-
las (such as calculus or linear algebra) that describe the changes in SOM over time. These
models use assumptions and simplifications to predict SOM dynamics based on a few input
parameters. They can provide rapid and efficient estimates of SOM dynamics, but their
accuracy can be limited by the simplifying assumptions made during model development.
Analytical models predict the dynamics of a system in certain conditions and make accurate
predictions if the underlying assumptions are met. Generally, they are also easier to use
and interpret than simulation models [82,110].

4.1.1. Hénin and Dupuis’s Model

Around 1945, different corners of the world witnessed a radical modification of the
farming systems where farming was oriented almost exclusively toward crop production,
while that of livestock and therefore manure was almost completely disappearing. From
that time, Stephane Hénin and his colleagues started developing a mathematical model that
would assess a very complex process of soil organic matter dynamics by using simple basic
assumptions, and undoubtedly, this represents one of the first attempts at mathematical
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modeling of soil organic matter dynamics. This is a single pool model that describes,
with a one-year time, the evolution of soil organic matter whose changes are assumed
to be homogeneous. This model assumes that for soil organic matter to remain constant
over a given time, the output or destroyed (decomposed and mineralized) fraction has
to be compensated for by the input or formed (humified) fraction [111]. Stephane Hénin
supposed that more organic matter is destroyed per unit of time when its concentration in
the soil is higher. The quantitative expression of this is

dC
dt

= −kC or C = C0· e −kt (12)

where C is the content of not-yet-decomposed SOM at time t, in tons; C0 is the total organic
matter at t = 0, in tons; k is the relative decomposition rate; and t is time, in years.

Because the organic matter, A, which is formed from plant residues (and chemosyn-
thesis) and incorporated into the soil, is assumed to be constant per unit time (year), this
constant fraction of soil organic material is transformed into humus and was called the
isohumic coefficient by Hénin [41]. The quantitative expression then becomes:

dC
dt

= −kC + A or C = C0· e−kt + A (13)

where A is the annual input of organic matter (in tons).
Also, taking into account the humified fraction and mineralized fraction of organic

matter [112], the quantitative expression would be presented like

C = C0· e−k2t + k1·A·
(

1 − e −k2t
)

/k2 (14)

where C is the content of not-yet-decomposed (or humified) SOM at time t, in tons; C0 is
the total organic matter at t = 0, in tons; t is time (years); A is the annual input of organic
matter, in tons; k1 is the isohumic coefficient and depends on the nature of the inputs
(organic material); and k2 is the mineralization coefficient, depending on the pedo-climatic
conditions [113].

4.1.2. Hénin et al.’s Model

Due to complications in distinguishing between stable humified and non-humified
labile fractions of SOM, and as their proportions may largely depend on the procedure used,
some authors have proposed using the term organic matter to represent both fractions, or
all organic material found in soil at any time. However, it is important to note that these
fractions are different [39]. A new two-component model was then developed to distinguish
the labile fraction of organic matter from the stable humified organic matter fraction. This
model assumes that labile organic matter is found in the light-density fraction, whereas
stable humified organic matter is related to the high-density fraction [40]. The quantitative
equations representing these two fractions are as follows: the free or light fraction is
considered as fresh organic matter, while the stable fraction is considered as humus.

For the labile fraction,

dL
dt

= A − αL or L =

(
L0 −

A
α

)
·e−αt +

A
α

(15)

where L is the labile organic matter (free or light) at time t, L0 is the labile organic matter
(free or light) at time t = 0, A is the annual input of organic matter, α is the decomposition
(humification and mineralization) parameter, and t is time.

For the stable (humified) fraction,

dS
dt

= kαL − βS or S =

(
s0 −

kA
β

)
·e−βt + k

(
L0 −

A
α

)
α

α− β

(
e−βt − e−αt

)
+

kA
β

)
(16)
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where S is stable organic matter or humus at time t; S0 is stable organic matter or humus
at time t = 0; k is the isohumic coefficient; β is a parameter of decomposition and mineral-
ization of the stable (humified) fraction of soil organic matter; t is time; A represents the
amount of labile (fresh) organic matter at any given time; L represents the total amount
of labile organic matter at any given time; k is the rate constant for the conversion of
labile organic matter to stable humified organic matter; α and β are rate constants for the
decomposition of the labile and stable fractions, respectively; and L0 is the total amount of
labile organic matter at time zero.

4.1.3. Kortleven’s Model

In 1963, Kortleven modified the previous model of Hénin and Dupuis to develop a
new one based on quantitatively analyzed data, which helps understand the relationship
between supplied humus, humus content, and productivity. In an experiment comparing
fallowing and conventional management practices, he found that from a supply of crude
organic matter, a certain constant part becomes humus each year, and from humus in soils,
a certain constant part is mineralized each year. Thus, two constants have to represent
the organic matter transformation: k1 for the rate of humification and k2 for the rate of
mineralization [45]. With an equal organic matter supply per unit time (year), this would
be represented as

H = Hm − (Hm − H0) (1 − K2)
t With Hm =

(
k1

k2

)
A (17)

where H is the humus content, Hm is the humus content at equilibrium with a constant
supply of organic matter, H0 is the initial humus content, K2 is the rate of mineralization,
t is the time in years, K1 is the coefficient of humification, and A is the raw organic
material supply.

4.1.4. Kolenbrander’s Model

In 1969, Kolenbrander proposed a mono-component model for mineralization of
common organic material under agricultural conditions with a relative decomposition rate
decreasing with time [114].

Yt

Y0
= e−(n+(

p
t+1 )·t) And K = n +

(
p

t + 1

)
(18)

where p and n (no dimension over time) are empirical constant parameters specific for
the organic material, and k is the average relative mineralization rate during the period
between times 0 and t.

4.1.5. Godshalk’s Model (1977)

Godshalk [115] adopted the models of Saunders [116] and the one developed by
Bunnell [117] after Minderman [118] to develop his new one based on the biological and
environmental influence on the decomposition process in lentic ecosystems, focusing on
the rate and fate of products (components) of decomposition. The effects of plant species,
temperature, and oxygen on the transformation of senescing macrophyte tissues were
monitored.

Bunnell et al.’s model developed after Minderman is

dW
dt

= ∑n
i=1 −KiWi (19)

The Saunders, (1972) model is :
dW
dt

= −cWE (20)
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The Godshalk model is :
dW
dt

= −a(e−bt)W (21)

where W is the remaining organic material at time t; t is the time; E is the effective absolute
enzyme concentration; Wi is the proportion of organic material i remaining at time t; Ki is
the decay constant of organic matter i; n is the number of organic matter components; and
a, b, and c are the decaying constants.

