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Abstract: Timely and accurate extraction of crop planting structure information is of great importance
for food security and sustainable agricultural development. However, long time series data with high
spatial resolution have a much larger data volume, which seriously limits the quality and efficiency
of the application of remote sensing to agriculture in complex crop rotation areas. To address this
problem, this paper takes Lujiang County, a typical complex crop rotation region in the middle and
lower reaches of the Yangtze River in China as an example, and proposes utilizing the Google Earth
Engine (GEE) platform to extract the Normalized Difference Vegetation Index (NDVI), Normalized
Difference Yellowness Index (NDYI) and Vertical-Horizontal Polarization (VH) time series sets of
the whole planting year, and combining the Simple Non-Iterative Clustering (SNIC) multi-scale
segmentation with the Support Vector Machine (SVM) and Random Forest (RF) algorithms to realize
the fast and high-quality planting information of the main crop rotation patterns in the complex
rotation region. The results show that by combining time series and object-oriented methods, SVM
leads to better improvement than RF, with its overall accuracy and Kappa coefficient increasing
by 4.44% and 0.0612, respectively, but RF is more suitable for extracting the planting structure in
complex crop rotation areas. The RF algorithm combined with time series object-oriented extraction
(OB + T + RF) achieved the highest accuracy, with an overall accuracy and Kappa coefficient of 98.93%
and 0.9854, respectively. When compared to the pixel-oriented approach combined with the Support
Vector Machine algorithm based on multi-temporal data (PB + M + SVM), the proposed method
effectively reduces the presence of salt-and-pepper noise in the results, resulting in an improvement
of 6.14% in overall accuracy and 0.0846 in Kappa coefficient. The research results can provide a new
idea and a reliable reference method for obtaining crop planting structure information efficiently and
accurately in complex crop rotation areas.
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1. Introduction

Agriculture is the foundation of social and economic development. Crop planting
structure can reflect the current situation of agricultural development in a region [1,2].
Extracting crop planting structure information timely and accurately is key to monitoring
field crops, forecasting crops yield, water-saving irrigation, evaluation of agricultural
non-point-source pollution, etc. [3-5]. Additionally, it can provide an important basis
for the adjustment of agricultural industrial structure and the formulation of scientific
and rational food policies [6-8]. Additionally, it is of terrific significance for rational
and efficient utilization of agricultural resources, ensuring food security and promoting
sustainable development [9,10].

