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Abstract: Avocado is one of the most commercialized and profitable fruits in the international market.
Its cultivation and production are centered in countries characterized by tropical and subtropical
climatic conditions, many of them with emerging economies. Moreover, the use of technology is
key to agricultural production improvement strategies. Using avocado crop data to forecast the
potential impacts of biotic and abiotic factors, combined with smart farming technologies, growers
can apply measures during a single production phase to reduce the risks caused by pests and weather
variations. Therefore, this paper aims to distinguish the most relevant variables related to agroclimatic
and phytosanitary events in avocado crops, their incidence on production and risk management,
as well as the emerging technologies used for the identification and analysis of pests and diseases
in avocados. A scientific literature search was performed, and the first search found 608 studies,
and once the screening process was applied, 37 papers were included in this review. In the results,
three research questions were answered that described the pests and diseases with high impact on
avocado production, along with the data sources and the principal enabling technologies used in the
identification of agroclimatic and phytosanitary events in avocados. Some challenges and trends in
the parameterization of the technology in field conditions for data collection are also highlighted.

Keywords: avocado; internet of things; machine learning; deep learning; risk management; smart
farming; pest and disease; climate conditions

1. Introduction

Avocado (Persea americana) is one of the most commercialized and profitable fruits in
the international market [1,2]. This particular fruit is cultivated in nations characterized by
tropical and subtropical weather conditions, many of them with emerging economies [3,4].
In 2021, the American continents produced 70.2% of the avocados marketed globally,
where four Latin American countries are among the top five avocado producers in the
world: Mexico (2.4 M tons), Colombia (980 K tons), Peru (777 K tons), and the Dominican
Republic (634 K tons) [1]. Likewise, the significant increase in avocado production in these
countries has been due to their entry and positioning in the global market, causing better
opportunities for the producers of this fruit, accompanied by a boom in market demand for
its functional compounds and benefits for human health, which represents a competitive
opportunity for the region [5,6].

To achieve sustainable growth in agricultural production (e.g., avocado), one of the
tasks of growers is to assess and quantify the risks to the farm in the event of a pest or
disease outbreak in their crop, or damage caused by weather variations, to estimate the
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impact and moderate the consequences on production or locate potentially damaged trees to
respond on time and mitigate losses [7,8]. Establishing risk categories for agroclimatic and
phytosanitary events (APEs) in crops makes it possible to define a differentiated treatment
of crops according to the trees affected [9]. Nevertheless, despite the advancements in smart
farming, a comprehensive framework has yet to be established to comprehend the specific
contributions of crop-data-driven measures toward mitigating risks [10]. By utilizing
crop data measurements to forecast the potential impacts of biotic and abiotic factors,
the implementation of diverse measures during a single production phase can effectively
diminish risks in various ways [11]. Therefore, the use of technology is key in agricultural
production improvement strategies [12].

Recently, the fourth industrial revolution (4IR) has influenced a broad spectrum of
industries and sectors through the introduction of new technologies, mainly in economic
activities of the secondary sector (manufacturing, clothing, construction) and the tertiary
sector (transportation, maintenance, marketing, communications), to reduce inefficiencies
and improve market performance [13–20]. Similarly, the agricultural industry is experi-
encing a growing presence of digital transformation, attributed to the advancement and
accessibility of information technologies (ITs) tailored to this domain. Nonetheless, agricul-
ture remains among the least digitized economic sectors in the world, even in countries
with fairly competitive agricultural systems and strong technological advances [21,22].
Today, ensuring people’s food sustainability is very important, which makes agriculture
one of the most relevant economic activities, leading to the transformation of traditional
agricultural processes into techniques that are highly supported by technology, to increase
crop production sustainably and increase economic opportunities for the families involved
in these activities [23–25].

Emerging technologies, such as artificial intelligence (AI), specifically machine and
deep learning (ML/DL), and the internet of things (IoT), are part of smart farming and today
can be successfully employed to mitigate risks in production through the integrated use of
ITs with predictive yield models [23,26]. Despite the availability of technologies, most of the
field data needed for agricultural yield prediction are hosted by different organizations, and
entities are reluctant to share data [26,27]. Similarly, very few technological applications
and field databases on avocado crops in tropical areas are available, both those related to
production and those related to the management of risks associated with APEs.

Some literature reviews have been conducted related to technology applications in the
agricultural sector in general, but these studies do not address the specific management
of pests, diseases, and climate changes in avocado crops using emerging technologies.
Cravero et al. conducted three literature reviews associated with big data (BD) in agri-
culture [22,27,28]. The first review aimed to examine the advancements of technologies
employed in BD architectures for agriculture, with a focus on climate change. The study
highlights the tools utilized for processing, analyzing, and visualizing crop data, as well
as the implementation of crop data architectures for effective monitoring of the weather,
water, and soil conditions [28]. Following the same approach, the second review supplied
insights into the utilization of BD and ML in the agricultural domain, without specifically
addressing the adaptations and design of architectures for these systems to operate ef-
fectively in agricultural applications. It is noted that thanks to advancements in cloud
technologies, data manipulation is no longer a complex process, although poor control
of crop data and technical data visualization systems poorly understood by producers
remain a challenge [22]. Additionally, the third review synthesized the available evidence
about the current challenge of implementing ML techniques in agricultural BD applica-
tions. It noted the ML techniques and the main technologies used in agriculture and that
it is imperative to express the necessity of modifying the current set of technologies by
adapting ML techniques as the volume of data coming from farms increases [27]. Moreover,
Toscano-Miranda et al. reviewed the detection and diagnosis of pests and diseases in
cotton crops using AI techniques, finding several applications of techniques focused on
image classification, image segmentation, and feature extraction from cotton production
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data [29]. Likewise, Morella et al. reviewed the advantages present in the application of 4IR
technologies in agricultural production, specifically in the supply chains of the agri-food
sector, showing how emerging technologies improve the development of chains in this
sector [30]. Also, this study identifies and examines the challenges involved in applying
Industry 4.0 in agriculture and raises key indicators to help quantify the benefits of im-
plementing the IoT, BD, and cyber–physical systems (CPSs) in this sector. Purcell and
Neubauer conducted a review of the uses of digital twins in the agricultural sector [31].
The review aimed to identify recent trends and applications of this technology, to raise
awareness and understanding of the potential and opportunities offered by digital twins
in agricultural activities. Finally, Kountios et al. reviewed numerous current initiatives
that use ITs to provide agricultural knowledge to producers, highlighting that knowledge
of agricultural practices has been passed down from generation to generation through
experiential learning and how technologies are widely used especially in the area of farmers’
access to market knowledge, providing advisory services in agriculture and creating a
competitive advantage in the sector [32].

Therefore, it is necessary to conduct a study related to avocado crops and the applica-
tion of technologies in their production, to analyze the use of technological advances in
the management of biotic and abiotic factors in avocado production farms, especially in
tropical regions such as Colombia and the Andean region. Therefore, it is crucial to identify
the factors associated with APEs in avocado crops [9,33]. For this reason, this paper is
interested in finding the most relevant variables associated with APEs in avocado produc-
tion, the incidence of these events in avocado crop productivity and their relationship with
risk management, and the technologies used to detect and analyze pests and diseases in
avocado. Consequently, primary studies conducted for the identification of pests, diseases,
and climatic conditions that affect avocado crop yield were reviewed. Similarly, primary
studies related to yield and risk management in avocado crops based on the monitoring of
APEs were reviewed. Furthermore, primary studies on advances in the use of emerging
technologies for data capture and analysis of avocado crop data were also reviewed in
this paper.

Accordingly, this paper presents a systematic literature review (SLR) about the use
of technologies for monitoring phytosanitary (pests, diseases) and agroclimatic (weather
variables) agents in avocado crops. The objective is to show the state-of-the-art research on
the management (prediction, detection, monitoring) of biotic and abiotic factors related to
APEs in avocados, supported by applications of smart farming. The paper is structured in
sections, where Section 1 is presented as the introduction. The methodology to perform
this systematic review is presented in Section 2. The analyses and findings in context are
presented in Section 3, followed by the discussion in Section 4. In the end, the conclusions
of this review are presented in Section 5.