4.1.6. Jansen’s Model

In 1984, Jansen used Kolenbrander’s data and equation to develop the new model
where the relative rate of mineralization is dependent on initial age and a temperature
correlation factor [119,120].

K = 2.82 (a + f ·t)−1.6 (22)

Yt = Y0 ∗ Exp(4.7 × (age + f ·t)−0.6 − age−0.6) (23)

f = 2(T−9)/9 (24)

where Yt is the quantity of remaining organic material at time t (years), Y0 is the initial
quantity of the organic material, k is the relative rate of mineralization (decomposition) at
time t, age is the initial age (resistance to mineralization), f is the temperature correlation
factor, and T is the temperature in degree Celsius.

4.1.7. Yin’s Model

In 1994, Yin proposed an ecological model about litter production, decomposition, and
accumulation in grassland ecosystems. The characteristics of litter long-term dynamics in
grassland ecosystems were assessed as a function of input and output rate [121]:

dX(t)
dt

= g(t)− k(t)·X(t) (25)

where t is time, X(t) is litter biomass, g(t) is production rate, and k(t) is decomposition rate.

4.1.8. Andrén and Kätterer’s Model (ICBM)

In 1997, answering to questions related to whether a given system is losing or seques-
tering soil carbon, what would happen to soil carbon with an increase in temperature (5 ◦C),
what would be the effect of doubling the annual carbon input to soil carbon stocks, and
what might be the reasons of uneven soil carbon in different regions, a two-component
model was developed, comprising young and old soil carbon, two decay constants, and
parameters for litter input, humification, and external influences. It was called the intro-
ductory carbon balance model [122].

dY
dt

= i − k1 Yr And (26)

dO
dt

= hk1 Yr − Ok2 r (27)

where Y is young pool soil carbon; O is old pool soil carbon; i is the mean annual soil
carbon input; k1 and k2 are relative decomposition rates for young and old soil carbon pools,
respectively; h is the humification coefficient, and r represents climatic (edaphic) factors.

4.1.9. Andriulo et al.’s Model

In 1999,Andriulo et al. [123] modified the Hénin and Dupuis model to develop a
three-compartment model. This model consists of separating the organic matter into a
stable and an active fraction, each with a specific mineralization rate. The stable fraction is
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assumed to be biologically inert or degrades extremely slowly, whereas the active fraction
has a high rate of decomposition. On top of active and stable fractions, they also consider
the initial carbon content to make three compartments. They found that the stable fraction
of organic matter represents 2/3 of the initial stock: Cs =

2
3 C0 [123,124].

C = Cs + CA0· e−kt +
k1·A.

k

(
1 − e−kt

)
(28)

C0 = Cs + CA0 (29)

where C is the content of not-yet-decomposed (or humified) SOM at time t, in tons; t is
the time, in years; Cs is the quantity of stable organic matter carbon fraction in the soil at
t = 0, in tons; CA0 is the initial active organic matter carbon fraction content at t = 0, in tons;
C0 is the initial total organic matter carbon content, in tons; A is the annual input of organic
matter, in tons of dry matter; k1 is the isohumic coefficient, characteristic of the composition
of organic residues; and k is the mineralization coefficient of the active fraction.

4.1.10. SOMM Model

The SOMM is a theoretical analytical model for natural ecosystems that simulates
the decomposition and transformation of organic matter in soil. It was developed as a
theoretical tool to describe the natural ecosystem processes involving the decomposition of
soil organic matter, mineralization, humification, and the release of carbon and nitrogen.
This model assumes that SOM decomposition depends on energy and nutrient availability
and environmental factors such as temperature, microorganisms, and moisture [125]. The
model uses a set of linear differential equations with variable coefficients to predict the rate
of decomposition and can be calibrated to specific soil types and management practices.

dL
dt

= L0 − (k1 + k3) L (30)

dF
dt

= k3L − (k2 + k4 + k5)F (31)

dH
dt

= (k4 + k5)F Mf − K6H (32)

where L0 is the litter input rate, L is the non-decomposed part of the litter remaining in
the soil, F is the complex humic substance with non-decomposed plant debris, and H is
the humus content. K1 and k2 are the relative rates of C losses from L (litter) and from
F (complex humic substance). K3, k4, k5, and k6 are the relative decomposition rates for
litter transformation to complex humic substances, complex humic substance consumption
by microorganisms, complex humic substance consumption by earthworms, and humus
mineralization, respectively. Mf is the fraction of complex humic substances transforming to
humus. The relative rates of decomposition are modified for soil temperature and moisture
content and for nitrogen and ash content of litter.

4.2. Simulation Models

Simulation models are based on computer programs that simulate the behavior of
the system being modeled. These models operate on realistic assumptions and are more
complex than analytical models. They are able to deal with a wide range of conditions
and handle large and complex data [126]. They can provide more realistic and accurate
predictions of SOM dynamics in response to different environmental conditions and man-
agement practices [49]. They are based on a more detailed approach and representation of
soil ecosystems and use computer algorithms to simulate the biophysical and biochemical
processes that control SOM dynamics, including microbial activity, plant residue decompo-
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sition, and soil structure formation, to explain the flux and distribution of carbon over a
given time and scale [82].

4.2.1. Pernas’s Model (1975)

Parnas [42] developed a model for the decomposition of organic material by microor-
ganisms, which is among the first well-known simulation models. It considers SOM a het-
erogeneous mixture made up of different arbitrary pools that decompose at different rates.

R = C1 + C2 + N1 = C + N1 With C = C1 + C2 (33)

dR
dt

=
dC
dt

+
d N1

dt
(34)

dC
dt

= −x·G·B (35)

x =
f c
F

(36)

where R is the organic matter subjected to decomposition, C1 is the carbon per unit soil
of substances made up of C-N (like proteins), C2 is the carbon per unit soil of substances
made up of C-C (like cellulose), N1 is the amount of nitrogen in N-C compounds, B is the
biomass of the decomposers per unit soil, G is the growth rate of the decomposers and
depends on the C/N ratio of the organic matter, fc is the average fraction of carbon in the
decomposer’s cell, F is the ratio of carbon assimilated to carbon decomposed, and x is the
total carbon used by the organisms per unit biomass increment.