There are two ways to extract crop structure information, statistical survey and remote
sensing extraction [11]. Compared to statistical survey, remote sensing extraction has the
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advantages of wide coverage, strong timeliness and low cost, so remote sensing extraction
has become the main method of extracting plant structure in a wide range of crops [12-17].
As far back as 1991, researchers utilized Landsat TM multi-temporal data to classify surface
vegetation cover types, demonstrating that the application of multi-temporal classification
yields greater accuracy compared to single-temporal classification [12]. Jia et al. [16] used HJ
satellite to classify and extract wheat, the main crop in the North China Plain, and the results
showed that it was necessary to select the flowering date of wheat to obtain better results in
the single-temporal classification, and it was still necessary to select the special phenological
stage of the crops to be divided in the multi-temporal selection. The extraction results
using single-phase and multi-temporal data have high accuracy only when extracting
single crops with obvious special phenological periods [17]. In order to achieve higher-
precision classification of a variety of crops with less phenological experience, scholars
began to apply time series remote sensing data [18-21]. High-temporal-resolution MODIS
(Moderate-resolution Imaging Spectroradiometer) data have been widely used for more
than 20 years, and are suitable for constructing time series datasets to extract multiple crops
at the same time over large areas with concentrated cultivated land resources [20,22-24].
In the early 21st century, Wardlow et al. [22] used MODIS data to build a 15-day time
series NDVI dataset to map a large area of crops in the central Great Plain of the United
States. The classification accuracy of various crops was greater than 80%, but crops planted
in small plots could not be identified. In fact, time series data with medium and low
spatial resolution still cannot meet the application needs of fragmented areas of cultivated
land plots. The Sentinel-2B satellite, launched in 2017, has the same spatial resolution of
10 m as the Sentinel-2A satellite, and its combined re-visit period is five days. Scholars
began to use Sentinel-2 data to extract crop planting structure information [25,26,26-28].
Through the integration of Sentinel-2 and Landsat data, we effectively generated maps of
cropping intensity for crops such as wheat, maize, rice, and soybean across extensive areas
within seven agricultural regions of China, achieving an overall accuracy of 93% [26]. To
showcase the versatility of Sentinel-2 data across various regions, researchers employed
time series Sentinel-2 data to map potato cultivation across three study sites in Iran and an
experimental area in the United States, achieving overall accuracies exceeding 93% [28].
However, as optical remote sensing data, Sentinel-2 is susceptible to cloud interference.
Over the past two years, many scholars have chosen Sentinel-1 as an alternative to enhanc-
ing optical time series [6,29-31]. The integration of Sentinel-1/2 fused time series data and
phenology features was employed to enhance the effective utilization intervals of classified
features and to map the distribution of rice planting. This approach yielded improvements
of 5.82% and 2.39% in accuracy compared to the use of Sentinel-1 or Sentinel-2 time series
data alone, respectively [29]. Fatchurrachman et al. [32] Synthesized the time series dataset
of Sentinel-1 VH polarization and Sentinel-2 NDVI month by month, and conducted un-
supervised classification of rice by k-means clustering. The overall accuracy and Kappa
coefficient of rice extraction were 95.95% and 0.92. Time series Sentinel-1/2 data can pro-
vide a high-resolution data source for the classification of various crops. However, when
more of the extracted crops are planted on plots with an area of less than 100 square meters,
higher resolution data are required. On the other hand, high-resolution remote sensing
images are more likely to produce “pepper and salt phenomenon” in pixel-oriented crop
extraction, and have higher requirements for computing power [33-35]. Combining the
parcel information and Sentinel-1/2 data can simplify the image segmentation and avoid
the “salt-and-pepper phenomenon” in the classification of summer maize, but the parcel
information is also variable and difficult to obtain [33]. The SNIC algorithm can achieve im-
age segmentation without relying on auxiliary data, different seed pixel spacing will affect
the extraction accuracy, and the optimal seed pixel spacing can be found through multiple
experiments [30]. However, it takes many experiments and a lot of time to determine the
optimal interseed pixels in the study area by the local computer [36-38]. Xue et al. [36] and
Luo et al. [38], using the GEE platform SNIC algorithm for time series of Sentinel data fast
segmentation, realized the high precision in cultivated land resources concentrated area
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of crop classification. However, most of the crops extracted in these studies are one kind
of crops (rice), or the planting information is extracted from the planting structure area of
simple crops with one crop per year.

The purpose of this study is to verify the effectiveness of time series data for extraction
planting information of complex crop rotation patterns and the applicability of object-
oriented methods and Random Forest algorithms in regions with fragmented arable land
resources basis on the powerful computing power of GEE. The research results can provide
a reliable reference method for efficient and high-precision extraction of complex rotation
pattern planting information in arable land resource fragmentation areas, which is of great
value to ensure the efficiency of agricultural remote sensing application and promote the
efficient application of agricultural resources.

2. Materials and Methods
2.1. Study Area

Lujiang County belongs to Hefei City, Anhui Province, China (Figure 1). It is located
in the Jianghuai region, near the Yangtze River in the south and Chaohu Lake in the north.
The landform type is mainly plain, and the hilly area is mostly in the southwest. It belongs
to the subtropical monsoon climate area, with abundant rainfall and dense river network.
Lujiang County is a two-season crop area, and agriculture is an important supporting
industry. Rice is the main crop grown in Lujiang County, the rice planting area in 2021
is 91,173 hectares. “Lujiang Rice” was selected into the first batch of National Famous
and excellent new agricultural products list in 2021, and China’s first rice museum “China
Rice Museum” is also located in Lujiang County. In Lujiang County, wheat-rice rotation,
double-cropping rice rotation and rape-rice rotation are the main crops, among which
double-cropping rice is the largest planting area in Anhui Province.
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Figure 1. Topographic map of Lujiang County. It shows the geographical location and terrain
information of Lujiang County. Actual surveyed plot locations and partial plot survey photographs
are also shown. 1-6 represent partial survey point locations and corresponding survey photos.