2. Materials and Methods

The methodology used in this paper focuses on the SLR. The PRISMA method [34]
was used to select the research publications reviewed in this paper. Five stages of the
PRISMA method were applied for the analysis of the reviewed papers: (i) eligibility
criteria, (ii) information sources, (iii) search strategy, (iv) selection process, (v) preliminary
analysis [35]. Additionally, the method proposed by Kitchenham et al. [36] was adapted to
define the research questions (RQs) used in this SLR. The three research questions shown
in Table 1 were proposed to achieve the goal of this review. The analysis started with this
set of research questions, and query strings were constructed and used in the scientific
databases selected, allowing to obtain relevant publications according to each research
question. Each applied methodology step is outlined in the subsequent subsections.
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Table 1. Research questions used in this SLR.

Research Question

RQ1 Which agroclimatic and phytosanitary events are involved in the development of pests
and diseases in avocado crops?

RQ2 How do agroclimatic and phytosanitary events affect productivity and parametric risk
management in avocado crops?

RQ3 Which sensors and advanced data analytics techniques are used for pest and disease
detection and analysis in avocado crops?

2.1. Eligibility Criteria

Table 2 presents the inclusion criteria (IC) and exclusion criteria (EC) established
for this SLR. Since the highest avocado production area is Spanish-speaking and many
studies associated with this product are concentrated in these countries, the search also
included technological and scientific advances from the last six years published in English
and Spanish.

Table 2. Inclusion and exclusion criteria.

Criteria Type Criteria Detail

Inclusion criteria IC1 Research papers and conference proceedings related to APEs, crop yield,
and technology use in avocado crops
IC2 Publications from 2017 to 2022
IC3 Publications in English and Spanish
IC4 Publications with full text accessible

Exclusion criteria EC1 Papers that do not match the previous ICs
EC2 Books, chapters, reviews, editorials, abstracts, keynotes, and posters
EC3 Opinion pieces or position articles

2.2. Information Sources

The data sources included several digital libraries (scientific databases) such as Web of
Science for its scientific relevance, Scopus for its high scientific impact, and IEEE Xplore for
its specificity in technological advances and computer science.

2.3. Search Strategy

The search strings were constructed as follows: (a) from the research questions, key-
words for each string were obtained; (b) comparative analysis was applied to frame the
results with research questions. Search strings were structured using the logical operators
“AND” and “OR”. The search string generated for each research question, together with the
number of documents obtained for each query in the databases, are shown in Table 3. Each
search string was utilized to search for relevant papers in the titles, keywords, and abstracts.
Thus, 608 documents were initially obtained from queries to scientific databases.

Table 3. Search string used for each research question in this SLR.

Question Search String Documents

RQ1 ((“climate change” OR “weather extremes” OR “plant disease” OR
pest OR insect) AND avocado) 487

RQ2 ((“agricultural insurance” OR “crop insurance” OR “crop quality” OR
“crop yield” OR “risk management”) AND avocado) 34

RQ3 ((“deep learning” OR “machine learning” OR “artificial intelligence”
OR “internet of things” OR “remote sensing”) AND avocado) 87

2.4. Selection Process

For the selection of the papers to be reviewed, the ICs and ECs previously presented
in Table 2 were applied to the documents found in the scientific databases, with the help
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of technological tools for the selection of publications [37]. In the first stage, papers were
selected by evaluating their title and keywords to exclude papers unrelated to the research
questions. Also, duplicate papers were removed. In the second stage, the abstracts of
the preselected documents from the previous stage were examined. Thus, each paper
underwent evaluation by applying ICs and ECs to determine whether it would proceed
to the next step. During the third stage, the complete text of the candidate documents
was reviewed for final selection, and the papers that not met the established criteria were
excluded from the review. In the fourth stage, the studies obtained from other sources were
included, especially papers identified through snowballing applied to the studies selected
in previous stages and retrieved through Google Scholar and ScienceDirect. At this stage,
the papers with the highest number of citations for each query were also added. These
papers are the starting point for many of the studies reviewed, and for their inclusion, we
omitted the IC2 that limits the time window for publication of the papers, obtaining two
high-impact papers. This completed the total number of papers included in the review.
Figure 1 shows the flowchart of the papers’ selection process. Filters were applied to the
selection process, where 35 papers were selected and 2 highly cited papers were added,
for a total of 37 reviewed papers.

Figure 1. Stages followed in the selection process of the reviewed papers.

2.5. Preliminary Analysis

Based on the selection process, this SLR included a total of thirty-seven papers selected
according to the eligibility criteria. The composition of the selected papers varies between
publications in scientific journals and publications in conference proceedings. The journals
with the highest number of selected articles are Computers and Electronics in Agriculture
from Elsevier with four publications, and Agronomy from MDPI with three publications.
These two publishers, together with Springer, account for about 57.14% of the selected
studies, and the other publishers account for the remaining 42.86%. Figure 2 shows both the
journals and the publishers with one or more publications selected for this SLR and related
to the research questions. Thus, this figure shows the number of publications selected by
each publisher in the first 35 selected papers.
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Figure 2. Publisher and journals names of the selected papers.

Analyzing the publication type, 33 (89.18%) of the selected publications correspond to
research papers in scientific journals, and 4 (10.82%) publications are papers in scientific
conference proceedings. Most of the first 35 selected papers were published between
2020 and 2022, representing 65.71%. The remaining group of these papers (34.29%) was
published between 2017 and 2019. Figure 3 illustrates the yearly distribution of the first
35 included papers in this study.

3 3

6

9

6

8

0

2

4

6

8

10

2017 2018 2019 2020 2021 2022

Number of articles

Figure 3. Number of publications per year in selected papers.
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The distribution of the selected studies around the world is shown in Figure 4 and
was conducted in 11 countries. The majority of the studies were from Colombia, with
9 papers (25.71%); followed by the United States, with 6 papers (17.14%); Mexico and
Kenya, with 4 papers (11.43%) in each country; Peru and Israel, with 3 papers (8.57%)
in each country; Spain; with 2 papers (5.71%); and closing with India, the Philippines,
Switzerland, and Denmark, with 1 paper (2.86%) in each country.

Published studies
0

1

2

3

4

6

9

Figure 4. World map distribution of the reviewed research papers.

It is worth noting that Mexico, Colombia, and Peru, which are among the main global
avocado producers, have implemented robust initiatives to enhance avocado production
and quality. These initiatives include the development of tools for identifying insect pests
that pose significant threats to crops. Furthermore, there is a strong emphasis on promoting
comprehensive, cost-effective, and environmentally safe solutions for managing these
pests [38,39]. Likewise, studies carried out in Switzerland and Denmark highlight the
importance of avocados in the global market and promote the mitigation of risks caused
by climate change, while the other countries mentioned above have promoted studies
aimed at optimizing their avocado production under changing climatic and phytosanitary
conditions [40].

2.6. Data Analysis

The sequential narrative was used as the primary method of data analysis for this SLR.
In this method, specific subtopics of the selected studies are denoted by highlighting the
main data points below the subtopics associated with the research questions. Additionally,
the synopsis method was used to highlight important information points from the other
pieces of information within the papers regarding the RQs.

3. Results

The analysis of the reviewed papers is presented below, with their main information.
This information is organized according to the research questions posed and according to
the focus of the papers reviewed.

3.1. Highest Cited Papers in RQs

The highest citing papers found for each RQ are an interesting starting point to
understand the current trends in studies related to APEs in avocado crops. The results
published in these papers serve as a starting point for several of the works analyzed in
this paper.

In the case of RQ1, Ippolito and Nigro reviewed several studies on the use of biolog-
ical control methods to manage postharvest diseases in fruits and vegetables, including
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avocados [41]. The effectiveness of these methods is evaluated through laboratory and
field experiments. The authors highlight the potential of biological control as a sustainable
and environmentally friendly alternative to chemical fungicides. In addition, the negative
effects of pesticide applications on non-pathogenic microorganisms and the resistance of
biological control agents to fungicides are mentioned. This paper concludes by discussing
the potential for genetic manipulation of biocontrol agents and the need for further research
on preharvest applications of biocontrol agents for postharvest disease control.

In the case of RQ2, Lobell et al. analyzed the relationship between crop yields and
climatic variables in California [42]. Multiple regression models were used to determine the
most important weather variables for each crop, including avocado. The results showed
that different crops had different relationships between weather and yields. The study also
found that climate changes since 1980 had a mixed effect on crop yields, with oranges and
avocados being the most affected. The authors suggest that these findings can be used to
improve yield predictions and understand the potential impacts of future climate change
on crop yields.