4.2.2. The CENTURY Model

Parton et al. [127] developed an agroecosystem model that is a process-based model
that simulates carbon and nutrient (carbon, nitrogen, sulfur, and phosphorus) cycling in
soil–plant systems (in a grassland, crop, forest, or savanna over time scales of decades to
millennia with monthly intervals) as well as crop growth. It describes the fate of carbon,
nitrogen, water, sulfur, and phosphorus in soil compartments, such as living biomass, dead
biomass, and SOM pools. The model simulates different effects of management practices
on soil carbon sequestration, greenhouse gas emissions, and nutrient cycling. It has been
applied to various ecosystems and management scenarios around the world [128–130]. The
Century model consists of a set of differential equations that describe the flow of carbon
and nitrogen through different pools (active, slow, and passive) in the soil, but nitrification
is not included. The decomposition of all pools is described according to first-order kinetics
with different relative rate constants per pool [110].

4.2.3. RothC Model

The Rothamsted Carbon Model (RothC) is a soil-organic-matter-simulation-process-
based model that simulates the dynamics of carbon and nitrogen biogeochemistry in
agroecosystems (soil–plant–atmosphere system) and is used to predict the effects of man-
agement practices on soil carbon storage and fluxes (predict crop growth, soil temperature
and moisture, carbon dynamics, nitrogen leaching, and trace gases emissions) [131]. The
RothC model deals with the turnover of organic carbon in non-waterlogged topsoil that al-
lows for the effects of soil type, temperature, soil moisture, and plant cover on the turnover
process. The model simulates SOM decomposition, humification, and mineralization. It
predicts changes in soil carbon stocks in response to changes in land use, management,
and climate. It is also used to estimate the potential for carbon sequestration through
different agricultural practices. The model requires only a few inputs, which are almost
readily available. It is an updated version of previous models developed by Jenkinson and
Rayner in 1977 [85] and Hat 1984 [132]. It shares many similarities with other contemporary
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models of organic matter turnover, including CENTURY [129] and Van Veen and Paul’s
model [133]. Soil organic carbon can be divided into four active compartments and a small
amount of inert organic matter (IOM). The active compartments are decomposable plant
material (DPM), resistant plant material (RPM), microbial biomass (BIO), and humified
organic matter (HUM). These compartments decompose with a first-order process at a
specific rate, each. The rate of decomposition is not affected by the amount of organic
matter added, and the priming action is assumed to be zero. The IOM compartment is
resistant to decomposition [50].

4.2.4. Van Veen and Paul’s Model (1981)

The Van Veen and Paul model is a conceptual model that describes the dynamics
of soil organic matter. The model assumes that soil organic matter is composed of three
fractions: active, slow, and passive. The active fraction is the most labile and readily
decomposable, while the slow and passive fractions are progressively more resistant to
decomposition. The model assumes that easily decomposable materials, such as cellulose
and hemicellulose, are directly decomposed by the soil organisms. In contrast, the lignin
fraction of aboveground residues and the resistant portion of the roots enter a decomposable
native soil organic matter pool. This pool can be decomposed by the soil organisms or
react with other soil constituents to form more recalcitrant soil organic matter. The model
assumes that transformation rates are independent of biomass size and follow first-order
kinetics. The model simulates the SOM transformations under native grassland conditions
and predict the effect of agricultural management on organic matter levels. It divides
SOM into different fractions that decompose at different rates controlled by a separate set
of environmental factors, such as temperature, moisture, and substrate availability. The
model has been used to understand the factors that regulate soil carbon storage and explore
the potential of soil management practices, such as tillage and crop rotation, to affect soil
organic matter dynamics [133]. The rate of decomposition of a substrate as described by
first-order kinetics is

V =
dC
dt

= kC (37)

where V is decomposition rate (quantity per time), C is the substrate (quantity), t is time, k
is the rate constant.

When analyzing CO2 output data to calculate decomposition rates, it considers biosyn-
thesis as well. Biosynthesis, the process by which microorganisms use carbon from the soil
to build new biomass, can affect the accuracy of decomposition rate estimates if not taken
into account.

COT = CO2[1 +
Y

100 − Y
] (38)

where C is the actual amount decomposed, CO2 is the CO2 produced, and Y is the efficiency
of the use of carbon for biosynthesis (is expressed as % of the total C uptake).

4.2.5. DND Model

The denitrification–decomposition model simulates the dynamic processes of carbon,
nitrogen, and water cycling in terrestrial ecosystems. This model is employed in developing
sustainable management strategies, assessing global change impacts, and simulating the
effects of management practices on carbon and nitrogen cycling, carbon sequestration,
and greenhouse gas emissions [134]. SOM pools consist of many sub-pools with different
C/N ratios and relative rates of decomposition. The calculation of decomposition, CO2
production, volatilized ammonia, and nitrification by decomposition sub-models is carried
out daily. The denitrification sub-model calculates the production of N2 and N2O, and
denitrification rates in the soil [134]. This model accounts for water flow as well as soil
microorganisms’ redox processes [135].
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4.2.6. DayCent Model

The DayCent model is the daily time-step version of the Century model. It simulates
the agroecosystem (atmosphere, plants, and soil) processes and the dynamics of carbon,
phosphorus, nitrogen, sulfur, CO2, CH4, N2O, NOx, and N2 over time. It helps in assessing
the impacts of management practices on productivity, greenhouse gas emissions, and
climate change from agricultural systems. It integrates mechanistic models of crop growth
with soil water, carbon, and nitrogen dynamics. It is capable of simulating crop rotations,
fertilizer and manure applications, and irrigation management. DayCent can also be used
to incorporate the effects of climate variability on crop and soil processes. It takes into
account a wide range of environmental and management factors that influence ecosystem
carbon and nitrogen dynamics, including climate, soil properties, vegetation type and
management practices such as tillage and fertilization. DayCent modeling equations are
used to simulate crop growth and soil processes over long time scales [136–138].

4.2.7. Yasso Model

The Yasso model divides SOM into two pools decomposing at different rates and
that reduces with the formation of recalcitrant fractions, the labile and stable one. It
takes into account the SOM fractions’ turnover time considering the organic material
availability, its quality, and climate data. This model simulates the long-term change in
SOM as a result of land management practices [139]. Organic material decomposition
does not only depend on its chemical characteristics but also on its physical characteristics
and exposure to microbial decomposition; as decomposition goes on, organic materials
lose weight; decomposed mass of organic material is removed from the soil and there is
formation of more complex recalcitrant compounds; lastly, temperature and moisture affect
decomposition processes [140].