2.2. Sample Point Data

The field survey data were collected in October 2021, and the investigation mainly
included crop rotation patterns, latitude and longitude, and phenological period (Figure 2).
Because the rotation pattern involved first-season crops, it was only known through farmer
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surveys. All the survey rotation sample points were verified one by one with Sentinel-2
cloud-free images in March and April 2021, combined with Google Earth high-resolution
images to select buildings, water, forest and other land-type sample points. Finally, 422 crop
sample plots were obtained (Among them, 181 wheat-rice rotations, 80 double-cropping
rice rotations, 85 rapeseed-rice rotations, and 76 other rotations). Pixels were randomly
acquired within each plot, totaling 3860 pixels (Among them, there were 1632 wheat-rice
rotations, 761 double-cropping rice rotations, 646 rapeseed-rice rotations and 821 other
rotations.) All pixel points are randomly divided into training sample points for extracting
feature time series curves, supervising classification and accuracy verification points for
evaluating different extraction methods according to the ratio of 6:4. The distribution of
sample plots is shown in Figure 1.

Crop rotation October[November| December | Jamiary [February] March [ Apd | May | Tune [ Tuly | August [September| October [November]
°° L [EM[LIEM[LIEML]EM[LIEf]M] L [E[M[L[E] ™ LIE[ M Ll E M [ L [EMLEM[L][E[M[L]E[M
sowing | seedling stage [wintering period| growth stage maturity stage hmﬁrsmspixg field [seedling stage tiler to heading stage manuriy | harvest
Wheat-Rice Ty LAY, e ey T -
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Figure 2. Phenological phases of the main rotation patterns in the study area. E means the early 10 days
of a month, M is the middle 10 days, and L represents the later 10 days.

2.3. Remote Sensing Data

For remote sensing data, Sentinel-2 high-resolution multi-spectral imagery and Sentinel-
1 remote sensing data were selected. Sentinel-2 images are generated by two complementary
Sentinel-2A and Sentinel-2B satellites with a revisit period of 5 days and a resolution of
10-60 m in each band. Sentinel-2 images used in this study were directly invoked from the
GEE platform with atmospheric correction and orthographic correction of Sentinel-2 Level-
2A surface reflectance data. The selection range was based on one planting year (1 October
2020 to 31 October 2021), and the pixels with cloud probability greater than 50% were
removed, and a total of 110 landscape images were obtained. The NDVI and NDYI indexes
were constructed, because the NDVI could reflect the change in crop growth better [7,22].
The NDYI can reflect the yellowness index of crops, and can be better distinguished from
other crops at the flowering stage [39].

Sentinel-1 data used in this study were invoked on the GEE platform by the “‘COPER-
NICUS/S1_GRD’ dataset (synthetic aperture radar GRD product), also with a planting
year as the time range, totaling 33 images. The dual-polarized VH band in interference
Wide width (IW) mode was chosen because it is more sensitive to rice backscattering than
VV [32,40]. The detailed data used by the research are shown in Table 1, and the distribution
of the number of effective Sentinel data observations in the rotation cycle of the study area
is shown in Figure 3.

2.4. The Planting Structure Extraction Method

The main technical route of this study is shown in Figure 4; it includes (1) constructing
a time series feature dataset; (2) selecting the optimal feature dataset—the information
of crop planting structure was extracted by the object-oriented or pixel-based method;
(3) precision comparison and selection of the optimal extraction model.

2.4.1. Constructing the Feature Dataset

Feature selection is of great significance to operation speed and extraction accuracy.
The optimal feature combination should have the characteristics of strong correlation
between feature and target, small redundancy between features and strong separability
between classes. Since the selection of feature index was mainly based on other research
results, this study added NDYI and VH time series to the NDVI time series set to form a
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time series dataset, and combined RF and SVM to extract crop planting structure and verify
accuracy, so as to explore the applicability of NDVI, NDYI and VH in this study area.

When the time resolution is one month, it can ensure that each pixel has data in all
periods, and it can better match the phenological information of various crop rotation
patterns in Section 2.2. NDVI and NDYT are easily affected by observation time, cloud
cover and aerosol, and the adverse effects of external factors can be effectively reduced
by maximum synthesis. Therefore, we used the “max” function in GEE to calculate the
maximum values of NDVI and NDYI of each pixel month by month. The calculation
formula is as follows:

NDVI = (oNnir — PR)/ (ONIR + OR) @

NDYI = (pc — p8)/ (oG + pB) ()

Table 1. Remote sensing data used in this study.