In the case of RQ3, Abdulridha et al. present a remote sensing technique to detect
laurel wilt disease in avocado trees [43]. The technique uses multispectral imaging and two
AI classification methods to differentiate between healthy trees, trees infected with laurel
wilt disease, trees infected with Phytophthora root rot, and trees with nutrient deficiencies.
The study found that the technique was able to successfully detect laurel wilt disease with
99% accuracy at the early stage. This automated technique could improve disease detection
and management in avocado orchards.

3.2. Weather Variations and Effects in Avocados

In Erazo et al., the study indicates that water supply is a critical abiotic factor in the
production of Hass avocado since it intervenes in the physiological processes that delimit
both the period and intensity of the harvest, being directly related to the yield of avocado
trees and the quality of the harvested fruit [44]. Weather events that cause a deficit of water
in the crop decrease productivity potential, since rainfall is the main source of natural water
for the crop, especially for tropical areas such as Colombia. Although the total annual sum
of rainfall can supply the full amount of water required by an avocado crop, in periods
when rainfall is very low and distributed heterogeneously over time, this source does not
supply the amount of water needed by the crop. Therefore, an important finding in the
modeling used to predict rainfall variations indicates that at least 99.8% of the avocado
crops in these areas require assisted irrigation one month per year.

Alon et al. conducted a study researching the effects on parameters of avocado tree
physiology resulting from the application of shading nets under extreme heat conditions [45].
Considering that the concurrent presence of high temperature and intense irradiance
increases plant stress and harms plants [46], 60% shading screens on avocado trees sig-
nificantly reduce leaf and canopy temperature by up to 4 °C during extreme heat events.
Young Hass avocado plants have a heat damage threshold between 49 °C and 51 °C in
low-light conditions [47], so the ability to shade netting to reduce air and leaf temperature
can significantly reduce extreme heat damage and improve productivity.

The current global trend in climate change studies involves the application of modeling,
risk analysis, and prediction techniques, as well as to search for alternatives that will enable
agricultural systems to mitigate and adapt to climate variability in extreme situations, as
stated by Ramirez-Gil et al. [48,49]. Consequently, a major challenge faced by avocado
cultivation is to find alternative strategies for trees to adapt to the adverse effects of extreme
variability in climatic conditions. A variety of strategies were evaluated to mitigate climate
variability’s adverse effects on avocado crops, as well as the impact that this variability can
have on the occurrence of diseases such as avocado wilt. Similarly, the study highlights that
various factors, including genetic characteristics, weather conditions, agronomic practices,
harvesting standards, and the incidence of pests and diseases, influence avocado fruit
quality in crop production. The main problems affecting Hass avocado quality were
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identified at three stages (preharvest, harvest, and packing). One of the abiotic factors
that can impact the quality of Hass avocados is the occurrence of reduced fruit size and
necrotic seed. This phenomenon appears to be linked to periods of water deficit during fruit
filling, which can be influenced by the “El Niño” climatic phenomenon [48]. Among the
effects of biotic factors is the alteration of the epidermis, malformations, and the fruit
pulp, caused by arthropods such as Melolonthidae complex (Astaena pygidialis Kirsch),
thrips (Thysanoptera), the bug monalonion (Monalonion velezangeli Carvalho and Costa),
and scales (Hemiptera: Coccoidea) [49].

3.3. Pests and Diseases Incidence in Avocados

Regarding pests affecting avocados, López Galé et al. identified 42 species of phy-
tophagous insects in avocado crops located in 78 farms in mountainous regions of the
Colombian Caribbean [50]. Light traps were used to capture insects such as moths,
“marceño” beetles (Melolonthidae), and branch borers (Coleoptera: Curculionidae), which
are registered as pests in avocados, and manual capture was used for other insect species.
According to their taxonomic classification, the most frequent insect groups encountered
in the area were branch borers, scale insects (Hemiptera: Coccomorpha), and termites
(Blattodea: Isoptera). These pests with high frequency in crops; in particular, branch borers
are considered a group of insects that cause damage of economic importance in avocado
crops because of their difficult control, the spread of diseases, and the death of trees.

Holguin and Mira selected commercial avocado crops in Antioquia, the department
with the highest production of this fruit in Colombia, to determine the presence of adult
beetles affecting small fruits and young leaves [51]. Using ultraviolet light traps installed
in the crops and direct inspection of avocado trees, nine beetle species were captured.
Among the insect species captured, Astaena pygidialis Kirsch was the only insect species with
an incidence at all sites where samples were collected for the study, while the remaining
eight insect species were only found at one or a few sampling sites. Additionally, A.
pygidialis Kirsch is the only beetle detected that caused damage to the epidermis of the fruit
and skeletonization of the leaves, finding reports of this same damage in other regions of
Colombia, affecting the productivity of the crop and the commercialization of the fruit due
to its damage.

In Valencia Arias et al., the authors observed the specific behavioral patterns between
Melolonthidae complex beetles and avocado crops to estimate their economic effect on
the production of this fruit in Antioquia, Colombia [52]. In this study, adult beetles were
collected in the rainy months of the year (March to May) using light traps for three years,
and the observations revealed that young leaves and shoots damaged by the pest had
the potential to become necrotic following defoliation. Additionally, they found that fruit
infections caused by these beetles typically manifested as superficial scarring that increased
in size as the fruit developed. The distance radius of damage caused by the pest is 15–30 m,
which indicates the potential capacity of a beetle to attack a group of up to four avocado
trees in the surrounding area [52]. Due to the aesthetic impact caused by these beetles,
affected fruit are often labeled as “industrial” avocados, a category considered to be of
lower quality. As a result, these industrial fruits are sold in the local manufacturing market
at a lower price.

The interactions between the physico-chemical environment, pollinator insect (Apis
melifera) introduction, and pest management in avocado crops were evaluated by
Toukem et al. [53]. This approach is being investigated as a potential solution for achiev-
ing sustainable fruit production while minimizing negative impacts on the environment.
Using generalized linear mixed models, this study found significant interactions between
vegetation productivity, pollinator introduction, and pest management in a set of avocado
fruit, decreasing the presence of avocado pests and increasing fruit weight by 6% compared
to crops without integrated pest management. Furthermore, another previous study exam-
ined the correlation between vegetation productivity and the abundance and distribution
of crucial avocado pests on small-scale farms in Kenya, expecting a correlation of the
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normalized difference vegetation index (NDVI), rainfall, and temperature of the area [40].
Thus, the aim is to understand the special occurrence of pests and develop cost-efficient
and sustainable pest management practices to increase avocado crop productivity.

3.3.1. Relationship between Weather and Pests

Climatic variations can directly or inversely affect the proliferation of crop pests.
Luna et al. contributed to developing pest risk assessments for fruit growing by determin-
ing the geographic distribution of five important avocado insect pests located in Mexico
(Conotrachelus aguacatae, Conotrachelus perseae, Heilipus lauri, Copturus aguacatae, Stenoma
catenifer) and how these pests interact with commercial avocado growing areas [54]. To ac-
complish this, the study employed the maximum entropy method (MaxEnt) [55] to evaluate
the impact of bioclimatic factors on the propagation of these pests. The model incorpo-
rated 19 global climate variables and elevation data to analyze their influence. Altitude,
temperature regularity, and rainfall seasonality emerged as the key variables that exerted
the strongest influence on the potential propagation of the pests observed, contributing
72.6% for C. aguacatae, 76.1% for C. perseae, 79.1% for Copturus aguacatae, 77.0% for H. lauri,
and 66.7% for S. catenifer.

In Velázquez-Martínez et al., the authors monitored the population fluctuations of
S. catenifer Walsingham pests in Hass avocado crops in Mexico, exploring their relationship
with relative humidity and temperature [56]. For this study, pheromone-baited traps
were used in four avocado plantations. The infestation percentages recorded were 65%
for the first orchard, 55% for the second orchard, 17% for the third orchard, and 12% for
the fourth orchard. A negative correlation was found between the number of S. catenifer
captured, relative humidity (r = −0.21), and temperature (r = −0.25). The insect captures
were recorded within a temperature range of 15.8 °C to 25.4 °C, with relative humidity
fluctuating between 41.1% and a maximum of 96.1%. Consequently, the estimated relative
risk of the two bivariate distributions (temperature/relative humidity) suggests that the
risk is nearly negligible across the entire temperature range when relative humidity is low.
Notably, during low temperatures, relative humidity emerged as the variable with the most
significant impact on the risk of being affected by this particular pest.