4.2.8. ANIMO Model

The ANIMO (agricultural nutrient model) model is an advanced mathematical model
for predicting the behavior of organic matter in soil. It considers the soil and hydrological
conditions, management practices, fertilizers, nutrient leaching, environmental factors, and
biochemical processes (C, N, and P cycles; decomposition) to simulate SOM dynamics and
carbon sequestration, and to improve agricultural productivity. The model was developed
by adding a humification term to the conventional first-order kinetic model of SOM de-
composition, which allows for a more realistic simulation of SOM dynamics [141–143]. The
ANIMO model involves a set of differential equations that describe the changes in organic
matter pools in nature, forest, and agricultural soils over time, and the user has to define
the pools and parameters.

4.2.9. CANDY Model

The carbon and nitrogen dynamics model simulates long-term carbon and short-term
nitrogen cycling in soil. It is made up of different sub-models that represent biophysic-
ochemical and environmental processes from a range of different agroecosystems. The
model divides SOM into different categories of pools including fresh, biologically active,
and slow-cycling organic matter. Each one of these pools decompose according to the
first-order kinetics with the rate constants depending on the environment, and carbon and
nitrogen move through these three pools according to pool C/N ratio, nitrogen mineral-
ization and immobilization, and carbon dioxide release [144,145]. Its sub-models include
the soil temperature model, hydrological model, crop model, and SOM turnover model,
including the nitrogen model [144].

Soil temperature sub-model:

d(CT)
dt

=
d
dz

(
α

dT
dz

)
(39)
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where t, time (d); z, depth (cm); C, volumetric heat capacity of soil (J cm−3 K); T, soil
temperature (K); α, thermal conductivity (J S−1 cm−1 K−1).

Hydrological sub-model:

dW
dt

= λ(W − WFK)
2, W ≥ WFK (40)

where t, time; W, water content (mm) of a soil column of defined thickness; WFK, water
content at field capacity (mm); λ, drainage parameter (mm−1 d−l)

Crop sub-model:

Nupt(t) = 0.5

(
1 −

tanh
( 2t

V − 1
)
S

tanh(S)

)
Nyield (41)

where Nupt, total nitrogen in the crop (kg N ha−1); t, time (d, with zero at the beginning
of plant uptake); NYield, total nitrogen uptake at harvest (kg N ha−1); V (d), the crop-
dependent length of the vegetation period; S, a crop parameter; and tanh, the hyperbolic
tangent function.

Nitrogen dynamics sub-model:

dCAOM(t)
dt

= −KAOMCAOM(t) (42)

dCBOM(t)
dt

= ηKAOMCAOM(t)− (KBOM + KS)CBOM(t) + KaCSOM(t) (43)

dCSOM(t)
dt

= KSCBOM(t)− KaCSOM(t) (44)

where AOM, the added organic matter; BOM, the biologically active soil organic matter;
SOM, the stabilized soil organic matter; C, the C contents of the corresponding compart-
ments of soil organic matter (kg C ha−1); K, the rate coefficients (d−l), depending on soil
temperature and moisture content; and η, the dimensionless synthesis coefficient.

4.2.10. Root Zone Water Quality Model

This is an agricultural system simulation model that deals with agricultural production
by taking into account the environment, interactions, movement, and fate of water, nutri-
ents, pesticides, and crops. It distinguishes five carbon and nitrogen pools and simulates
their transformation in the soil system. The decomposition of residue (two pools) and
organic matter (three pools), as well as denitrification, follow the first-order reaction kinet-
ics. However, nitrification follows zero-order reaction kinetics with changing specific rate
coefficients according to conditions. The net assimilation is calculated from the C/N ratio
in the five pools, taking into account that part of the carbon is assimilated into microbial
biomass. The model also considers the growth and energy sources (pools, nitrification) of
hetero- and autotrophs in the system [146].

4.2.11. PAPRAN Model

The PAPRAN model divides soil organic matter into two main components with
different decomposition rates and contributions to soil nutrients: labile and recalcitrant.
The decomposition of soil organic matter follows the first-order reaction kinetics and takes
into account the effects of soil temperature, moisture, and pH. PAPRAN uses a combina-
tion of empirical and mechanistic equations to simulate the processes of decomposition,
mineralization, and immobilization of organic matter and nitrogen in soil. The model
requires input data such as soil type, climate, crop history, and management practices to
parameterize the model and simulate SOM and nitrogen dynamics over time [147,148].
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4.2.12. NCSOIL Model

The nitrogen and carbon transformation in soil (NCSOIL) model simulates the dynam-
ics of nitrogen and carbon transformations in the soil–water–air–plant system. The model
considers soil organic matter made of fresh plant derivatives, microbial biomass, and active
and recalcitrant pools. These pools decompose independently and according to the avail-
able nitrogen. The model allows for choosing between first-order and Monod-type reaction
kinetics for organic matter decomposition [149]. Overall, the NCSOIL model is a useful
tool for understanding the complex interactions between soil, plants, and microorganisms,
and for developing sustainable agricultural practices that support both productivity and
environmental conservation.

4.2.13. DAISY Model

The DAISY model is a crop growth model that simulates the decomposition and
mineralization of soil organic matter in agricultural soils taking into account the C/N
ratio, water, and heat flow for the wet temperate climate of north-West Europe. The model
considers key environmental factors, including temperature and moisture, as well as crop
residue inputs, and its sub-pool decomposition and transformation processes are based on
first-order reaction kinetics and substrate use efficiency [150].

4.2.14. SUNDIAL Model

The SUNDIAL (Simulation of Nitrogen Dynamics in Agricultural Landscapes) model
is based on the Rothamsted carbon model. It simulates SOM dynamics but also includes
nitrogen cycling and crop growth in agricultural systems [151]. The model utilizes dif-
ferential equations to describe the rates of soil organic matter decomposition, nitrogen
mineralization, and plant uptake. Specifically, the decomposition process is represented by
three pools, each characterized by first-order kinetics.

