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Abstract: Accurate and robust methods are needed to monitor crop growth and predict grain yield
and quality in breeding programs, particularly under variable agrometeorological conditions. Field
experiments were conducted during two successive cropping seasons (2021, 2022) at four trial
locations (Estonia, Latvia, Lithuania, Norway). The focus was on assessment of the grain yield (GY),
grain protein content (GPC), and UAV-derived NDVI measured at different plant growth stages.
The performance and stability of 16 selected spring wheat genotypes were assessed under two N
application rates (75, 150 kg N ha−1) and across different agrometeorological conditions. Quantitative
relationships between agronomic traits and UAV-derived variables were determined. None of the
traits exhibited a significant (p < 0.05) genotype-by-nitrogen interaction. High-yielding and high-
protein genotypes were detected with a high WAASB stability, specifically under high and low N
rates. This study highlights the significant effect of an NDVI analysis at GS55 and GS75 as key linear
predictors, especially concerning spring wheat GYs. However, the effectiveness of these indices
depends on the specific growing conditions in different, geospatially distant locations, limiting their
universal utility.

Keywords: genotype; meteorological parameters; nitrogen fertilization rate; multispectral vegetation
index; correlations

1. Introduction

Common wheat (Triticum aestivum L.) is a valuable and extensively cultivated cereal
worldwide. Global wheat production has increased, rising from 715 million tons in 2015
to 780 million tons in 2021 [1]. The significance of wheat extends to the Baltic countries
(Latvia, Estonia, Lithuania) and the Nordic nations (Denmark, Norway, Sweden, Finland),
where wheat production collectively accounts for approximately 7% and 5% of the total
European wheat production, respectively [1,2].
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The climatic conditions in the Nordic–Baltic region facilitate the cultivation of both
types of wheat—spring and winter wheat. Notably, the majority of the harvested area in the
Baltic countries is dedicated to winter wheat, with only about 20% of the area allocated to
spring wheat cultivation [3]. Given that a significant portion of spring wheat production in
the Baltic countries and Norway is earmarked for breadmaking, breeding programs in this
region simultaneously prioritize traits related to productivity and baking quality, including
grain yield (GY) and grain protein content (GPC) [4–7]. Wheat with a moderate-to-high
GPC (exceeding 12%) is considered essential for bread making, while wheat with lower
GPC levels is typically used for cookies, noodles, or animal feed [8].

The GY and GPC are complex quantitative characteristics controlled by multiple
genes, influenced by genotype, environment, and genotype–environment interactions.
Breeders often rely on grain yield and quality, along with their contributed performance
and phenotypic expression, when selecting crop cultivars under mega-environment tests [9].
Abiotic stresses, such as water stress, heat, and nutritional deficiency, can negatively impact
crop yield and quality [10,11]. Therefore, each genotype should undergo evaluation for
several years in different locations to identify high-performing and stable genotypes,
recommending them for cultivation in target areas.

Wheat, as a cereal crop, has a high demand for nitrogen (N), crucial for plant growth,
development, GY formation, and GPC accumulation and essential for baking and process-
ing quality. Wheat growth has an absolute requirement for N, and crop yield and quality
heavily depend on substantial N inputs [12].

Crop breeding needs to be intensified and made more efficient, utilizing new phe-
nomics methods to predict the GY and GPC, both of which are interrelated parameters [13].
Consequently, remote sensing is gradually gaining recognition as an alternative to tradi-
tional, destructive field sampling methods and laboratory testing. It serves as a tool for
finding the nitrogen (N) status in wheat [14]. Unmanned aerial vehicle (UAV) platforms
equipped with multiple sensors, capable of swiftly scanning entire fields, have proven
to be useful tools for gathering non-destructive data on the physiological state of plant
canopies [15,16]. Multispectral data have been analysed for UAV-based estimation of wheat
grain yield under different water and nitrogen conditions and at various wheat growth
stages [17,18].

The normalized difference vegetation index (NDVI), calculated from multispectral
data, stands out as the most popular index for vegetation assessment [19]. This index finds
utility in various fields, including agriculture [20]. The NDVI is valuable in estimating
biomass [21], indicating plant stress [22], determining chlorophyll concentration [23], and
assessing other characteristics. Numerous studies on wheat have demonstrated the po-
tential use of NDVI readings as a tool to differentiate and identify high-yielding wheat
genotypes, even in different nitrogen environments [24–26].

There is a lack of published results on the agronomic and UAV remote sensing pheno-
typing of spring wheat genotypes in multi-environment experiments, particularly within
the unique conditions of the Baltic region, which would offer valuable insights for breeding
programs. The aim of this study was to identify the best performing and stable spring wheat
genotypes for grain yield and grain protein content in different Nordic–Baltic environments.

The objectives of this study were to:

• Assess the variation in the GY, GPC, and UAV-derived NDVI across different years
and nitrogen fertilization rates in the Nordic–Baltic region;

• Evaluate the performance and stability of spring wheat genotypes concerning the
GY and GPC under varying N fertilization rates and diverse agrometeorological
conditions;

• Explore the quantitative relationships between GY, GPC, and UAV-derived NDVI
variables across multi-environmental trials during different plant growth stages.