Ibrahim et al. used total rainfall, average temperature, and relative humidity, together
with data from pest counts in traps, to model population dynamics of two avocado pests
(Bactocera dorsalis and Ceratitis spp.) in Kenya [57]. The study integrated data fuzzification
techniques to develop fuzzy neural network (FNN) models. These models were utilized
to predict pest counts, aiding in decision-making and determining the optimal timing for
interventions within integrated pest management strategies. The FNN models obtained a
coefficient of determination (R2) greater than 0.85 for results in predicting pest dynamics in
avocados. These models can be used for pest identification including predicting the levels
of damage (low, medium, high) caused by pests on crops. Similarly, in the study conducted
by Odanga et al., the authors analyzed the correlation between weather data (temperature
and precipitation) and their influence on the spatial distribution of Thaumatotibia leucotreta
and B. dorsalis and the infestation of these two pests of avocado trees in Kenya [58]. With
12 months of data collected on the crop, the temperature was found to strongly influence
the seasonal population growth of B. dorsalis (r = 0.94), but not T. leucotreta (r = −0.15), in
the dry season. The B. dorsalis pest exhibited its highest abundance during the warmer
dry period immediately following the short rainy season, while its population density was
comparatively lower during the long rainy season. On the other hand, the T. leucotreta
pest demonstrated a presence throughout the year, indicating its ability to develop in any
weather season.

3.3.2. Relationship between Weather and Diseases

Weather variations also have an impact on the presence of diseases in avocado crops.
Thus, estimating the spread of diseases in the crop can be useful to mitigate the damage
caused by these diseases. Burbano-Figueroa et al. estimated the potential dispersion of
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avocado wilt and branch dieback in crops of this agricultural product in the Serranía
del Perijá (Colombian–Venezuelan border) [59]. This disease is attributed to the fungus
Bionectria pseudochroleuca and is dispersed by ambrosia beetles. It leads to severe detrimental
effects on the crop. The distribution model was approximated using the correlated MaxEnt
method, which is an ML algorithm commonly employed to forecast the likelihood of
spatial distributions based on presence records [55]. The model incorporated pest field
variables along with 20 climate variables derived from historical weather data. The findings
indicate that the disease occurrence was more prominent in areas characterized by low
rainfall during the wettest month, typically around 200 mm, and a complete absence of
rainfall in the driest quarter. Conversely, the occurrence of the disease exhibits a sharp
decrease as rainfall levels increase, both in the wettest month and in the driest quarter.
In addition, disease occurrence is absent in areas where the wettest month and the driest
quarter experience rainfall levels above 600 mm. Furthermore, the disease occurrence is
absent in areas where the wettest month and in the driest quarter experience rainfall levels
exceeding 600 mm.

Menocal et al. evaluated the interaction of flights by ambrosia beetles, the vector of
laurel wilt, with avocado host trees [60]. The study found these beetles flying at heights
of up to six meters corresponding to all parts of avocado trees, where the captured spices
could have vectored the pathogen causing laurel wilt between crops. In addition, pests
were observed to initiate their flight before sunset (∼1 h earlier), showing that temperature
is a critical abiotic factor for beetle flight activity (negative correlation). This helps to
understand the distribution dynamics of the insects (from biological understanding) and
their potential role as disease transmitters in avocado crops.

In Tapia Rodriguez et al., the authors proposed to determine peaks of anthracnose
infestation using geostatistical methods in avocados, to elaborate disease distribution maps,
and to determine the infested area [61]. The aim was to create integrated management
strategies that favor the environment, in addition to the development of efficient sampling
plans that will help in making decisions on disease control in the crop. Additionally, a com-
prehensive definition of the management strategies for anthracnose disease in avocado
crops was provided by Kimaru et al. in their study [62]. Avocado growers worldwide need
to control anthracnose disease to ensure that avocado fruits are of high quality. Farmers
primarily employ pruning as a cultural method to mitigate anthracnose disease in avo-
cado trees. Pruning helps improve air-flow and reduce moisture within the leaf canopy,
creating an unfavorable environment for the fungal growth responsible for anthracnose.
Furthermore, chemical control methods involving the use of fungicides are implemented to
mitigate the incidence of anthracnose disease in avocados. Nevertheless, the widespread
use of pest chemical control has caused global preoccupation due to the potential adverse
effects of pesticide residues on human health, animal welfare, and the environment.

3.4. Risk Management and Yield in Avocado Crops

Reints et al. studied how Hass avocado growers in California adopt irrigation prac-
tices and technologies to sustain their crops in times of water scarcity and high salinity,
using an analytical model fitted with an empirical approach [63]. With a typical average
water consumption of approximately 12,200 m3/ha per year, the cost of irrigation water
significantly impacts the profitability of crop cultivation. Typically, water utilities charge
prices for water ranging from USD 1200 to 1300 per acre-foot. The results indicate that
the 123 surveyed growers employ various technologies to sustain or enhance profitability
in their Hass avocado crops while managing the risks associated with water availability
fluctuations. Growers utilize several effective water management technologies and prac-
tices to optimize water usage. These include the use of soil moisture measurement devices,
irrigation calculators, drip irrigation systems, and tree management techniques aimed at
reducing water consumption, among other strategies. Regional climates and water condi-
tions play a crucial role in shaping farming practices. In regions characterized by harsh
climates or limited water availability, farmers are more inclined to adopt efficient water
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management technologies and practices. This adoption is driven by the aim to minimize
production costs and optimize water usage in challenging environments.

The tolerance of Hass avocado to water salinity was explored by Acosta-Rangel et al.,
given the low quality of water used in agricultural production, which has a lower availabil-
ity and quality due to drought and extreme temperatures [64]. As avocado is extremely
sensitive to salt, identifying the effects of salinity on plants allows actions to be taken to
ensure the sustainability of a crop. The study revealed that irrigating Hass avocados with
high salinity water resulted in a 44% increase in canopy damage and a 50% reduction
in tree survival. The control group of trees produced an average of 5.9 to 7.3 kg of fruit
per tree, while the trees subjected to the salinity treatment yielded only 1.5 to 2.8 kg of
fruit per tree. This salinity treatment caused a significant yield loss of over 68% compared
to the control group. Despite irrigation with low-quality water not causing water stress,
the salinity treatment caused leaves to burn visibly, resulting in poor carbon assimilation
and poor yield.

Silber et al. evaluated the water demand required by Hass avocado for the growth of
the fruit and identified the consequences of water deficit on crop yield during the pheno-
logical phases [65]. Applying five treatments in the experimental design (no water stress,
excessive irrigation, regulated deficit irrigation, no irrigation or fertilization, and constant
water stress), it was found that trees treated without water stress obtained a high yield (be-
tween 25 and 31 avocados tons/ha), while trees subjected to water stress had a significantly
lower yield (between 16 and 21 avocados tons/ha). Moreover, irrigation plays a crucial
role in facilitating tree growth by providing water. It is important to note that irrigation
management also impacts nutrient availability in the soil. The interrelationship between
water and nutrients must be carefully considered and managed to ensure optimal plant
growth and development. Therefore, regulated irrigation management to cope with the
water deficit in the Hass avocado crop is necessary during the main fruit-growing season.

In Moreno-Ortega et al., the authors conducted a study to assess the adequacy of the
current water supply to meet the water needs of Hass avocado crops in Spain, specifically
in the subtropical region of the country [66]. The aim was to determine the extent to
which water usage can be enhanced for improved crop performance in the area. This
study examined the productivity of water in a Hass avocado crop during six consecutive
seasons as well as evaluated both the physiological and agronomic effects in the trees
when applying five treatments during two consecutive seasons. The findings revealed that
avocado yield and fruit quality were significantly influenced by irrigation levels above or
below the range of 192–240 L/day per tree. The average yield of fruits in the entire crop,
when subjected to traditional irrigation practices within the range of 160–200 L/day, was
determined to be 10.34 tons/ha during the period from 2012 to 2018. Within this average,
the on-crop season yielded 16.5 tons/ha, while the off-crop season yielded 8.7 tons/ha.
These findings highlight the importance of proper irrigation management in achieving
optimal avocado production and maintaining consistent fruit quality.