4.2.15. ECOSYS Model

The ECOSYS model is a process-based model for natural and managed ecosystems
that take into account various factors such as soil water, heat, carbon, oxygen, nitrogen,
phosphorus, some ion transport, and gases exchange in agricultural management systems.
It takes into account physical and biological processes at different scales and simulates
the dynamics of soil organic matter, carbon sequestration, and greenhouse gas emissions
in an ecosystem by considering the balance between inputs, outputs, and losses of soil
organic matter [152]. This model divides SOM into four substrates or pools—active, passive,
animal, and plant derivatives—that can exist in different states (solid, soluble, adsorbed,
and microbial). These substrates decompose according to factors such as cellulose, lignin,
clay, carbohydrates content, available water and temperature, and the substrate–microbe-
density relationship. The model also classifies microbes into four categories: obligate
anaerobic, obligate aerobic, facultative anaerobic, and methanogens. To describe the rates of
soil organic matter decomposition, humification, carbon inputs from plants, and microbial
processes, the model uses differential equations that are dependent on the substrate–
microbe relationship [153].

4.2.16. APSIM Model

This is an agricultural production systems simulator for managing crops, forests, pas-
tures, and soils in agricultural systems. It simulates biophysical processes in agricultural
systems focusing on ecological and economic effects of agricultural practices vis-a-vis
climate [154]. APSIM is structured around plant, soil, and management modules. These
modules include a diverse range of crops, pastures, and trees, soil processes including
water balance, N and P transformations, soil pH, erosion, and a full range of management
controls. The Soil N module describes soil organic matter and deals with nitrogen mineral-
ization through three pools: fresh, active, and stable organic matter. The Residue module
deals with the effect of residue on soil and water. The transfer of carbon and nitrogen be-
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tween these pools depends on factors such as C/N content, decomposition, mineralization,
immobilization, plant growth, soil water movement, and nutrient cycling [155].

5. A Synopsis of the Strengths, Limitations, and Applications of Some Analytical and
Simulation-Based Soil Organic Matter Modeling Approaches in Understanding
and Predicting SOM Dynamics

Soil organic matter modeling approaches offer valuable insights into the dynamics
of SOM and its role in soil health and productivity. By examining the strengths, limita-
tions, and applications of different modeling approaches, researchers can enhance their
understanding of SOM dynamics and make more accurate predictions [156,157].

The strengths of SOM modeling approaches lie in their ability to integrate various
factors and processes influencing SOM dynamics, such as decomposition, mineralization,
and stabilization. These models provide a framework for quantifying and analyzing the
complex interactions between soil properties, climate, land management practices, and
SOM dynamics. They allow researchers to simulate different scenarios and assess the
effects of management practices on SOM content and quality [49,158].

However, it is important to acknowledge the limitations of SOM modeling approaches.
Models rely on input data, which may have inherent uncertainties and variability. The
accuracy of the models depends on the quality and availability of data, as well as the
assumptions and simplifications made during model development. Additionally, models
may have limitations in representing specific soil types or ecosystems, and their predictive
power may vary depending on the scale of analysis [49].

Despite these limitations, SOM modeling approaches have diverse applications. They
can be used to evaluate the impacts of different management practices on SOM dynamics,
assess the effectiveness of soil conservation and carbon sequestration strategies, and support
decision-making processes for sustainable land management. Models also contribute to our
understanding of the long-term dynamics of SOM and its role in climate change mitigation
and adaptation [159].

Briefly, a synopsis of strengths, limitations, and applications of SOM modeling ap-
proaches provides valuable insights into the complexity of SOM dynamics (Table 2). By
considering these factors, researchers can refine and improve the accuracy of models,
leading to more effective strategies for sustainable soil management and enhanced soil
health [82].
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Table 2. Strengths, limitations, and applications of analytical and simulation soil organic matter modeling approaches.

Models Strengths Limitations Applications

Analytical Models

Easily understandable and interpretable.
Requires limited data and information. Suitable
for small-scale studies. Can be used to predict

long-term SOM dynamics.

Limited scope of applicability. Assumptions are
often oversimplified and sometimes unrealistic.
Inability to capture the complexity of real-world

Predicting decomposition rate, transformation,
lability, and stability of SOM. Quantifying the impact

of management practices on SOM. Evaluating the
effects of climate change and land-use changes

on SOM

Hénin and Dupuis model (1945)

Provides a simple and intuitive representation
of soil organic matter dynamics. Applicable for

different soil types. Can be used to estimate
SOM turnover time.

Ignoring environmental factors during SOM
decomposition.

Useful as a historical reference for the development of
soil carbon models. Can be used as a baseline model

for more complex soil carbon models. Predicting
carbon and nitrogen mineralization rates

Kortleven Model (1963) Can be used for predicting nitrogen
mineralization. Simple and easy to use.

Assumptions are oversimplified. Ignores the
impact of environmental factors

Predicting nitrogen mineralization and SOM
decomposition rates in different soils

Kolenbrander Model (1969)
Suitable for estimating nitrogen immobilization
rate. Incorporates environmental factors such as

pH and temperature.

Assumes a constant microbial biomass. Limited
scope of applicability

Predicting nitrogen immobilization rate and SOM
decomposition rate under different management

practices and soil conditions

Godshalk Model (1977) Simple and easy to use. Applicable for
predicting carbon and nitrogen mineralization.

Assumes constant environmental conditions.
Limited scope of applicability

Predicting SOM decomposition rates in different soils
under varying environmental conditions

Jansen Model (1984)
Incorporates the effects of temperature and
moisture. Suitable for estimating long-term

SOM dynamics

Limited scope of applicability, Assumes a
constant microbial biomass

Predicting SOM decomposition and mineralization
rates, and carbon balance under varying

environmental conditions. Assessing management
practices in mitigating climate change.

ICBM (Introductory Carbon
Balance Model), Andrén and

Kätterer model (1997)

Accounts for the effects of temperature and
moisture. Suitable for predicting long-term

SOM dynamics. Account for carbon balance at
various spatial scales, from individual plants to

entire ecosystems. It incorporates a detailed
understanding of plant physiology and

ecosystem processes.

Requires a lot of detailed input data and
parameters (vegetation characteristics, climate,

and soil properties). Limited scope of
applicability and its calibration can be complex

and time-consuming.

Predicting SOM decomposition and mineralization
rates under different management practices and

environmental conditions
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Table 2. Cont.

Models Strengths Limitations Applications

Andriulo Model (1999)
Incorporates temperature and moisture effects.

Suitable for predicting long-term SOM
dynamics.

Limited scope of applicability. Assumes a
constant microbial biomass

Predicting SOM decomposition and mineralization
rates under different management practices and

environmental conditions

SOMM (Soil Organic Matter
Mineralization) model

Incorporates a detailed understanding of
microbial ecology and soil organic matter

dynamics. It can simulate the decomposition
and mineralization of different fractions of

organic matter, including labile and recalcitrant
pools. Suitable for predicting long-term SOM

dynamics.