Using UAV phenotyping technologies combined with field evaluations, we intended to
determine whether superior genotypes can be accurately identified with this methodology,
and at which stages of plant development the assessment should be performed.
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2. Materials and Methods
2.1. Plant Materials

In this experiment, sixteen spring wheat genotypes were used, which include cultivars
and improved breeding lines mostly developed in the last decade in the spring wheat breed-
ing programs of the Baltic States and Norway. These programs include the Agricultural
Resources and Economics Institute (Latvia, LV), the Lithuanian Agricultural and Forestry
Research Centre (Lithuania, LT), and the Centre of Estonian Rural Research and Knowledge
(Estonia, EE), as well as the Norwegian University of Life Sciences (Norway, NO) and
Graminor (Norway). Detailed information on the selected spring wheat genotypes and
their origin and descriptions are given in Table S1.

2.2. Field Trials

Field experiments were carried out over two consecutive years (2021 and 2022) at
four geographically distant locations representing different agro-ecological conditions and
soil types in the Nordic and Baltic region: the Centre of Estonian Rural Research and
Knowledge (Jogeva, Eastern part of Estonia, 58◦76′ N, 26◦24′ E), Stende Research Centre
(Dižstende, north-west Latvia, 57◦18′ N, 22◦56′ E), the Institute of Agriculture (Dotnuva, in
central Lithuania, 55◦39′ N, 26◦24′ E), and the Vollebekk Research Station (Ås, south-eastern
Norway, 59◦39′ N, 10◦45′ E). The physical and chemical properties of the experimental soils
prior to sowing are detailed in Table S2.

In each location, spring wheat genotypes were sown in field trials set up with two con-
trasting nitrogen (N) fertilization rates applied before sowing, i.e., 75 and 150 kg ha−1 N of
compound NPK fertilizer, referred to as low N (N75) and high N (N150) rates, respectively.
The high N treatment represents the typical fertilization rate for spring wheat in Norway
and the Baltic states, whereas the low N treatment reflects less intensive management,
allowing for the evaluation of the performance of genotypes at a reduced N supply. The
experiment was designed in split plots, with the main plot being the N rates (N75, N150)
and the sub-plot being the wheat genotypes.

The harvested plot size for each genotype across different locations was 9–15 m2,
arranged in two randomized replicates. The seeding rate was 500 kernels m−2 in LV
and LT, and 600 kernels m−2 in EE and NO. Trials were conducted at the proper time,
from 21 April to 2 May, depending on the local meteorological conditions at each location.
Treatment of trials with pesticides included the application of herbicides and fungicides in
all locations based on standard procedures. Foliar fungicide treatments (1–2 applications)
were applied at each location, but insecticides were used when the control thresholds of
insects was exceeded. Following the ripening stage, the trial material was harvested using
a combine harvester.

Daily weather data (precipitation amount, mm; ◦C; average day temperature, ◦C) were
obtained from services provided by research institutions. The climate normal, or long-term
average (LTA, 1991–2020), was used to compare two-year data at each location.

2.3. Phenotyping of Field Traits

Days to maturity (DM, days) were calculated from visually recorded maturity dates
when 50% of the plants were in the respective developmental stage. Plant height (PH, cm)
was manually measured at the ripening stage in three separate places within the plot and
calculated as the average height of a sample of a fertile stem from the soil surface to the
top of the spike. Grain yield (GY, g m−2) was recorded for each experimental plot and
adjusted to a moisture content of 14%. Grain protein content (GPC, %) was measured using
a near-infrared reflectance spectrometer (Perten Inframatic 9200/Perten Instrument AB) in
Norway (NO), and near-infrared transmittance whole grain analysers were used in Estonia
(EE) (InfratecTM/Foss), Latvia (LV) (InfratecTM NOVA/Foss), and Lithuania (LT) (Infratec
1241/Foss).
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2.4. UAV Data Acquisition and Processing

A DJI Phantom 4 Multispectral quadcopter (DJI, Inc., Shenzhen, Guangdong, China)
was used to acquire image data in LV, LT, and NO. This commercial UAV model is com-
monly employed in agronomy research and monitoring [27]. A DJI Phantom 4 RTK (Real
Time Kinematics) quadcopter (DJI, Inc., Shenzhen, China) equipped with a Micasense
RedEdge MX multispectral camera (AgEagle Aerial Systems, Seattle, WA, USA) was used
to acquire image data in EE.

Multispectral UAV images were captured at each location from an altitude of 20 m,
resulting in a ground sample distance (GSD) of 1 cm. The images were taken with a
minimum of 75% overlap in the front and side directions, using a 90 degree (NADIR)
camera position. Each flight mission generated approximately 5000 TIFF images, with five
images acquired for each shot.

Four UAV flight missions were planned in each of eight field trials, corresponding
to a certain time of plant vegetative and generative development based on the Zadoks
growth scale [28]: the middle of vegetative wheat plant development (tillering, growth
stage 25/GS25), spike emergence or heading (GS55), the middle of grain filling (milk
development stage, GS75), and late grain filling (dough development stage, GS85) (Table 1).
However, the developmental stages differed slightly between genotypes due to differences
in phenological development.

Table 1. UAV flight mission dates for multi-location trials.