Number Sensor Date Quantity Number Sensor Date Quantity
1 S2 October 2020 10 14 S1GRD October 2020 3
2 52 November 2020 12 15 S1GRD November 2020 2
3 S2 December 2020 12 16 S1IGRD December 2020 3
4 52 January 2021 7 17 S1GRD January 2021 2
5 52 February 2021 3 18 S1GRD February 2021 3
6 52 March 2021 6 19 S1IGRD March 2021 2
7 S2 April 2021 5 20 S1GRD April 2021 3
8 S2 May 2021 8 21 S1IGRD May 2021 2
9 S2 June 2021 5 22 S1GRD June 2021 3
10 S2 July 2021 8 23 S1GRD July 2021 2
11 52 August 2021 8 24 S1GRD August 2021 3
12 S2 September 2021 15 25 S1IGRD September 2021 2
13 52 October 2021 11 26 S1GRD October 2021 3
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Figure 3. Distribution map of the number of effective observations of Sentinel data in the rotation

cycle of the study area. (a) Sentinel-1 data; (b) Sentinel-2 data.
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Figure 4. Flow chart of crop planting structure extraction.

In the formula, pnjr is the reflectivity of near infrared band; pr is the reflectance of the
red band, p¢ is the reflectance of the green band, and pp is the reflectance of the blue band.

Sentinel-1 data are not affected by cloud cover, but are significantly affected by the
noise signal. Therefore, the “median” function was used to synthesize the monthly median
value of VH to reduce the noise in the data [15]. Due to the difference in data acquisition
time between Sentinel-1 and Sentinel-2, the monthly synthesis of VH can also ensure that
the time was neat with Sentinel-2 data. Finally, the “addBands” function was used to fuse
the time series datasets of NDVI, NDYI and VH, and the time series curves of wheat and
rice, rapeseed and rice, double cropping rice and other crops were constructed (Figure 5).

The window period recognition of multi-temporal extraction is mainly selected
through feature importance evaluation combined with regional phenological characteristics.
The calculation of the importance of features is based on the measure of the importance of
the Random Forest algorithm itself. In GEE, “ee.classifier.explain” was used to calculate
the importance score of each feature in the process of crop planting structure information
extraction, and at last, the importance of each feature factor was sorted in ascending order.

2.4.2. Simple Non-Iterative Clustering

The SNIC algorithm is an improved version of simple linear iterative clustering.
Because the SLIC algorithm needs to iteratively converge cluster centers, it will occupy
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a large amount of memory, while the SNIC algorithm uses a priority queue to replace
the k-means iterative clustering process of the SLIC algorithm, reducing the memory
consumption and generating superpixels more quickly [30,37,41]. Both algorithms use the
same distance measure, that is, using CIELAB color distance and spatial Euclidean distance
weighting to calculate the distance between pixels and the cluster center. When CIELAB
color d = [i,a,b]" and spatial position x = [x,y]"
processed and C[k] of the k cluster center is:

, the distance between the j pixel to be
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Figure 5. Time series figure and dataset simplification diagram. The variation characteristics of NDVI,
NDYI and VH in different periods under different rotation patterns are shown.

In the formula, s and m are the normalized factors of space distance and color dis-
tance, respectively. m is also known as the compact factor. The larger the value of m,
the larger the weight value of the space distance in the overall distance, and the more
regular the generated superpixel, but at the same time, the boundary will be less fit.
When the value is 0, spatial distance weighting is not considered. In the GEE platform,
“ee.Algorithms.Image.Segmentation.SNIC” can be directly invoked to realize the SNIC
segmentation algorithm. The segmentation effect is mainly determined by four main pa-
rameters: Seed pixel spacing (Size) determines the spacing distance between clustering
centers. The larger the Size value, the smaller the number of seeds, and the larger the
segmented object; Compactness determines the degree and shape of segmentation. The
larger the value of Compactness, the tighter the segmentation result and the more regular
the shape. Connectivity Defines the connectivity direction chosen when merging adjacent
superpixels (4 or 8 directions). Neighborhood size sets the maximum pixel value allowed
for the generated hyperpixel. The main parameter of image segmentation scale is Size.
Therefore, six different seed pixel spacing are set: 3, 5, 8, 10, 15 and 20, and the segmenta-
tion results are conducted for model training and accuracy verification, so as to select the
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optimal seed pixel spacing. According to the distribution characteristics of cultivated land
in the study area, the compactness was set to 5, the connectivity to 8, and the neighborhood
size to 256.