Grüter et al. analyzed the current and future suitability of three crops of interest
(coffee, cashew, avocado) globally, taking into account the climatic and soil requirements
of each crop, and identified and discussed global and regional trends [67]. This study
used a decision support system based on geographic information systems, supported
by a multicriteria evaluation of climatic and biophysical parameters (soil texture, pH,
salinity, temperature, precipitation, humidity, among others), to model the present and
future suitability of the crops of interest. The findings indicated that the current suitability
of avocado production in the top four producer countries is constrained by low and
high rainfall as well as low temperatures in the cooler season of the year. In the future,
the suitability of avocado production is expected to be primarily influenced by changes in
rainfall patterns, with both wetter and drier conditions having positive or negative effects.
Additionally, there will be a lesser impact from the increase in minimum temperature during
the coldest month, which is associated with positive changes in suitability. Temperature
and precipitation changes are expected in Central America, West Africa, and Southeast
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Asia to have both positive and negative impacts in these regions. By contrast, the highly
suitable areas to grow avocado crops will decrease globally to 41% by the representative
concentration pathway for the future climate conditions in the year 2050.

Caro et al. reported that from 2000 to 2016, international trade progressively influenced
the amount of water used to produce avocados [68]. They found that almost one-third of the
water use associated with avocado production is due to international demand and related
trade. Higher values of the water stress index indicate more competition among agricultural
activities. Since all the largest exporters present values oscillating between 3 and 4, they all
fit within the category of high water stress (40–80%). In particular, Mexico (3.84) and Chile
(3.57) score the highest among avocado exporters in terms of water stress index, whereas
the main importers have generally lower scores. The overexploitation of water resources
driven by the avocado trade can have detrimental effects on the environment, particularly
in economically disadvantaged countries where avocado exports contribute significantly
to economic growth. This overexploitation may exacerbate environmental challenges and
have negative consequences for water availability and quality in these regions.

The light response of two avocado cultivars to sporadic frost stress can have negative
results on crop yield and fruit quality, as stated in the study conducted by Weil et al. [69].
The focus of the study was on the photosynthetic parameters of these avocado varieties,
and the researchers examined their responses to frost stress in four instances both in the
laboratory and in the field conditions. The study found that before frost stress, approxi-
mately 40% of the total energy absorbed in Hass avocado was allocated to photoprotection
mechanisms in the leaves, 30% was used for photochemistry, and the remaining energy
was passively dissipated. However, after six hours of frost stress in lightless conditions,
the energy allocated to photochemistry was significantly reduced, indicating a reduction in
active energy utilization. This reduction in energy allocation to photochemistry could be a
response to minimize potential damage and conserve resources in the face of stress. It was
also noted that under these conditions, tissue dehydration may occur, potentially leading to
water limitation within the avocado tree. This highlights the complex interactions between
frost stress, photosynthetic processes, and water availability, which can impact the overall
health and performance of avocado plants.

Campisi-Pinto et al. aimed to identify the nutrient concentrations in Hass avocado
tissue associated with high fruit yields specifically those exceeding 40 kg per tree [70].
They provided insights into nutrient management practices for achieving and surpassing
the targeted yield by establishing optimal nutrient levels for predicting yields above this
threshold. The study found strong correlations between certain nutrient concentrations
in avocado tissue and yields above 40 kg per tree. The findings suggest that high nutrient
concentrations due to current fertilization practices may be causing nutrient imbalances,
which limit productivity. Additionally, addressing nutritional problems can increase crop
yield, fruit size, and fruit quality before these problems alter flower retention and fruit set.

In Ramirez-Gil et al., they conducted a study on the economic impacts of wilt disease in
avocados at different stages of crop development in Antioquia, Colombia [71]. According
to the researchers, plant mortality, fruit quality losses, and plant mortality had a total
economic impact. The study revealed that in the northern, eastern, and southwestern zones
of the department, the total economic impacts amounted to USD 635, 637, and 678 per
hectare, respectively. These findings highlight the significant financial losses incurred due
to wilt disease in avocado crops within the study area. The observed heterogeneity in the
production systems of the studied regions results in varying production costs, which stem
from the utilization of different practices and inputs, as well as the existence of different
selling prices for the fruit. Consequently, the economic impacts of wilt disease in avocados
were assessed based on the direct effects of tree deaths and reduced vegetation production,
as well as the additional costs derived from the replacement of affected trees and disease
management in general. This comprehensive approach considers both the immediate losses
incurred from plant deaths and reduced yields, as well as the long-term costs related to
mitigating the disease and reestablishing productive avocado trees.
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3.5. Emerging Technologies in Agriculture Applications

The application of Industry 4.0 in the agricultural sector is often referred to as Agricul-
ture 4.0. This term is simply mentioned to refer to the use of these digital techniques within
precision agriculture [72]. However, sectoral variances between industry and agriculture
must be taken into consideration when estimating the impact of emerging 4IR technologies
in agricultural applications, such as avocado production. Through Industry 4.0 enabling
technologies, it is possible to increase the precision agriculture solutions available to achieve
similar benefits to the industrial sector and exploit new business opportunities for pro-
ducers [73]. Benefits include digital individualization, demand orientation, sustainability,
automated knowledge and learning, and productivity optimization [72]. Thus, the use of
enabling technologies such as CPSs, Industrial IoT (IIoT) components, cloud computing,
unmanned aerial vehicles (UAVs), BD, and ML in agriculture represents an opportunity
to achieve efficient irrigation solutions, pest management, and pesticide control in crops
and weather and soil condition monitoring, among others, highlighting the requirement to
adapt these technologies to the basic structure of agriculture [72,73]. For this, Agriculture
4.0 requires the establishment of technological standards to ensure the interoperability of
enabling technologies used in agricultural applications. The main issue in this field is the
obligation to share data and communication standards that connect all systems covering all
areas of farming, in addition to ensuring that technological equipment remains compatible
with new developments and is supported over time by manufacturers and other industries,
given the longevity of agricultural equipment [74].

With their advances, IoT technologies play an important role in various agricultural
applications, thanks to the capabilities they offer, including basic communication infras-
tructure and a variety of services, such as in situ and remote data acquisition, information
analysis based on cloud-hosted applications, decision support, and automation of agricul-
tural processes [21]. Currently, the major applications of IoT in smart farming are oriented
to water and nutrient monitoring, pest and disease monitoring, soil monitoring, crop health
monitoring, environmental monitoring, and machinery control [21]. On the other hand,
ML algorithms allow for optimizing task performance by generating efficient relationships
between previous data input and outputs obtained from previous experiences, so the more
data used, the better the algorithm will perform. As a central result, the ability of the ML
algorithm to deliver correct predictions will rely on the set of rules learned from previous
exposure to data of equal similarity [75]. Recently, applications of ML algorithms in smart
farming are very common to detect and monitor pests and diseases automatically, finding
also significant use of DL algorithms for these tasks [76]. A trend is focused on the use of
specific algorithms based on DL for the detection of diseases in plant leaves [76]. However,
this becomes a limitation in avocado crops since many pests and diseases take time to
manifest themselves through the leaves of the plant.

3.6. Data Collection Techniques Applied in Avocado Crops

In situ and remote sensing technologies are used to detect damages caused by pests
and diseases in avocados. Sensing in situ techniques include direct observation of crops and
the collection of plant samples for subsequent analysis in the laboratory. Concerning remote
sensing, the techniques use technologies such as drones and satellites to capture images
and data of crops from a distance. Both methods have advantages and disadvantages
but complement each other to provide a more complete assessment of avocado crop
management. With the data obtained from avocado crops through these technologies, it is
possible to apply advanced analytical techniques for processing and analysis, obtaining in
some cases estimates of the incidence and damage caused by biotic factors as early warning.

3.6.1. Data Collection with In Situ Technologies

Applying developments focused on the IoT, Ramirez-Gil et al. designed a low-cost
electronic prototype to collect and transmit weather-related data, including soil moisture
and temperature, in avocado crops [77]. Furthermore, as part of their study, researchers de-
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veloped a mobile application specifically designed for real-time reporting of early warnings
associated with the Hass avocado wilt complex. Using the Arduino prototyping plat-
form, the IoT system consisted of the power supply, sensors to measure weather variables,
and data processing and storage in the cloud. The set of components used in the prototype
cost approximately USD 1000, denoting its low cost compared to commercially available
weather stations for agricultural applications. The device, installed in an avocado crop
located in eastern Antioquia, had a data validation of 97.8%, 98.3%, 97.5%, and 97.7% for
precipitation, sunshine, relative humidity, and temperature values, respectively, indicating
the authors the reliability and low variability of data collection by the IoT device from
these metrics.