Stage of Plant Development
LV EE LT NO

2021 2022 2021 2022 2021 2022 2021 2022

Middle of vegetative plant
development GS25 05.29 05.25 05.31 06.06 05.28 05.23 05.28 05.31

Spike emergence or heading GS55 06.21 06.30 06.28 06.30 06.24 06.27 06.23 06.29
Middle of grain filling GS75 07.13 07.22 07.12 07.21 07.09 07.19 07.13 07.21
Late grain filling GS85 07.27 08.12 07.26 08.09 07.23 08.08 07.26 08.09

GS—approximate growth stage based on the Zadoks growth scale [28]; LV—Latvia, EE—Estonia, LT—Lithuania;
NO—Norway.

The result was a series of average reflectance values of the field trial plots in each
of the five spectral bands (red, green, blue, red edge, near-infrared). Aerial images were
processed in PIX4Dmapper by Pix4D (Lausanne, Switzerland), photogrammetry software
for drone mapping. Processed orthophotos were georeferenced with an average root mean
square error (RMSE) of 3–5 cm. To maintain this precision and compatibility between
data series taken at different time periods, ground control points (GCPs) were set up and
measured and maintained throughout the entire vegetation season. Also, for each flight
mission, a multispectral photo of the MAPIR calibration panel was taken, which was used
to calibrate the results so that the results could be compared between locations and missions
under different lighting conditions. Spectral reflectance values were extracted from final
orthophoto mosaics and cropped to field boundaries. The QGIS zonal statistics tool was
used to extract mean reflectance values from the orthophoto images, which served as the
input for the calculation of NDVI values. The vectorized plot layer served as an AOI (area
of interest), containing rectangles for each of the trial plots. A vector layer was created
using a digitization technique using a georeferenced orthophoto image from the field where
plots were clearly visible after germination.

The NDVI was calculated in QGIS based on a combination of visible, red, and NIR
wavelengths with the following Equation (1):

NDVI = (RNIR − Rred)/(RNIR + Rred), (1)

where RNIR is the reflectance in the near-infrared band and Rred is the reflectance in the
red band.
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2.5. Data Statistical Analysis

The data for each of the 16 genotypes across 16 environments (4 locations, 2 years,
2 N rates) were initially studied using a descriptive analysis, including maximum and
minimum values, variance, standard deviation, and mean. All derived measurements were
calculated from the individual plot values.

For the split-plot trial design, a linear mixed-effects model ANOVA was applied. In
the first model, the two main factors, genotype and N rate, and their interaction were fixed,
while the field block was considered random. Calculations were carried out separately for
the data from the 8 environments (combination of location and year). The partitioning of
the percentage of factors was computed from the total sum of the square (TSS, %). In the
second model, three main factors, genotype, year, and N rate, and their interactions were
fixed, and the field block was random; calculations were carried out separately for the data
from each location. Mean comparisons between genotypes, trial years, and N rates were
performed using Fisher’s least significant difference (LSD) (p < 0.05).

A multivariate stability analysis was performed using the additive main effects and
multiplicative interaction model (AMMI), which combines an ANOVA for the genotype and
environment main effects with a principal component analysis of genotype–environment
interactions [29]. Each year–location combination was considered as an environment; there-
fore, eight environments were accounted for in the stability analysis of the 16 genotypes
under high N and low N rates.

A stability analysis was carried out using the WAASB index [30]. The index was
calculated as follows (2):

WAASBi = ∑p
k=1|IPCAik × EPk|/ ∑p

k=1 EPk , (2)

where WAASBi is the weighted average of absolute scores of the i-th genotype; IPCAik
is the score of the i-th genotype in the k-th IPCA (interaction principal component axis),
and EPk is the amount of the variance explained by k-th IPCA. The genotype with the
lowest WAASB score deviates least from the mean performance across environments and
is therefore considered as the most stable.

Pearson correlation analyses were conducted between GY, GPC, and NDVI values
at four plant growth stages in each of the 8 environments, separately for high and low
N rates. Linear regression models were employed to examine the relationships between
NDVI values at each plant growth stage (as independent variables) and GY and GPC (as
dependent variables). Adjusted determination coefficients (adj. R2), root mean squared
errors (RMSEs), and p-values were reported to characterize regression models.

Data results were visualized with MS Excel extension Real Statistics and R 4.2.3
statistical program [31] packages: lme4, datasets, agricolaeimetan.

3. Results
3.1. Variation in Meteorological Data

Overall meteorological conditions were markedly different between the trial years
of 2021 and 2022. However, in comparison to the 30-year long-term average (LTA) data
(1991–2020), there are both similar trends and differences between environments (Figure 1).
In 2021, April, May, and August experienced lower average daily air temperatures than
the LTA in all trial locations, but in June and July, temperatures exceeded the average
annual observations by 1.7 to 4.0 ◦C and 1.5 to 4.2 ◦C, respectively (Figure 1a). In April,
May, and June in all test locations, and in July in EE and LT, the amount of precipitation
was significantly reduced (Figure 1b). In the 2022 season, April and May were generally
relatively cool, but in June, the average daily air temperature in all trial locations exceeded
the LTA (Figure 1a). In June, the monthly rainfall was reduced in the trials in NO, EE, and
LV. Heavy rains occurred in LT in June, when 256% more precipitation compared to the
LTA was noted (Figure 1b).
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Figure 1. Meteorological parameters at the field trial locations (NO—Norway, EE—Estonia,
LV—Latvia, LT—Lithuania) and seasons (2021, 2022) compared to 30-year long-term average (LTA)
data (1991–2020): (a) deviation from the mean daily temperature from LTA; zero values on the y-axis
represent the LTA; (b) monthly rainfall as a percentage of the LTA; 100% on the y-axis represents
the LTA.