2.4.3. The Planting Structure Extraction Algorithm

In this study, two algorithms, Random Forest (RF) and Support Vector Machine (SVM),
were used to extract the crop planting structure in the study area. The RF algorithm selects
random sample points and feature variables with the return, establishes multiple decision
trees for extraction, and takes the result with the highest voting result as the output result.
The RF algorithm has the advantages of fast training speed, high classification accuracy,
strong anti-noise ability, and strong objectivity [42—44]. The SVM algorithm is an algorithm
that integrates data analysis, classification and regression. By introducing the principle of
risk minimization and the probability of kernel function, the SVM algorithm can find the
optimal hyperplane extracted in a small sample space, which has small sample demand,
good robustness and high execution efficiency [45-47].

The GEE platform Integrates the RF and SVM algorithms, which can be directly
invoked to achieve the extraction of crop planting structure. The RF algorithm has two
user-defined parameters: the number of decision trees (ntree) and the number of features
selected when the decision tree is generated (mtry). Through repeated tests, it was found
that when ntree was set to 200, the extraction accuracy tends to be stable. mtry was set to
the algorithm default setting which is the square root of the total number of features. The
kernel function of the SVM algorithm selects the default ILinear kernel function, which was
found to have better extraction effect than “radial basis function (RBF)” in this study.

Combining the RF and SVM algorithms with time series data and multi-temporal data
before and after segmentation, and eight different classification models are constructed for
crop planting structure extraction., respectively, were: the multi-temporal element-oriented
SVM algorithm model (PB + M + SVM), the multi-temporal object-oriented combined
SVM algorithm model (OB + M + SVM), the time series-oriented pixel-combined SVM
algorithm model (PB + T + SVM), the object-oriented combined SVM algorithm model
based on time series (OB + T + SVM), the multi-temporal element-oriented combination RF
algorithm model (PB + M + RF), the object-oriented integrated RF algorithm model based
on multi-temporal (OB + M + RF), the time series-oriented pixel-binding RF algorithm
model (PB + T + RF), and the object-oriented combined RF algorithm model based on time
series (OB + T + RF). Finally, the optimal model was selected by comparing 8 models to
extract the verification accuracy of crop planting structure.

2.5. Accuracy Evaluation

In this study, the method of sampling outside the bag was selected for accuracy
verification, and various sample points were randomly divided into training sets and
verification sets according to the ratio of 6:4. Only the training sets were uploaded to the
GEE platform for the training of each model, and the extraction results of each model were
used in the local computer for accuracy evaluation using the verification set. The method
of confusion matrix was used to evaluate the accuracy of the model with the indexes of
overall accuracy (OA), Kappa coefficient, producer accuracy (PA) and user accuracy (UA).
OA is the probability of extracting correct results from the model on the verification set;
Kappa coefficient is an index to test the consistency between the validation sample and the
extraction results, and its range is 0~1. The larger the value, the higher the consistency of
the extraction model. UA represents the probability of the verification point falling on the
category on the resulting graph; PA is the probability that the verification point of the class
is correctly classified. The calculation formula is as follows:

t
04 =="

- @
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In the formula, 11, is the number of correct samples extracted for class j; F; is the total
number of real pixels of class j; L; is the total number of extracted pixels of class j. D is the
total number of extracted pixels; t is the number of extraction categories.

3. Result Analysis
3.1. The Optimal Feature Set

By adding NDYTI and VH time series data, the accuracy of extraction results can be
improved (Figure 6a—), and the SVM algorithm accuracy improved more, Kappa and OA
increasing by 0.0228 and 1.67%, respectively, and RF Kappa and OA increasing by 0.0039
and 0.28%, respectively. It can effectively avoid the misdivision and leakage of wheat-rice
rotation and double-cropping rice rotation. The addition of NDYI can effectively improve
the user accuracy of wheat-rice rotation and the producer accuracy of wheat-rice rotation
and double-cropping rice rotation. On this basis, the addition of VH can significantly
improve the user accuracy of wheat-rice rotation and the producer accuracy of wheat-rice
rotation and double-cropping rice rotation.