Mejia Cabrera et al. designed a semi-automatic method for the detection of the
Lasiodiplodia theobromae fungus in the Hass avocado production zone in Peru, which
is characterized by producing a canker around the stems and branches of the tree [78].
For this purpose, using a semi-assisted system with a 12.1 Mpx Canon SX50 HS camera,
the authors collected 150 images in situ (uncontrolled environment), composed of 60 healthy
branches and 90 diseased branches with the canker, at a distance of 20 cm concerning each
branch. The configuration was established so that the illumination was adequate, avoiding
histogram saturation and obtaining photographs with good performance for processing
in the other part of the system, consisting of a mid-range laptop with a model software
developed in Python. Thus, the authors propose a step for the development of techniques
that allow the automatic analysis of data from avocado cultivation.

Rivadeneyra Bustamante and Huamán Bustamante proposed a method to collect
thermal and multispectral images of leaves in Hass avocado crops, oriented towards
the anomalies detection in the avocados using computer vision techniques [79]. For this
purpose, 499 thermal images and 499 RGB images of Hass avocado leaves were captured
in situ, selecting 100 images of each type for analysis, considering their visual and thermal
particularities to be useful for anomaly detection. The images were taken with a FLUKE TiS
45 infrared camera, while the ambient temperature was measured with a FLUKE 80bk-a
thermocouple to contrast this variable with the values recorded in the thermal images.
From the collected images, the authors proposed extracting their characteristics to classify
avocado leaves as healthy and those affected by pests or diseases.

Some limitations to the data collected in the studies analyzed in this subsection derive
from the practical considerations to be taken into account in the use of the prototypes.
In [77], the stationary location of the prototype in the crop can have considerable variations
concerning the microclimate of each avocado tree, particularly the relative humidity, which
has a high incidence in the emergence of wilt. In [78], the frequency of monitoring the
crop to collect images can lead to a wide bias in favor of the advance of canker in avocado
trees, adding that a more significant number of images should be acquired to include
other types of diseases as well. In [79], overexposure of the leaves to solar radiation at
the time of capturing the thermal image can cause considerable variations between the
temperature recorded on the leaf and the ambient temperature, causing possible limitations
in the interpretation of the results. Additionally, in these papers, analytical techniques
were applied to the data collected from avocado crops, which are reviewed subsequently in
the Section 3.7.

3.6.2. Data Collection with Remote Sensing

Abdulridha et al. presented a non-destructive method for the identification of avocado
trees infected with laurel wilt in the early-stage and the late-stage, and differentiate this
disease from trees affected by other causes with similar symptoms (i.e., nitrogen and iron
deficiencies) [80]. Through remote sensing techniques, the study used a portable system
for data collection composed of a multispectral camera configured in the visible-near
infrared spectrum (400–970 nm). To capture images of the group of plants used as controls,
they obtained healthy leaves from 1-m-tall avocado plants grown in pots under outdoor
conditions. The researchers included four treatment classes (laurel wilt, iron, nitrogen,
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and healthy). For disease, they randomly selected ten plants and inoculated the pathogen.
For each treatment, five scans per leaf were taken using an SVC HR-1024 spectrometer
under laboratory conditions. These data were averaged every 10 nm and 40 nm given the
availability of commercial filters for prototyping a cost-effective sensor. From the collected
data, 23 vegetation indices were calculated to differentiate the four treatment classes.

Based on his previous work, Abdulridha et al. presented and evaluated subsequently
an automated analytical technique that early detects diseases in avocado trees using remote
sensing to detect Phytophthora root rot, laurel wilt, nitrogen, and iron deficiency, and dif-
ferentiate healthy from affected trees [43]. For this study, ten avocado plants with the
disease were randomly selected, while five healthy avocado plants were used as a control
group. The authors evaluated two systems for capturing images of the group of avocado
trees grown in pots under outdoor conditions. The first sensing system used a Tetracam
Tetra mini multispectral camera with six independent optical sensors of 1.3 Mpx each
and user-parameterizable bandpass filters. The second sensing system used a modified
Canon SX260 NDVI camera with a 12.1 Mpx optical sensor and a 32 mm filter added on the
front rails of the camera. The images were taken from a platform located above the trees
10 m above the ground in sunny conditions. In both systems, images were stored locally on
a removable memory card in each camera for subsequent analysis. This study used two
methods to capture the data. The first covered the entire green area of the canopy of each
plant, while the second covered the small polygons corresponding to the leaves of each
plant, randomly selecting eight leaves per plant.

Pérez-Bueno et al. examined remotely sensed images (spatially resolved camera video,
multispectral images, long-wavelength thermal images) to identify the presence of white
root rot in avocados [81]. Data were collected in a one-hectare avocado crop, where 24 trees
were selected to estimate their aerial symptoms at four levels (healthy, medium wilt, severe
wilt, and death). The sensing system consisted of a DJI S900 UAV piloted by remote control,
on which three cameras were mounted: a GoPro Hero-3 video camera, an ADC Micro
multispectral reflectance camera, and an Optris PI-450 long-wavelength thermal camera.
The multispectral camera was equipped with three filter bands (560 nm, 660 nm, 830 nm) in
the green, red, and near-infrared spectrum regions, respectively. The researchers conducted
eight independent flights to collect the crop data, which were stored on a system-mounted
Optris PI LightWeight miniature computer. With the data, the NVDI of each tree was
calculated to locate its state in one of the four levels of affectation.

A proposal to analyze the variables associated with water stress in avocado crops by
acquiring multispectral images of the avocado crop using a camera installed on a UAV
was presented by Castillo-Guevara et al. [82]. The system consisted of a DJI Matrice 600
Pro drone and a Parrot Sequoia 4-band multispectral camera (green, red, red-edge, near-
infrared). At a height of 70 m above the ground, captures were taken over a 634.22 m2

avocado crop area. For data collection, the trees were not irrigated for four weeks to cause
water stress in the studied crop area, capturing one image per week. Setting 12 threshold
values using data from week 0, the images captured in two bands (red and near-infrared)
were segmented using the Otsu multithresholding technique, and the NDVI of the crop was
obtained for the data of the following weeks. With this, the study found that the avocado
tree manifests its water stress in a concentrated form from the edges towards the stem,
which promotes the creation of tools to help growers make decisions to improve irrigation
and differentiated treatments in their avocado crops.

Several limitations to data collection in the articles analyzed in this subsection arise
from the conditions of the environment in which they were collected. In [43,80], al-
though the plants were located in outdoor conditions since they were not planted in
the soil or areas with typical temperatures and altitude for avocado growth, they may
generate behaviors of disease progression different from those observed in avocado crops.
In [81,82], although the data were collected in the field, wherein the first case the diseased
trees were previously identified, while in the second case, the trees were subjected to water
stress, some factors on the control group could not be controlled (dispersion of the disease,
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rainfall), which may generate a bias among the data obtained. The analytical techniques
that were used to process the avocado data collected in these studies are further reviewed
in the Section 3.7.

3.7. Analytical Techniques Used to Process Avocado Crop Data

Once data are collected on avocado crops, applying analytical techniques is key to
detecting and estimating damage caused by pests and diseases. Early detection of these
factors allows minimizing the risks that can decrease yield and quality of production in
the crop, through an effective management of their causes. ML and DL algorithms are an
opportunity to process and analyze these data.

Ramirez-Gil et al. used image processing techniques and multivariate time series anal-
ysis to analyze the data collected by the IoT prototype and the mobile app [77]. Specifically,
they used vector autoregressive modeling (VAR) to diagnose avocado wilt causal agents
based on identifiable patterns in the avocado crop data. To facilitate the implementation
and functionality of these techniques in the mobile application, a pretrained neural network
classifier was integrated into the cloud-based IoT data storage platform. This innovative
approach enables timely detection and effective management of the avocado wilt complex
by providing growers with a tool for early warning, accurate diagnosis, and proactive
risk management. The developed prototype of the mobile application demonstrated a
strong correlation of over 90% when compared to data obtained from traditional weather
stations. Additionally, the early warning system integrated into the application achieved a
prediction accuracy of over 70% for the variables related to the avocado wilt complex.