Model calibration can be complex, as it requires
detailed information on soil characteristics and
microbial processes. Input data requirements

can be high, including detailed information on
soil texture, structure, and water content.

Useful for understanding and predicting the effects of
management practices, such as tillage, fertilization,
and crop rotation, on soil organic matter dynamics.
Can be used to assess the impacts of climate change

on soil organic matter mineralization rates. Predicting
SOM dynamics under different land-use scenarios

Sauerbeck and Gonzalez model
(1977)

Simple and easy to use, with few input data
requirements. Can be used to estimate soil

carbon turnover rates and the decomposition of
different soil organic matter fractions.

Does not account for the effects of
environmental factors, such as temperature and
moisture, on soil organic matter decomposition.
Assumes a fixed rate of carbon loss from the soil

organic matter pool, which may not reflect
actual soil carbon dynamics.

Useful for comparing the turnover rates of different
soil organic matter fractions and estimating the

potential impact of changes in management practices
on soil carbon storage. Can be used as a baseline

model for more complex soil carbon models.

Yang Model (1996)
Can be used for predicting long-term SOM

dynamics. Accounts for the effects of
temperature and moisture.

Limited scope of applicability. Assumes a
constant microbial biomass

Predicting SOM dynamics under different land use
and management practices

Simulation Models

Can capture the complexity of real-world
systems. Can incorporate various

environmental factors. Can be used to simulate
various management practices

Require large amounts of input data and
parameters. Difficult to interpret and explain.

Limited to specific soil types

Predicting SOM dynamics at large spatial and
temporal scales. Evaluating the effects of climate

change and land-use changes on SOM. Predicting the
impact of different management practices on SOM

Pernas model (1975)

Provides a simple and intuitive representation
of soil organic matter dynamics and

mineralization. Can be used to estimate the
decomposition rates of different soil organic

matter fractions.

Assumes that soil organic matter decomposes at
a constant rate, which does not reflect actual soil

carbon dynamics. Does not account for the
effects of environmental factors, such as

temperature and moisture, on soil organic
matter decomposition. Limited scope of

applicability.

Useful as a historical reference for the development of
soil carbon models. Can be used as a baseline model

for more complex soil carbon models. Predicting
SOM decomposition and mineralization rates under

different environmental conditions
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Models Strengths Limitations Applications

CENTURY model

Accounts for the effects of environmental
factors, such as temperature, moisture, and land
use, on soil organic matter decomposition. Can
simulate the impacts of different management
practices on soil carbon storage. Can simulate

soil carbon dynamics over long time scales (e.g.,
centuries).

Requires a large amount of input data,
including soil properties, climate data, and

management practices. Can be computationally
intensive, particularly when simulating large

spatial and temporal scales. May not accurately
represent soil carbon dynamics in certain soil

types or regions.

Widely used in global climate models and to evaluate
the impacts of land use and management on soil

carbon storage. Can be used to develop management
strategies to enhance soil carbon storage and mitigate

climate change.

RothC model

Accounts for the effects of temperature,
moisture, and soil properties on soil organic

matter decomposition. Can be used to simulate
soil carbon dynamics under different

management practices. Can simulate soil
carbon dynamics over long time scales (e.g.,
centuries). Includes an option to incorporate
soil respiration measurements to calibrate the

model.

Requires input data on soil properties, climate
data, and management practices. Can be

computationally intensive, particularly when
simulating large spatial and temporal scales.

May not accurately represent soil carbon
dynamics in certain soil types or regions.

Used to evaluate the impacts of land use and
management on soil carbon storage. Can be used to

develop management strategies to enhance soil
carbon storage and mitigate climate change.

Van Veen and Paul model (1981) Can predict SOM dynamics under different
management practices

Limited scope of applicability. Assumes a
constant microbial biomass

Predicting SOM dynamics under different
management practices and environmental conditions

DNDC Model Can simulate the effects of climate change and
land-use changes

Requires large amounts of input data and
parameters. Model structure is complex and

difficult to modify.

Predicting SOM dynamics under different land-use
and climate scenarios

DayCent Model
Suitable for predicting SOM dynamics under

different management practices and
environmental conditions

Requires large amounts of input data and
parameters. Model structure is complex and

difficult to modify

Predicting SOM dynamics under different
management practices and environmental conditions

Yasso model

Accounts for the effects of temperature,
moisture, and litter quality on soil organic
matter decomposition. Can simulate the

impacts of different management practices on
soil carbon storage. Can simulate soil carbon

dynamics over long time scales (e.g., centuries).
Includes an option to incorporate field
measurements to calibrate the model.

Requires input data on litter quality, climate
data, and management practices. May not

accurately represent soil carbon dynamics in
certain soil types or regions. Does not explicitly
account for the effects of soil properties on soil

carbon dynamics.

Widely used in global carbon cycle models and to
evaluate the impacts of land use and management on

soil carbon storage. Can be used to develop
management strategies to enhance soil carbon storage

and mitigate climate change.
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ANIMO model

Can simulate the effects of different land use
and management practices on soil carbon

dynamics. Includes options to account for the
effects of climate change and elevated

atmospheric CO2 on soil carbon storage. Can
simulate soil carbon dynamics over long time
scales (e.g., centuries). Includes an option to

incorporate field measurements to calibrate the
model.

Requires input data on soil properties, climate
data, and management practices. May not

accurately represent soil carbon dynamics in
certain soil types or regions. Does not account

for the effects of soil biota on soil carbon
dynamics.

Widely used in global carbon cycle models and to
evaluate the impacts of land use and management on

soil carbon storage. Can be used to develop
management strategies to enhance soil carbon storage

and mitigate climate change.

CANDY model

Can simulate the effects of different land use
and management practices on soil carbon

dynamics. Accounts for the effects of
temperature, moisture, and litter quality on soil

organic matter decomposition. Can simulate
soil carbon dynamics over long time scales (e.g.,

centuries). Includes an option to incorporate
field measurements to calibrate the model.

Requires input data on soil properties, climate
data, and management practices. May not

accurately represent soil carbon dynamics in
certain soil types or regions. Does not explicitly

account for the effects of soil biota on soil
carbon dynamics.

Widely used in global carbon cycle models and to
evaluate the impacts of land use and management on

soil carbon storage. Can be used to develop
management strategies to enhance soil carbon storage

and mitigate climate change.