Overall, the growing season of 2022 was considered as a more favourable season for
wheat growth and productivity than the earlier one due to the lower average temperatures
and higher rainfall.

3.2. Variation in Traits by Location and Year

The results of an analysis of variance performed for GY and GPC data showed that in
all locations, the effect (sum of squares) of different years was highly significant (p < 0.001)
with the highest contribution to both traits’ variability (Table S2). Mean GY values varied
significantly by year in each location, where the lowest yielding trial location/year was EE
in 2021 (466.8 g m−2), and the highest yielding location/year was LV in 2022 (622.2 g m−2)
(Table 2). When comparing the two trial years, the average grain yield was significantly
higher in 2022 than in 2021 in three locations (NO, LV, LT), while in LT, it was the opposite.

Table 2. Mean values by years in the trial locations averaged over N fertilization rates for grain yield
(GY) and grain protein content (GPC).

Year
Location

NO EE LV LT

GY, g m−2

2021 477.5 ± 79.1 b 466.8 ± 51.9 b 490.0 ± 57.2 b 533.7 ± 70.7 a

2022 589.9 ± 94.6 a 619.3 ± 50.5 a 622.2 ± 75.7 a 478.7 ± 73.3 b

GPC, %

2021 11.7 ± 1.7 b 15.1 ± 1.1 a 15.6 ± 0.8 a 14.3 ± 0.9 a

2022 13.8 ± 1.4 a 12.5 ± 1.8 b 14.5 ± 1.2 b 10.9 ± 0.9 b

NO—Norway, EE—Estonia, LV—Latvia, LT—Lithuania; the values with different superscript letters in a row are
significantly different between years (p < 0.05).

Mean GPC values also varied substantially from one location and year to another. The
mean GPC values among four locations ranged from 11.7 to 15.6% in 2021 and from 10.9 to
14.5% in 2022, with the lowest value in LT in 2022 (10.9%), and the highest value in LV in
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2021 (15.6%). Differences were observed between locations in the GPC depending on the
trial year. In LV, EE, and LT, a significantly higher GPC was obtained in 2021, but not in
NO, where it was, on the contrary, 2.1% higher in 2022.

The UAV-derived NDVI obtained at four growth stages showed also significant varia-
tion among trial years (Table 3).

Table 3. Mean values by years in the trial locations averaged over N fertilization rates for the
UAV-derived NDVI at four wheat plant growth stages.

Year
Location

NO EE LV LT

GS25

2021 0.536 ± 0.05 a 0.637 ± 0.05 a 0.479 ± 0.03 a 0.544 ± 0.08 b

2022 0.466 ± 0.10 b 0.515 ± 0.09 b 0.408 ± 0.04 b 0.574 ± 0.06 a

GS55

2021 0.889 ± 0.03 0.903 ± 0.01 a 0.864 ± 0.02 b 0.870 ± 0.03 b

2022 0.882 ± 0.03 0.894 ± 0.02 b 0.905 ± 0.01 a 0.885 ± 0.02 a

GS75

2021 0.821 ± 0.04 b 0.791 ± 0.03 0.763 ± 0.05 b 0.755 ± 0.06 a

2022 0.837 ± 0.04 a 0.782 ± 0.07 0.803 ± 0.04 a 0.729 ± 0.06 b

GS85

2021 0.478 ± 0.09 b 0.445 ± 0.06 0.349 ± 0.04 b 0.350 ± 0.04 a

2022 0.577 ± 0.10 a 0.425 ± 0.08 0.366 ± 0.05 a 0.269 ± 0.03 b

NO—Norway, EE—Estonia, LV—Latvia, LT—Lithuania; the values with different superscript letters in a row
are significantly different between years (p < 0.05); GS25—tillering growth stage; GS55—heading growth stage;
GS75—milk growth stage; GS85—dough growth stage.

Overall, in all four growth stages, mean value differences varied significantly and
did not show consistent similar variations compared to data obtained between years. For
instance, in GS55, where comparatively the highest mean NDVI values were detected in
LV and LT, this trait was significantly higher in 2022, while in EE it was higher in 2021;
however, in NO, in both trial years, we obtained similar NDVI values.

3.3. The Impact of N Rate on Phenotypic Variation in Traits

As shown in Figure 2, the impact of a high N rate was pronounced for the GY at all
trial locations; significantly higher GYs in such conditions were obtained in EE, LV, and
NO (Figure 2a; Table S4). Opposite results were detected in LT, where in 2021, significantly
(p < 0.001) higher average GY values were obtained under low N conditions, but in 2022, N
treatment did not have a significant effect. In LV and NO, a higher N regime response to
GY variation was detected in 2021 compared to 2022.