Mejia Cabrera et al. used a convolutional neural network (CNN) as a classifier in
combination with image processing techniques to detect the canker in the images taken
from the avocado branches in the crop [78]. Among the image processing techniques used
by the authors is the resizing of the photographs, followed by the graph-cut technique to
extract the region of interest. Thus, the preprocessed images were used as input to the CNN
classifier trained with the 150 images taken at 10 epochs. However, due to the small number
of images available, the neural network constructed by the authors was a shallow CNN.
The tool determines the segmented area corresponding to the fungus infection, obtaining a
93% accuracy in the positive classification of the disease presence.

Rivadeneyra Bustamante and Huamán Bustamante proposed a method with the steps
to extract the characteristics of the photographs taken of avocado leaves in the crop [79].
This allows the avocado leaves to be classified as healthy and those affected by a pest or
deficiency. The method uses the K-Means algorithm for the segmentation of the images
and a support vector machine (SVM) model for the classification of leaves into healthy and
diseased. The 100 images of avocado leaves taken in situ by the researchers consisted of
20 photographs of healthy leaves and 80 photographs of diseased leaves. The k-means
algorithm was composed of 15 clusters that delivered 30 descriptors of the avocado leaf
thermal image. Together with the calculation of the normalized difference green-red index
of the RGB images, the obtained descriptors were inserted into the SVM algorithm with a
70-15-15 distribution for training, validation, and testing. Thus, the classifier obtained an
accuracy of 82.67% in the detection of anomalous visual characteristics in avocado leaves.

Abdulridha et al. employed the methods of decision trees and multilayer perceptron
(MLP) neural networks for image classification [80]. MLP emerges as a popular classifica-
tion technique renowned for its ability to learn through examples and generate a tailored
function with parameters including weight, bias, and network topology, and has found
extensive application in remote sensing classification within numerous agronomic investi-
gations [38]. Using the averaged 10 nm and 40 nm reflectance bands in the multispectral
images of avocado leaves, the MLP classifier was able to distinguish between the four
classes (laurel wilt, iron, nitrogen, and healthy) at both the early and late stages of disease
progression. This classifier obtained results in a range of 98–100% positive classification per-
centages for all data sets, while the decision trees had a percentage of 82%. Thus, they found
that the use of MLP provides high accuracy in detecting trees infected with early-stage
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laurel wilt and differentiating other biotic and abiotic factors. Similarly, in [43], the steps
employed were acquisition, preprocessing, segmentation, feature extraction, and classifica-
tion of the multispectral crop images. Using a neural network applying the MLP method,
together with the K-nearest neighborhood (KNN) as a classifier method in combination
with the analysis of the previously preprocessed images, the automated method was able
to successfully discover early-stage laurel wilt, showing that a low-cost remote sensing
method can be used to make a distinction of healthy plants from those not affected by
this disease. In all experimental scenarios, the implementation of Tetracam (with 6 bands)
imaging exhibited superior classification results compared to the Canon camera. This
superiority was evident across various types of regions of interest and disease stages.

Pérez-Bueno et al. used MLs techniques, such as SVM, artificial neural network
(ANN), and logistic regression analysis (LRA), to analyze the avocado crop multispectral
images and detect the white root presence [81]. Binary LRA is a commonly employed
statistical approach in the field of biomedicine. Its widespread use stems from its ability to
estimate the probability of a dichotomous outcome, specifically distinguishing between
“healthy” and “infected” conditions. In this paper, the predictive capabilities of NDVI and
normalized temperature in the crop canopy were examined as indicators of the disease
using the algorithms mentioned above. Among these algorithms, the LRA trained with
vegetation index data exhibited better sensitivity and a lower false-positive rate. The models
had a high specificity (86.4%), indicating that these models were capable of identifying
healthy trees.

Some of the limitations identified in the techniques employed within the studies
mentioned in this section include the utilization of a limited amount of training data for
certain algorithms and the reliance on controlled conditions for model refinement. These
limitations can introduce biases in the practical application of the models in real-world
field settings.

3.8. Analytical Techniques Applied to Laboratory-Collected Avocado Data

Several of the articles reviewed obtained avocado data from sources other than the
crop itself, mainly images of the fruit. Although the ideal is to use as much raw data from
the avocado crop as possible, the application of the analytical techniques used in these
studies is of interest, especially for replication in the construction of detection tools that can
be used outside the laboratory.

Campos Ferreira et al. [83] implemented an ML model using digital images of avocado
fruit, through the creation of a CNN classifier, to identify healthy fruit and fruit infected
with scab or anthracnose. The fruits were collected at harvest time and taken to the
laboratory for imaging. Once trained, the CNN classifier obtained an accuracy of 87% in
the detection of fruit diseases, which shows that the use of the model is feasible for the
identification of these diseases using digital images at the postharvest stage.

An automated algorithm based on ML to determine the type and quality classification
of various fruits and vegetables, including avocados, was proposed by Bhargava et al. [84].
The images are preprocessed using Gaussian filtering to remove noise and improve their
quality and then segmented using fuzzy mean clustering and cropping. Then, 114 features
are extracted from the images and the feature vector is selected using principal component
analysis (PCA). The algorithm with the best results in classifying healthy and defective
fruits was SVM, obtaining an accuracy of 96.59%, while the other algorithms evaluated got
an accuracy below 90%, showing a promising use of SVM in postharvest applications.

Valiente et al. developed in their study an image processing analysis using non-
destructive means to detect defects and maturity of avocados [85]. Using images provided
by Google Images for the training of the CNN model, and classifying the type of defect
and fruit maturity with this model, they obtained an accuracy of 93% in the identification
of defects (anthracnose, insect marks, fruit rot, scarring) and an accuracy of 98.97% in the
detection of maturity.
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As can be seen, it is evident that ML and DL models are an important option in the
optimization of avocado crop production. Yield forecast models can assist growers in crop
planning, allowing them to use resources efficiently by analyzing weather conditions, soil
characteristics, and historical environmental data. Models that help in pest and disease
detection, often using CNNs, allow early identification of abnormalities in avocado trees
through image analysis. CNN classifiers offer several advantages in avocado crop analysis.
By recognizing patterns and features in avocado images, these models can perform image
recognition tasks accurately. The hierarchical feature extraction capability of CNNs allows
them to learn complex and abstract representations, making them effective in discriminating
subtle visual differences associated with diseases or quality. CNNs are robust to variations
in avocado crops thanks to their pooling and convolutional layers, which make them
tolerant of spatial variations and small shifts. Additionally, transfer learning can be applied
to CNN classifiers, leveraging pretrained models and enhancing their performance even
with limited avocado-crop-specific training data. Accordingly, CNN classifiers enhance
disease detection, quality assessment, and anomaly identification in avocado crops by
providing accurate and automated image recognition, robustness to variability, and the
benefit of transfer learning.

3.9. Summary of Reviewed Studies

Based on the above subsections, pests in avocados are the most studied problems in
the reviewed papers for RQ1, followed by the affectations caused by weather variations
and the study of diseases caused by pathogens. However, several studies address two
problems simultaneously (pest–climate and disease–climate). Most of them use analytical
techniques to estimate the incidence of these biotic and abiotic factors on avocado crops.

Decreased yields caused by abiotic factors (temperature, humidity, precipitation) were
the focus of the selected studies for RQ2. Most of the papers studied the effects of water
stress on the avocado crop, together with the management strategies that growers apply in
the face of a lack of water or poor water quality for their produce. Another biotic factor that
has a direct impact on avocado yield is temperature. Both of these factors require adaptive
management strategies in the face of climate change in productive zones.

Reviewed studies for RQ3 apply equally in situ and remote sensing techniques for
data collection. However, most of the reviewed papers were oriented to the analysis of
images of avocado leaves and fruits, and only one study was directly oriented to the use of
sensors to capture weather variables data in the avocado crop. All the studies reviewed
in this component used analytical techniques that are based on ML and DL algorithms to
process avocado data. Among these investigations, the use of CNN and SVM algorithms to
analyze crop data corresponds to 22% for each technique (44% between both algorithms),
while the other algorithms employed (such as ANN, K-Means, KNN, LRA, MLP, PCA, VAR,
Otsu) are used at 7% for each technique (56% between these algorithms). Also, the factors
studied and the use cases of sensing and analysis techniques in the papers associated with
all research questions were studied and the findings have been compiled and summarized
in Table A1.

4. Discussion

This paper undertook a systematic review of the scientific literature to establish
the current applications of technology in monitoring pests, diseases, and abiotic factors
in avocado cultivation and production. The focus of this research was specifically on
monitoring APEs in avocado crops, supported by technologies from smart farming.