Root Zone Water Quality Model

Can simulate the transport and fate of nutrients,
pesticides, and other contaminants in soil and
groundwater. Accounts for the effects of soil

properties, land use, and management practices
on soil water and solute transport. Allows for

the evaluation of management strategies to
reduce non-point-source pollution. Includes
user-friendly interface and graphical output.

Requires input data on soil properties, crop
management practices, and hydrologic

conditions. Does not explicitly account for the
effects of soil biota on nutrient cycling and
pollutant degradation. May not accurately
represent soil water and solute transport in

certain soil types or regions.

Widely used by researchers, consultants, and
policymakers to assess the impacts of agricultural

management practices on water quality. Can be used
to evaluate the effectiveness of best management

practices (BMPs) to reduce non-point source
pollution.
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PAPRAN Model

Simulates the growth and production of annual
pastures under different climatic and

management conditions. Accounts for the
effects of rainfall, temperature, and nitrogen

availability on pasture growth and quality. Can
be used to optimize fertilization and grazing
management practices to maximize pasture

productivity and quality. Allows for the
assessment of the potential impact of climate

change on pasture production.

Does not account for the effects of other
environmental factors, such as soil fertility and

pests, on pasture growth and quality. May
require calibration to local conditions to

accurately represent pasture growth and quality.

Can be used by farmers and land managers to
optimize pasture management practices and improve

productivity. Can be used to assess the impact of
climate change on pasture production and inform

adaptation strategies.

NCSOIL Model

Accounts for the interactions between carbon
and nitrogen cycles in soil. Simulates the

mineralization, immobilization, and nitrification
of soil organic matter and nitrogen. Allows for

the evaluation of the impact of management
practices and environmental factors on soil

carbon and nitrogen dynamics.

Requires detailed information on soil properties
and management practices to accurately

simulate soil carbon and nitrogen dynamics.
May not accurately represent the effects of other
environmental factors, such as temperature and
moisture, on soil carbon and nitrogen dynamics.

Can be used to optimize management practices to
increase soil carbon sequestration and reduce

nitrogen losses. Can be used to assess the potential
impact of climate change on soil carbon and nitrogen

dynamics and inform adaptation strategies.

DAISY Model

Accounts for the aerobic and anaerobic
microbial activity in soil. Simulates the

decomposition and mineralization of soil
organic matter, nitrogen transformations, and
soil water dynamics. Can be used to simulate
the effects of management practices, such as

irrigation and fertilization, on soil carbon and
nitrogen dynamics.

Requires detailed information on soil properties
and management practices to accurately

simulate soil carbon and nitrogen dynamics.
May not accurately represent the effects of other
environmental factors, such as temperature and
moisture, on soil carbon and nitrogen dynamics.

Can be used to optimize management practices to
increase soil carbon sequestration and reduce

nitrogen losses. Can be used to assess the potential
impact of climate change on soil carbon and nitrogen

dynamics and inform adaptation strategies.

SUNDIAL Model

Simulates the dynamics of carbon, nitrogen,
phosphorus, and water in agricultural

landscapes. Accounts for multiple
environmental factors, such as temperature,
precipitation, and soil properties, that affect
nutrient cycling. Can be used to simulate the
effects of management practices, such as crop
rotation and fertilizer application, on nutrient

cycling and water quality.

Requires detailed information on soil properties,
climate, and management practices to

accurately simulate nutrient cycling and water
quality. May not accurately represent the effects
of other environmental factors, such as land-use
changes, on nutrient cycling and water quality.

Can be used to optimize management practices to
improve nutrient cycling and water quality in

agricultural landscapes. Can be used to assess the
potential impact of climate change and land-use

changes on nutrient cycling and water quality and
inform adaptation and mitigation strategies.
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ECOSYS Model

Simulates the exchange of carbon, water, and
energy between the land surface and the

atmosphere. Accounts for multiple
environmental factors, such as temperature,
precipitation, and soil properties, that affect

ecosystem processes. Can be used to simulate
the effects of management practices, such as

land-use change and vegetation management,
on ecosystem processes and

carbon sequestration.

Requires detailed information on soil properties,
climate, and vegetation characteristics to

accurately simulate ecosystem processes. May
not accurately represent the effects of other

environmental factors, such as nutrient
availability and disturbance regimes, on

ecosystem processes.

Can be used to assess the potential for carbon
sequestration in different ecosystems and under
different management practices. Can be used to

inform land-use planning and policy development
aimed at mitigating climate change.

APSIM Model

Can simulate a wide range of agricultural
production systems, including crops, pastures,

and livestock. Accounts for multiple
environmental factors, such as soil properties,
climate, and management practices, that affect
crop growth and yield. Includes modules for
simulating soil water and nutrient dynamics,
crop growth and development, and pest and

disease interactions.

Requires detailed information on soil properties,
climate, and management practices to

accurately simulate crop growth and yield. May
not accurately represent the effects of extreme

weather events or other unpredictable
environmental factors on crop production.

Can be used to assess the effects of different
management practices, such as crop rotation and

irrigation, on crop growth and yield. Can be used to
evaluate the potential impacts of climate change on

agricultural production and inform
adaptation strategies.

NICCCE (Nitrogen isotopes and
carbon cycling in

coniferous ecosystems)

The model integrates carbon and nitrogen
cycles and explicitly considers the effects of

isotopic fractionation, allowing for the analysis
of isotopic patterns in the soil and vegetation.

The model can be used to simulate the impacts
of changes in environmental conditions (e.g.,

temperature, precipitation, nitrogen deposition)
on carbon and nitrogen dynamics in coniferous

ecosystems. The model has been extensively
tested and validated against field

measurements, demonstrating its ability to
accurately predict carbon and nitrogen

dynamics in coniferous ecosystems.

The model has only been tested in coniferous
ecosystems, so its applicability to other

ecosystem types is unclear. The model requires
a large amount of input data, including

site-specific parameters such as soil texture and
vegetation characteristics, which can be

time-consuming and costly to collect. The
model assumes that all carbon and nitrogen
inputs and outputs are isotopically distinct,

which may not always be the case in the
real world.