A high N fertilization rate promoted the formation of significantly (p < 0.001) higher
GPCs at all locations (Figure 2b; Table S4).

The N rate showed a significant effect on the variation in NDVI values measured at the
tillering stage (GS25) only in three environments (EE_2021; NO_2021, LT_2022) (Table 4).
In all locations, the NDVI was evaluated during heading (GS55) and milk (GS75) growth
stages, and in most cases, significantly higher NDVI values were obtained under a high
N supply compared to those obtained in low N conditions. At all locations, the NDVI
variation was also significantly affected by the N fertilization regime in the late grain filling
stage (GS85), with significantly (except in EE_2022) higher values under high N application.
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Figure 2. Boxplot showing the phenotypic distribution of (a) grain yield (GY) and (b) grain protein
content (GPC) for 16 spring wheat genotypes grown in 16 environments. The black horizontal
line in each boxplot is the median, the lower and upper box edges are the first and third quartiles,
respectively, and the whiskers are the data minimum and maximum. The black circle in each plot is
the mean for that class. Outliers are shown as open circles; EE—Estonia, LV—Latvia, LT—Lithuania,
NO—Norway; 2021 and 2022—year of trials; N75—N rate with 75 kg N ha−1; N150—N rate with
150 kg N ha−1; a, b—significant differences (p < 0.05) between the mean values of two N rates within
each location and year are shown by different superscript letters.

Table 4. Mean values of UAV-derived NDVIs obtained at four growth stages from eight environments
(combination of locations and years) under low and high N application (N75, N150).

Environment
GS25 GS55 GS75 GS85

N75 N150 N75 N150 N75 N150 N75 N150

EE_2021 0.613 b 0.660 a 0.898 b 0.908 a 0.784 0.797 0.430 b 0.461 a

EE_2022 0.506 0.521 0.890 0.897 0.780 0.783 0.414 0.436

LV_2021 0.477 0.475 0.857 b 0.871 a 0.748 b 0.778 a 0.335 b 0.363 a

LV_2022 0.403 0.412 0.901 b 0.910 a 0.799 0.807 0.351 b 0.382 a

LT_2021 0.546 0.542 0.868 0.872 0.753 0.757 0.323 b 0.346 a

LT_2022 0.602 a 0.546 b 0.878 b 0.891 a 0.702 b 0.755 a 0.260 b 0.277 a

NO_2021 0.520 b 0.552 a 0.866 b 0.912 a 0.791 b 0.850 a 0.421 b 0.535 a

NO_2022 0.467 0.466 0.885 0.880 0.837 0.836 0.547 b 0.606 a

E—Estonia, LV—Latvia, LT—Lithuania, NO—Norway; NDVI—normalized difference vegetation index;
GS25—tillering growth stage; GS55—heading growth stage; GS75—milk growth stage; GS85—dough growth
stage. NDVI mean values followed by different letters within columns of each pair of two N rates
(N75—75 kg N ha−1, N150—150 kg N ha−1) are significantly different (p < 0.05).
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An analysis of variance confirmed that in all location–year environments, the genotype-
by-nitrogen (G × N) interaction was not significant for any of the investigated traits
(Table S4).

3.4. Mean Performance and Stability of Wheat Genotypes under Contrasting Environments

The mean performance of GY and GPC and their corresponding WAASB stability
indices and trait ranking values under high and low N rates for spring wheat genotypes are
presented in Table 5. Genotype effects were significant for investigated traits. Three spring
wheat genotypes were detected as high yielding under both low N (GY 547.4–564.1 g m−2)
and high N (GY 592.5–609.5) rates, confirming the lack of a significant G × N interaction
effect. Overall, for the GY, the ranking order of WAASB values for genotypes differed
between the N rates. Genotypes DS-655-7-DH and DS-720-3-DH had a below average GY
stability ranking via WAASB over all investigated environments. In turn, the top-yielding
DS-17-16-DH exhibited the best stability only under a low N rate. Genotype 990-2 on the
contrary ranked first via WAASB under N150, but only ranked thirteenth under N75. The
variety Betong showed comparatively good GY results and stability under both high and
low N rates. The other genotypes, characterized by a high stability ranking via WAASB
in both N rates, showed below-average yield levels. The genotype Zombi had the same
stability rank across both N rates.

Table 5. Grain yield (GY), grain protein content (GPC), and corresponding weighted average of
absolute scores (WAASB) stability index estimates and their ranking for genotypes in the trial
averaged over eight environments (combination of location and year) under low N and high N rates.