4.1. Major Findings and Challenges Encountered

In the reviewed papers, the use of technology to support management and intervention
in avocado crops is highlighted. Thus, several analytical techniques based on ML were
used to detect pests in avocado crops, with image-based analysis being the application
and/or data format processed with the most research in the studies reviewed.
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Papers reviewed and analyzed for RQ1 addressed both abiotic (rainfall, temperature,
humidity) and biotic (pests, diseases) factors concerning APEs in avocado crops. The ma-
jority of the studies primarily concentrated on the detection and analysis of avocado pests,
whereas the research related to disease detection and the identification of climate impacts
exhibited more uniformity. The findings demonstrate the influence of endemic pests on
both the fruit and leaves of avocado trees, resulting in a decline in the market value of the
fruit in one scenario and a reduction in the yield of fruit produced in the other scenario.
Progress made in the advancement of prototype sensor systems for insect pest identification,
bolstered by ML techniques [86] holds the potential to effectively utilize technology for
pest control in avocado farms. By leveraging these technological advancements, avocado
farmers can optimize their pest management strategies.

Conversely, papers reviewed and analyzed for RQ2 oriented the impact on yield and
risk management in avocado crops. The majority of these studies primarily investigate
the adverse consequences stemming from biotic factors (such as water and temperature)
that contribute to agroclimatic events. Water scarcity in subtropical regions emerges as a
significant factor leading to decreased production of avocado crops, compounded by the in-
adequate quality of water supplied to the trees. Although water supply is considered secure
for avocado crops in tropical regions, climatic variations are expected to affect production
in the medium and long term, especially in the main exporting countries [44,67]. This
makes future water availability one of the challenges to be addressed, especially to achieve
efficient use of this resource in avocado production. Thus, as there is currently widespread
water stress in avocado crops in Mexico and Chile, there is a commercial and productive
opportunity for countries such as Colombia, given its sufficient water availability and its
use without affecting other socio-economic processes. Moreover, the exposure of trees
to frost stress or extreme heat becomes a parametric risk that growers must manage by
taking timely measures to avoid a decrease in avocado crop yield. Advances in climate
predictive methods [87,88] are key to providing tools for growers to take action based on
predicted data.

Additionally, papers reviewed and analyzed for RQ3 address analytical techniques
and data collection techniques used for pest and disease detection in avocado crops. Most of
the studies reviewed used optical sensors (cameras) in various formats to capture data that
were then processed using ML algorithms. Another feature is that images that were taken
in situ accounted for the majority of the studies, followed by studies that captured data us-
ing remote sensing. Advances in the adaptation of ML and DL model-based techniques [89],
along with the development of IoT prototypes for crop data capture [21], are the two fronts
that should continue to be studied to obtain improvements in avocado production. Among
the applications of emerging technologies in agricultural applications, there is a high use
of models based on CNN classifiers for the detection of diseases in the leaves of trees,
with research working on the preparation of these models through transfer learning to de-
tect diseases in products such as corn, apples, and tomatoes, with accuracy measurements
between 98.6% and 99.4% obtained in the testing of classifiers [90–92]. These advances
are relevant for the use of emerging technologies in the identification of APEs, and in the
specific case of avocado crops, the use of data from the crop and the use of pretrained
models with related data should be prioritized since there is a bias in the application of
transfer learning to pretrained models for other agricultural products. Characteristics such
as tree phenotyping, leaf insertion angle on plants, and canopy distribution are important
for both data collection and training of AI-based models.

An important advancement that has emerged is the incorporation of multispectral
imaging methods, which offer comprehensive spectral data for enhanced detection and
categorization of pests and diseases. Using these techniques, it can detect subtle changes in
tree health and identify early signs of pest infestation and disease. Moreover, the research
highlights the importance of integrating and combining data from various sources, such
as sensors, weather stations, and satellite imagery, to enhance the precision and accuracy
of pest and disease detection models. Avocado crop data from diverse sources can help
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avocado producers gain a fuller understanding of how environmental factors, crop health,
and pest dynamics interact. To facilitate effective decision-making and crop monitoring,
the integration of ML and DL models with IoT prototypes has become a challenging task.
IoT-based sensor networks enable continuous data collection, enabling farmers to receive
timely alerts and take proactive measures against pests and diseases. These advancements
not only improve the efficiency of pest management practices but also help optimize
resource allocation and minimize the use of chemical pesticides.

The reviewed papers revealed certain limitations regarding data collection from avo-
cado crops and the specificity of avocado-related data. A majority of the data collection
was conducted under controlled laboratory conditions, which restricts the application
of study findings to real-world crop conditions, particularly in agricultural production
areas. Consequently, one of the critical challenges for future research is to parameterize the
utilization of technologies in field conditions and to gather data directly from agricultural
fields. Addressing this challenge would involve conducting studies in actual avocado pro-
duction areas, where data can be collected under real-world agricultural conditions. This
would provide more accurate insights into the performance and effectiveness of various
technologies in practical farming scenarios.

4.2. Future Outlook and Research Trends

Future research and work should focus on the development of ML and DL models
applied to monitoring and management of the risk associated with pest and weather
variations in avocado production. Using the crop data, it becomes feasible to customize
pretrained models and establish parameters for predicting the impact of pests and weather
conditions on yield performance. Consequently, future research endeavors should prioritize
the successful implementation of smart farming practices within avocado cultivation. This
entails conducting a comprehensive cost-versus-efficiency analysis of the technologies
employed for monitoring and detecting APEs. Moreover, it is highly recommended to
promote the adoption of 4IR technologies to enhance avocado production, particularly
in countries with emerging economies where avocado holds strategic significance as an
agricultural commodity for economic growth.

4.3. Limitations of This SLR

This study is subject to certain limitations. The literature search was conducted using
three scientific databases: Web of Science, Scopus, and IEEE Xplore. While these databases
encompass various domains and include multiple individual databases, it is important to
acknowledge that the exclusion of other databases may have resulted in the omission of
potentially relevant papers from the review. The search strategy employed in this study
could have potentially impacted the number of papers included in the analysis. Factors such
as the specific search string used and the decision to focus on papers published within the
last six years may have influenced the selection of relevant papers. While it is acknowledged
that these limitations may have affected the total number of papers obtained and considered
in the review, it is affirmed that these limitations did not significantly impact the overall
discussion and conclusions drawn from the included papers. The study’s findings and
interpretations should be viewed within the context of these limitations, and future research
could consider incorporating additional databases and broader search criteria to ensure a
more comprehensive coverage of the relevant literature.

5. Conclusions

A total of 37 papers which satisfied the eligibility criteria for the research questions
posed were reviewed in this study. This review revealed that the primary focus of techno-
logical applications in avocado crops lies in the detection of pest insects, which represent
the most significant biotic factor influencing phytosanitary events. Furthermore, efforts
have been directed towards addressing the effects of water deficit, extreme temperatures,
and excess humidity on avocado crops, as these factors are the major contributors to agro-
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climatic events. Several ML algorithms were utilized in the analyzed studies for data
analysis purposes, with SVMs and CNNs algorithms as the most frequently employed
techniques. Moreover, in terms of data collection technique usage, images collected with
in situ devices (such as portable cameras prototypes) were found to be the most commonly
utilized sensors in the reviewed papers.
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Appendix A

Table A1 contains the factors studied that have impacts on avocado crops, as well as
the use cases of APE detection and analysis techniques in the papers reviewed in this SLR,
which are associated with all the research questions raised.

Table A1. Papers distributed by factors studied, sensing, and analysis techniques.

Ref. Factor Studied Sensing Technique Analysis Technique
Climate Pest/Disease In Situ Remote Lab Regression Classification

[44] X X X

[45] X X X

[48] X X X

[49] X X X X

[50] X X X

[51] X X X

[52] X X X

[53] X X X

[54] X X X

[56] X X X

[57] X X X X

[58] X X X X

[59] X X X X X

[60] X X X

[61] X X

[62] X

[63] X X X

[64] X X X

[65] X X X

[66] X X X

[67] X X X

[68] X X X

[69] X X X

[70] X X

[71] X X X

[77] X X X

[78] X X X

[80] X X X

[43] X X X

[81] X X X

[82] X X X

[79] X X X

[83] X X X X

[84] X X

[85] X X X
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