The model can be used to investigate the impacts of
environmental changes on carbon and nitrogen

cycling in coniferous ecosystems, including the effects
of climate change, nitrogen deposition, and forest
management practices. The model can be used to

explore the isotopic patterns in soil and vegetation to
gain insights into the sources and cycling of carbon
and nitrogen in coniferous ecosystems. The model
can be used to develop management strategies for
coniferous ecosystems that aim to optimize carbon
and nitrogen sequestration and reduce greenhouse

gas emissions.
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EPIC (Erosion Productivity Impact
Calculator) Model

Integrates various processes, including erosion,
climate, soil, and crop management, to simulate
soil and crop productivity. Incorporates spatial
variability of soil properties and weather data to

improve accuracy of simulations. Allows for
simulating long-term effects of land-use

changes and management practices on soil and
crop productivity. Has been widely used and

tested in various regions across the world.

Data-intensive and requires input data for
various variables, which can be difficult to

obtain. Calibration of model parameters can be
time-consuming and may require extensive
field measurements. Requires expertise in

modeling and agricultural sciences to use and
interpret results. Does not account for all soil

and crop processes, such as nutrient cycling and
root growth, and may require additional models

for more comprehensive analyses.

Used for a wide range of applications, including crop
management, land-use planning, and environmental
impact assessments. Used in various regions across

the world for predicting crop yields and
environmental impacts. Used for evaluating the
impacts of climate change and extreme weather

events on crop productivity. Used for assessing the
economic and environmental impacts of agricultural

practices and policies

Osnabruck Model

Considers soil organic matter decomposition
and nutrient cycling processes in detail.
Accounts for the impact of management

practices on soil organic matter dynamics.
Applicable to various soil types and climatic

conditions. Allows for the simulation of
different plant species and cropping systems.

Requires input data on soil properties and
management practices that can be

time-consuming and costly to collect. Limited
validation and testing under different

environmental conditions. Does not account for
the influence of soil microorganisms on soil

organic matter dynamics.

Can be used to evaluate the effects of different
management practices on soil organic matter and

nutrient cycling. Useful in predicting the long-term
impacts of land-use and management changes on soil

quality. Can aid in developing sustainable
agricultural practices.

Verberne model

Includes management practices such as tillage,
crop rotation, and fertilization. Accounts for

different types of organic matter and their
decomposition rates. Incorporates

environmental factors such as temperature
and moisture

Limited validation in certain regions and soil
types. Requires input data that may not always

be readily available

Assessing the impacts of management practices on
soil organic matter dynamics. Predicting the effects of

environmental changes on soil carbon storage
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6. Conclusions and Future Perspectives

Soil organic matter is widely recognized as a key indicator of soil quality and serves
as both a source and sink of carbon. Understanding the quality and quantity of SOM
pools, as well as their stability and lability, is crucial in comprehending the roles they
play in nutrient cycling, soil health, environmental changes, and water storage capacity.
However, the conflict between maintaining or increasing soil organic matter and the effects
of management practices on SOM requires further investigation and resolution in different
land-use systems. This is particularly crucial for sustainable soil management and for
developing models that can accurately capture the quantitative and qualitative changes
of SOM.

Characterizing SOM quality, composition, and quantity requires, on one the hand,
examining the physical, biological, and chemical properties of the soil and its organic
compounds, which helps to explore SOM fractions and characterize their molecular struc-
ture and composition. This helps identify the processes that contribute to SOM formation
and decomposition and their effects on soil functions. On the other hand, it also involves
measuring the total amount of soil carbon (quantitative methods) as well as evaluating its
dynamics over time. However, as the quantitative methods do not inform us about SOM
quality or composition, a combination of both methods is necessary for a comprehensive
analysis of SOM and its importance in maintaining soil health and sustainability.

In the same vein, soil organic matter (SOM) modeling offers a valuable approach
for predicting and understanding the dynamics of SOM and developing sustainable soil
management strategies. By incorporating data on soil properties and climate, vegetation,
and management practices, models can simulate the decomposition, mineralization, and
stabilization rates of organic matter in soil. This enables researchers and land managers
to assess the effects of different practices and environmental factors on SOM availability,
composition, and turnover. The use of models can support the analysis of changes in
SOM content and quality under various scenarios, aiding in the development of more
sustainable land-use strategies. However, the accurate calibration and validation of models
are essential to ensure their reliability and applicability to specific soil and environmental
conditions. By optimizing soil organic carbon levels and nutrient recycling, informed
land management strategies can be developed to enhance soil productivity and maintain
long-term soil health.

Future research directions should include improved model parameterization, the
integration of multi-scale modeling, the incorporation of emerging technologies, the assess-
ment of climate change impacts, the integration of socioeconomic factors, validation and
benchmarking, and interdisciplinary collaborations.

This is because enhancing the accuracy of SOM models requires better parameteri-
zation, particularly in terms of soil properties, climate inputs, and management practices.
Future research should focus on obtaining high-quality and comprehensive data to refine
model parameters and reduce uncertainties.

Incorporating multi-scale modeling approaches can provide a more holistic under-
standing of SOM dynamics. Integrating models that operate at different spatial and
temporal scales, from the micro-scale of soil aggregates to landscape-level assessments, can
improve predictions and facilitate more effective decision making.

Advancements in sensor technologies, remote sensing, and data analytics offer new
opportunities for monitoring and assessing SOM dynamics. Future research should explore
the integration of these technologies into SOM modeling frameworks to improve data
collection, validation, and model calibration.

Climate change poses significant challenges to SOM dynamics, as it can influence
decomposition rates, nutrient cycling, and carbon sequestration. Future research should
focus on understanding the interactions between climate change and SOM dynamics to
develop climate-resilient management strategies.

Considering socioeconomic factors, such as farmer behavior, market dynamics, and
policy frameworks, in SOM modeling can provide a more comprehensive assessment of



Agronomy 2023, 13, 1776 27 of 33

the impacts of agricultural practices on SOM dynamics. Future research should explore
the integration of socioeconomic models with biophysical models to capture the feedback
loops between human activities and SOM dynamics.

The robust validation and benchmarking of SOM models are crucial for assessing their
accuracy and reliability. Future research should prioritize extensive field validation studies
using long-term monitoring data and experimental manipulations to ensure the models
capture the complexity of real-world SOM dynamics.

The collaboration between soil scientists, ecologists, agronomists, economists, and
social scientists can enrich the understanding of SOM dynamics and its implications for
sustainable land management. Future research should foster interdisciplinary collabora-
tions to address the complex challenges associated with SOM modeling and inform policy
and management decisions.

By focusing on these future research directions, scientists can advance our understand-
ing of SOM dynamics, improve the accuracy of modeling approaches, and contribute to the
development of sustainable soil management strategies in the face of global environmental
changes.
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