Genotype

GY WAASB_GY GPC WAASB_GPC

N75 N150 N75 N150 N75 N150 N75 N150

g m−2 R g m−2 R Value R Value R % R % R % R % R

DS-655-7-DH 564.1 1 592.5 3 2.7 11 3.54 12 12.7 7 14.3 7 0.39 12 0.33 10
DS-17-16-DH 558.1 2 609.5 1 1.13 1 2.63 9 12.0 15 13.6 15 0.20 2 0.35 12
DS-720-3-DH 547.4 3 607.7 2 4.23 16 2.83 10 13.0 5 14.5 4 0.22 6 0.20 5
DS-638-5-DH 539.9 4 575.6 6 3.28 12 4.18 16 11.7 16 13.2 16 0.39 13 0.59 15

Betong 538.6 5 570.9 7 1.73 4 2.02 6 12.7 9 14.2 11 0.22 5 0.28 7
013-01 538.4 6 581.7 4 4.22 15 3.79 15 12.3 14 13.7 14 0.42 15 0.61 16

013-032 528.7 7 580.6 5 2.34 10 1.43 4 12.5 12 14.2 12 0.42 14 0.34 11
Robijs 523.6 8 554.8 9 3.7 14 3.68 14 12.4 13 14.1 13 0.30 8 0.33 9

013-074 521.4 9 564.4 8 1.98 7 2.30 7 12.5 11 14.5 6 0.17 1 0.17 3
990-2 507.4 10 528.6 13 3.48 13 1.04 1 12.7 8 14.3 8 0.31 10 0.13 1
Hiie 505.9 11 511.5 15 1.20 2 3.20 11 12.6 10 14.2 10 0.21 3 0.14 2

Zombi 496.6 12 533.1 11 1.49 3 1.14 3 13.1 3 14.5 5 0.30 9 0.28 8
Caress 493.9 13 548.4 10 1.85 6 1.86 5 12.7 6 14.3 9 0.21 4 0.22 6
Voore 489.3 14 532.1 12 2.13 9 1.06 2 13.1 4 14.7 3 0.24 7 0.19 4

876 477.9 15 516.4 14 1.77 5 2.43 8 14.0 1 16.0 1 0.52 16 0.48 13
Runar 422.3 16 454.5 16 2.09 8 3.59 13 13.5 2 15.6 2 0.32 11 0.52 14

Mean 515.8 a × 553.9 b × 2.46 × 2.54 × 12.7 b × 14.4 a × 0.3 × 0.32 ×

LSD 29.03 × 34.2 × × × × × 0.26 × 0.38 × × × × ×
R—ranking order; mean values of GY and GPC followed by different letters within columns of two N rates (N75;
N150) are significantly different (p < 0.05); N75—75 kg N ha−1; N150—150 kg N ha−1; LSD—least significant
difference (α = 0.05).

GPCs among different genotypes varied from 11.7 to 14.0% under low N, and from
13.2 to 16.0% under high N. The results showed that genotypes 876 and Runar, with the
lowest yield in the investigated environments, exhibited the highest (first and second) GPCs
in both N rates. However, in both N rates, these genotypes exhibited some of the lowest
stability rankings via WAASB among the 16 tested genotypes. The top-yielding genotype
DS-17-16-DH exhibited one of the lowest GPCs under both N rates, where the ranking of
WAASB stability values between both N rates distinctly differed. Voore simultaneously
combined above average GPCs (13.1 and 14.7% under N75 and N150, respectively) and
showed a good stability ranking (fourth) under high N. Overall, the top ranking WAASB
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values for the GPC were detected for genotypes 013-074, 990-2, and Hiie (all grown under
high N) with the GPC approaching the trait average values.

Genotypes DS-17-16-DH, DS-655-7-DH, DS-720-3-DH, 013-01, and DS-638-5-DH were
high yielding over all investigated environments and were characterized comparatively by
the longest average growing period (DM 106.9–108.6 days) among the 16 tested genotypes
(Table 6). All high-yielding genotypes also obtained the highest NDVI values in GS75 and
GS85. High-yielding genotypes DS-17-16-DH and DS-638-5-DH were characterized with
comparatively short PHs, but for DS-655-7-DH and DS-720-3-DH, this trait was above
average. Wheat genotypes 876 and Runar were at the top of GPC rankings, and were
characterized by the comparatively tallest plants (fourth and first ranked, respectively),
fewer DM (102.8 and 103.1 days, respectively), and the lowest NDVI values in all growth
stages. Different patterns in terms of NDVI profiles between genotypes were observed. For
instance, for DS-655-7-DH, comparatively high values of the NDVI were detected in all
investigated growth stages, but for high-protein cultivar Runnar, the highest NDVI values
were only observed in GS25 (Table 6).

Table 6. Mean values of plant height (PH), days to maturity (DM), and NDVIs at four growth stages
and their ranking for genotypes averaged over 16 environments (combination of locations × years ×
N rates).

Genotype * PH, cm R DM, Days R
NDVI

GS25 R GS55 R GS75 R GS85 R

DS-17-16-DH 86.3 12 106.9 5 0.512 11 0.886 8 0.809 5 0.427 5
DS-655-7-DH 91.4 5 107.8 4 0.533 3 0.896 4 0.823 3 0.433 4
DS-720-3-DH 90.1 7 108.6 2 0.526 6 0.897 3 0.822 4 0.449 3

013-01 88.5 8 108.4 3 0.493 15 0.904 2 0.837 1 0.491 2
DS-638-5-DH 85.5 14 111.0 1 0.504 13 0.910 1 0.833 2 0.511 1

Betong 86.1 13 104.9 10 0.518 8 0.877 12 0.770 11 0.379 10
013-032 86.4 11 106.6 6 0.505 12 0.891 6 0.805 6 0.405 8
013-074 88.2 9 104.8 11 0.523 7 0.882 10 0.767 12 0.371 12
Robijs 94.0 3 106.1 8 0.570 1 0.894 5 0.795 7 0.410 6
Caress 80.4 15 105.4 9 0.499 14 0.883 9 0.780 9 0.382 9
990-2 91.1 6 106.2 7 0.472 16 0.876 14 0.780 8 0.407 7