The identification of the extraction window period mainly used the RF algorithm to
evaluate the importance of the features, and combines the regional phenological features for
selection. The evaluation results of feature importance are shown in Figure 6d, features with
importance greater than 60 are NDVI6, NDYI3, NDVI3, VH4, and NDVI10_n. Therefore,
the NDVI, NDYI and VH datasets of March, April, June and October of the harvest year
were constructed with the extraction window periods.

3.2. Optimal Seed Pixel Spacing

In this study, the distance of seed pixels was set as 3, 5, 8, 10, 15 and 20, respectively,
and the optimal segmentation scale was screened, and the extraction accuracy was shown
in Figure 7. The overall accuracy and Kappa coefficient of OB + M + SVM, OB + M + SVM,
OB + M + RF and OB + T + RF extraction models were all the largest when the seed pixel
distance was 8, which were 94.53%, 0.9145; 97.23%, 0.9620; 98.47%, 0.9791; 98.93%, 0.9854.
At this time, the accuracy of each object-oriented extraction model is the highest, so eight
was selected as the seed pixel distance of SNIC segmentation.

3.3. Extraction Results and Precision Analysis

The eight extraction models in Section 2.4.3 for extracting crop planting structure
information, and two typical regions (I and II) were intercepted at the same time, and the
extraction effects of the eight models were compared on a small scale. The pixel-based
extraction results are shown in Figure 8, and the object-oriented extraction results are
shown in Figure 9. In general, the spatial distribution of various crop rotation patterns in
the eight extraction results was consistent. Wheat-rice rotation was mainly distributed
in the north and east of the study area, double-cropping rice was mainly distributed in
the middle and south of the study area, and rapeseed-rice rotation was distributed along
roads and rivers. The difference was reflected in the degree of influence by the noise value
of the original image. Among the extraction results of PB + M + SVM, PB + T + SVM,
PB + M + RF and PB + T + RF, the “salt-and-pepper phenomenon” was serious, and the “salt-
and-pepper phenomenon” was more serious in the extraction results of PB + M + SVM and
PB + T + SVM models. The pattern spots in the extraction results of OB + M + SVM, OB + T
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Figure 6. Evaluation of extraction accuracy and feature importance. Kappa and Overall Accuracy of
extracted results for different datasets and different algorithms are shown in (a), the User Accuracy
and Producer Accuracy extracted by the dataset and the algorithm for different rotation patterns are
shown in (b,c). (d) is the result of feature importance evaluation, NDVI6 means NDVI synthesized in
June; NDVI10_n means NDVI synthesized in October of the harvest year.

Based on the validation sample data, the accuracy of the extraction results of eight
models was further evaluated, the evaluation results are shown in Table 2 and Figure 10.
For the overall accuracy and Kappa coefficient. The extraction accuracy of the eight models
was ranked as OB+ T+ RF>OB+ M +RF>PB+T+RF>PB+M+RF>O0B+T +
SVM >PB + T + SVM > PB + M + SVM, among which OB + T + RF performed best, the
overall accuracy and Kappa coefficient of the extraction model were the highest. 98.93%
and 0.9854, respectively; PB + M + SVM extraction model was the lowest, 92.79% and

0.9008, respectively.