Zombi 76.9 16 104.7 12 0.526 5 0.889 7 0.775 10 0.369 13
Voore 87.5 10 104.1 14 0.515 10 0.876 13 0.754 14 0.376 11
Hiie 95.5 2 104.5 13 0.532 4 0.879 11 0.758 13 0.360 14
876 93.0 4 102.8 16 0.516 9 0.871 15 0.738 15 0.357 16

Runar 97.7 1 103.1 15 0.568 2 0.870 16 0.716 16 0.360 15

LSD 1.81 × 0.48 × 0.031 × 0.001 × 0.019 × 0.020 ×

Mean 88.7 × 106.0 × 0.519 × 0.886 × 0.785 × 0.405 ×
* Genotypes are ranked based on GYs over 16 environments (combination of year× location×N rates); PH—plant
height; DM—days to maturity; R—ranking order; N75—75 kg N ha−1; N150—150 kg N ha−1; GS25—tillering
growth stage; GS55—heading growth stage; GS75—milk growth stage; GS85—dough growth stages; LSD—least
significant difference (α = 0.05).

3.5. Correlations between NDVI and GY, GPC

As the above-described results obtained in the trial locations demonstrated the sig-
nificant effect of year and N rate on the variation in the GY and GPC, relationships with
the NDVI were therefore analysed separately in each of the 16 environments. Correlation
analyses generally indicated a strong positive relationship between the NDVI and GY at the
N75 rate, which differed between environments and plant development stages (Figure 3a).
The strongest and most consistent correlations were found in LT and NO in 2022, which
were statistically significant at all developmental stages (p < 0.05), except for LT at GS85. In
almost all environments, the strongest correlations were found at GS75; all of them, apart
from EE in 2022, were significant (p < 0.01). Correlations from 2021 were more similar
between environments compared to 2022.
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Figure 3. Correlation coefficients (r) between the NDVI and grain yield across 16 spring wheat
genotypes grown under two N rates: (a) 75 kg N ha−1, (b) N150—150 kg N ha−1 in eight envi-
ronments; EE—Estonia, LV—Latvia, LT—Lithuania, NO—Norway; NDVI—normalized difference
vegetation index; GS25—tillering growth stage; GS55—heading growth stage; GS75—milk growth
stage; GS85—dough growth stage; *** p < 0.001; ** p < 0.01; * p < 0.05.

At the N150 fertilization rate, the overall strength of correlations between the NDVI
and grain yield (GY) was similar to that at N75. Coefficients were the highest (r > 0.75)
for NO in 2022 and LT in 2021 (GS55). For most environments and growth stages, the
correlation between the NDVI and grain yield was positive, except for LV (GS25), where
there was a significant (p < 0.05) negative correlation (Figure 3b). Overall, at GS25, correla-
tive relationships between the GY and NDVI remained lower compared to the respective
results of later growth stages, with the notable exception of EE in 2021, where GS25 had the
strongest significant correlation (p < 0.01).

For the GPC, correlations with NDVI were notably weaker and mostly negative
compared to the GY, or remained non-significant (Figure 4a). At N75, strong negative
correlations (r > −0.5) were found for GS25 (in NO in 2022, EE in 2021, and LV 2021). All
the significant correlations at N75 between the GPC and NDVI remained negative. GS75
was also the stage with the strongest overall correlations compared to other development
stages. However, in most environments, at GS25 and GS55, correlations between NDVI
and GPC were non-significant.

At N150, the correlation coefficients between GPC and NDVI were mostly negative
or non-significant (Figure 4b). A notable exception to this was in NO (in 2021 and 2022),
where significant negative correlations (r < −0.25) were found at GS55, GS75, and GS85.
Similarly, in EE in 2021 and 2022, the negative correlation was rather strong (r < −0.5)
for GS55 and for GS75 and GS85. In LT in 2022, the positive correlation was significant
(p > 0.05) at GS25—the only significant one for the GPC and NDVI at N150.
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Figure 4. Correlation coefficients (r) between the NDVI and grain protein content across 16 spring
wheat genotypes grown under two N rates: (a) 75 kg N ha−1, (b) N150—150 kg N ha−1 in eight envi-
ronments. EE—Estonia, LV—Latvia, LT—Lithuania, NO—Norway; NDVI—normalized difference
vegetation index; GS25—tillering growth stage; GS55—heading growth stage; GS75—milk growth
stage; GS85—dough growth stage; *** p < 0.001; ** p < 0.01; * p < 0.05.

3.6. Linear Relationships between NDVI and GY, GPC

A linear regression analysis showed that the most significant relationships between
GY and NDVI values were found at the milk growth stage (GS75) and heading growth
stage (GS55) (Table 7). Conversely, the dough growth stage (GS85) only had two significant
relationships. Specific environments stood out; for instance, NO trials at GS85 were highly
significant (p < 0.001) for both years and at both N rates. Lithuania for 2022 showed the
highest R2 at GS75 and at N75 (0.82, p < 0.001) and an exceptionally low RMSE value (29.96).
Overall, NO trials in 2022 showed the most consistent and significant relationships with
the GY for both years and N rates.