Agronomy 2023, 13, 2350 11 of 18

100% 1.00 100% 1.00
SVM-M 0OA—9— Kappa SVM-T OA—o— Kappa
98% - F0.98 98% 0.98
2% 09 96% B 0.96
< < 0 - B e — . K <
NI
| M 940, 0.94 >
92%1 2 — 11 ~— £0.92
TR
o | S | 92% 0.92
90% L, 090
88% T T T T T T 0.88 90% T T T T T T 0.90
3 5 .10 15 20 3 . 15 20
Size ) Size
100% — T 1.00 100% RET b 1.00
=
98% B . 10.98 98%+ [l ~@ S B o098
o ~ B _
96% 1096 g 96%q 1096 5
3 53 §
94% L0.94 % 94%1 1094
92% 10.92 92% 0.92
90% 1—— " " " " ——10.90 90% —— ; ' ' ‘ —L10.90
3 ) 8 10 15 20 3 5i g8 . 10 15 20
Size Size
Figure 7. Effect of different segmentation scales on extraction accuracy. “SVM” means the Support
Vector Machine algorithm, “RF” means the Random Forest algorithm; “M” means multi-temporal
data; “T” means time series data.
Table 2. Precision comparison of eight extraction models.
Model Kappa Overall Crop Rotation Producer’s User’s
Coefficient Accuracy Pattern Accuracy Accuracy
Wheat-Rice 81.58% 66.16%
PBl+M2+SVM?3 0.9008 92.79% Rice-Rice 95.07% 88.82%
Oilseed Rape-Rice 99.48% 97.14%
Wheat-Rice 94.19% 89.02%
PB+M +RF4 0.9645 97.41% Rice-Rice 94.70% 94.08%
Oilseed Rape-Rice 99.69% 99.28%
Wheat-Rice 88.82% 84.76%
PB+T%+SVM 0.9470 96.13% Rice-Rice 94.24% 91.45%
Oilseed Rape-Rice 99.58% 97.75%
Wheat—Rice 94.38% 92.07%
PB+T+RF 0.9733 98.05% Rice—Rice 97.00% 95.72%
Oilseed Rape-Rice 99.69% 99.28%
Wheat-Rice 89.49% 75.30%
OB®+M +SVM 0.9248 94.53% Rice-Rice 96.15% 90.46%
Oilseed Rape-Rice 99.48% 97.34%
Wheat-Rice 96.55% 93.90%
OB +M + RF 0.9791 98.47% Rice-Rice 98.66% 97.04%
Oilseed Rape-Rice 99.69% 99.39%
Wheat-Rice 96.00% 87.80%
OB+ T + SVM 0.9620 97.23% Rice-Rice 96.67% 95.39%
Oilseed Rape-Rice 99.69% 98.88%
Wheat-Rice 97.26% 97.26%
OB+ T+RF 0.9854 98.93% Rice-Rice 99.33% 97.70%
Oilseed Rape-Rice 99.49% 99.49%

1 “PB” means pixel based; 2 “M” means multi-temporal data; > “SVM” means the Support Vector Machine algorithm;
4 “RF” means the Random Forest algorithm; > “T” means time series data; ® “OB” means object oriented.
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Figure 8. Pixel-based extraction results. “PB” means pixel based, “SVM” means the Support Vector
Machine algorithm, “RF” means the Random Forest algorithm; “M” means multi-temporal data; “T”

means time series data.
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Figure 10. Extract the confusion matrix of the results. “PB” means pixel based, “OB” means object
oriented, “SVM” means the Support Vector Machine algorithm, “RF” means the Random Forest
algorithm; “M” means multi-temporal data; “T” means time series data.

In general, the object-oriented crop planting structure extraction based on time series
combined with the RF algorithm had the highest accuracy. The accuracy of object-oriented
extraction was higher than that of pixel-based extraction, and the SVM algorithm increased
the extraction accuracy more obviously in object-oriented extraction. The extraction result
of the RF algorithm was better than the SVM algorithm. The extraction accuracy based
on time series data was higher than that of multi-temporal data, and did not depend on



Agronomy 2023, 13, 2350

150f18

phenological characteristics. Among the three main crop rotation patterns, because of the
special flowering period of rape, the extraction accuracy of oil rice crop rotation pattern
was the highest.

4. Discussion
4.1. The Potential of OB + T + RF to Extract Complex Crop Rotation Patterns

Time series data have been widely used in the field of remote sensing extraction of
crop planting information, and object-oriented method has attracted much attention from
scholars. Xue et al. [36]. study proved the feasibility of object-oriented crop classification
based on time series, but it only classified single-season crops in the study area. In this study,
an object-oriented method of crop rotation pattern extraction using the RF algorithm based
on the time series dataset was proposed, and compared with the multi-temporal dataset and
pixel-based extraction. The results are shown in Table 2, Figures 8-10. The object-oriented
extraction method based on time series data can effectively avoid the “pepper and salt
phenomenon” of pixel-based extraction methods, and has higher verification accuracy. At
the same time, compared with multi-temporal data, time series data can fully reflect the
crop growth status of the whole rotation cycle, and can achieve higher extraction accuracy
than multi-temporal data without the need to investigate phenological data in the region.
The extraction accuracy of the RF algorithm and the SVM algorithm had been effectively
improved by combining with object-oriented method. The reason why the SVM algorithm
can improve more by combining with object-oriented method is that its own boundary
generalization ability was poor. However, the accuracy of each model constructed by the
RF algorithm is higher than that constructed by the SVM algorithm, so the RF algorithm
performs better in complex crop rotation pattern extraction.

4.2. Advantages of Feature Construction and Extraction on the GEE Platform

The time series data constructed in this study are the Sentinel data, with a total of
143 landscape images and a resolution of 10 m, and it took a long time to perform data
downloading, preprocessing, index construction, etc., on the local computer. At the same
time, the use of time series high-resolution image to extract crop planting structure has
high requirements for computer processor, graphics card computing power and speed.
GEE cloud computing platform has a huge amount of data, segmentation algorithms and
classification algorithms, which can quickly build a high-resolution time series datasets
directly in the cloud, segment images at different scales, and extract crop planting structure
by using classification algorithms. GEE cloud computing platform can achieve efficient and
high-resolution crop planting structure extraction under the condition of low computer
hardware configuration, which not only improves the research efficiency, but also ensures
the timeliness in agricultural production and application.

4.3. The Limitation of the Algorithm and the Uncertainty of the Segmentation Scale

Although efficient and high-resolution extraction of crop structure in complex rotation
areas has been realized based on the GEE platform, only SVM and RF were used in
extraction algorithms in this research. Deep learning can realize powerful feature learning
ability by establishing complex network structure [48-50]. However, deep learning has
high requirements for hardware configuration and computing power, subsequent studies
consider combining deep learning and other algorithms with the GEE platform to screen
out the optimal algorithm. In this study, for the main crop types in the study area, a
characteristic time series dataset that can be well distinguished from other crops and ground
objects was selected. When extracting in other study areas, it is necessary to reconsider
the selection of appropriate indicators to construct a time series dataset according to the
actual situation.

Although the main crop rotation patterns in the study area can represent the typical
crop rotation patterns in the middle and lower reaches of the Yangtze River in China,
they cannot include the more abundant crop rotation patterns in the world. Moreover,
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the difference of cultivated land resources in different regions will lead to the difference
of the optimal seed pixel spacing. Therefore, when the research results are extended to
global applications, it is still necessary to evaluate the importance of features and determine
the optimal seed pixel spacing. What is exciting is that GEE can quickly evaluate the
importance of features and determine the optimal seed pixels for any region, which can
extract relatively high-precision results more efficiently than using local computers.

5. Conclusions

In this study, NDVI, NDYI and VH time series feature sets were constructed based
on Sentinel data of the GEE platform. The RF algorithm was used to evaluate the feature
importance, and the extraction window period was determined based on phenological
characteristics. The influence of different time series feature sets and multi-temporal
datasets on the extraction accuracy of the SVM and RF algorithms was explored, and
the SNIC algorithm was used for object-oriented extraction to realize the extraction of
crop planting structure information in complex rotation region. The main conclusions
are as follows:

(1) The optimal extraction model was OB + T + RF and the overall accuracy and Kappa
coefficient were 98.93% and 0.9854, respectively. The extraction accuracy of the model
constructed by the RF algorithm was higher than that of the model constructed by the
SVM algorithm.

(2) The GEE platform can be used to extract high-efficiency and high-precision crop
planting structure information. The GEE platform can directly call Sentinel data
with high temporal resolution and high spatial resolution; at the same time, it also
has a strong cloud computing capability, which can quickly conduct image pre-
processing, build feature index and time series datasets, and extract crop planting
structure information.

(3) When crop planting structure information is extracted at a 10 m spatial resolution, the
accuracy of the object-oriented extraction method is higher than that of the pixel-based
extraction method.

(4) The extraction accuracy of time series data is higher than that of multi-temporal data,
and time series data can better reflect the characteristics of each stage of crop growth,
and high-precision crop planting structure information can be extracted with less
phenological information.
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