Differences in significance between the two N rates were also present; for the GY, trials
with N150 showed more significant relationships compared to N75 (23 and 17, respectively,
from a total of 32 measured relationships in Table 7). This was especially clear at GS25 and
GS85. RMSE values for N75 were on average half of those for N150. Additionally, in EE
trials, the GY at GS75 was non-significant at N75 but highly significant at N150 for both
years (adj. R2 = 0.40 and 0.42). In LT trials, the GY was highly significant for both GS55 and
GS75 in both years.

The GPC showed fewer significant relationships with NDVI values compared to GY.
Similarly, as for the GY, most environments showed significant relationships at GS75 and
GS85, with N150 having a slightly higher number of these. In contrast to GY, differences in
RMSE values for the GPC were on average similar between N75 and N150. For all tested
environments, the NO trial in 2022 showed the most consistent and significant relationships
with the GPC at GS75 and GS85 (adj. R2 = 0.23–0.55).
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Table 7. Values of RMSE, adjusted R2, and corresponding significance of linear regression analyses in
multi-environment trials for the relationships between grain yield (GY) and grain protein content
(GPC) as dependent variables and the NDVI as the independent variable.

Environment
Grain Yield (GY) Grain Protein Content (GPC)

RMSE adj. R2 RMSE adj. R2

N75 N150 N75 N150 N75 N150 N75 N150

GS25

EE_2021 35.09 46.49 0.26 ** 0.16 * 0.65 0.72 −0.03 0.01
EE_2022 32.00 31.62 −0.03 −0.03 0.56 0.71 −0.03 −0.01
LV_2021 52.16 50.52 0.01 −0.03 0.51 0.73 0.00 0.02
LV_2022 79.26 61.47 −0.01 0.14 * 0.93 0.93 0.09 0.07
LT_2021 57.96 50.18 0.10 * 0.49 *** 0.69 0.7 −0.01 −0.02
LT_2022 70.02 71.97 0.04 −0.03 0.63 0.58 0.05 0.16 *
NO_2021 46.24 66.82 0.00 0.00 0.93 1.48 −0.01 0.08
NO_2022 70.96 91.32 0.11 * 0.23 ** 1.23 1.18 0.12 * −0.02

GS55

EE_2021 38.68 43.98 0.1 * 0.25 ** 0.57 0.65 0.21 ** 0.18 **
EE_2022 31.81 24.68 −0.02 0.37 *** 0.53 0.65 0.06 0.15 *
LV_2021 47.66 43.2 0.17 * 0.25 ** 0.5 0.74 0.04 −0.02
LV_2022 76.99 66.32 0.04 0.00 0.97 0.91 0.01 0.11 *
LT_2021 45.60 42.24 0.44 *** 0.64 *** 0.7 0.64 −0.03 0.13 *
LT_2022 41.58 67.02 0.66 *** 0.10 * 0.65 0.63 −0.01 0 ns
NO_2021 42.29 49.90 0.16 * 0.44 *** 0.94 1.25 −0.03 0.34 ***
NO_2022 52.59 66.73 0.51 *** 0.59 *** 1.02 1.12 0.39 *** 0.08

GS75

EE_2021 39.68 39.40 0.05 0.4 *** 0.53 0.54 0.32 *** 0.44 ***
EE_2022 32.00 23.56 −0.03 0.43 *** 0.55 0.66 0.00 0.12 *
LV_2021 43.17 36.41 0.32 *** 0.47 *** 0.44 0.69 0.26 ** 0.11 *
LV_2022 70.83 61.00 0.19 ** 0.16 * 0.96 0.76 0.02 0.37 ***
LT_2021 44.18 47.45 0.47 *** 0.54 *** 0.69 0.65 0.00 0.12 *
LT_2022 29.96 53.13 0.82 *** 0.44 *** 0.66 0.63 −0.03 −0.01
NO_2021 39.62 66.75 0.27 ** 0.00 0.93 1.56 −0.01 −0.03
NO_2022 36.08 53.46 0.77 *** 0.74 *** 0.88 1.02 0.55 *** 0.23 **

GS85

EE_2021 41.24 51.58 −0.03 −0.03 0.6 0.72 0.11 * 0.01
EE_2022 31.93 27.36 −0.03 0.23 ** 0.54 0.67 0.02 0.1 *
LV_2021 52.28 39.91 0.00 0.36 *** 0.49 0.71 0.09 * 0.07
LV_2022 79.74 64.50 −0.03 0.06 0.99 0.96 −0.03 −0.01
LT_2021 60.01 62.53 0.03 0.2 ** 0.7 0.67 −0.03 0.07
LT_2022 68.10 71.68 0.09 −0.02 0.66 0.6 −0.03 0.1 *
NO_2021 33.68 46.16 0.47 *** 0.52 *** 0.87 1.22 0.13 * 0.37 ***
NO_2022 52.13 83.35 0.52 *** 0.36 *** 0.99 0.86 0.42 *** 0.45 ***

Environments: four locations—Estonia (EE), Latvia (LV), Lithuania (LT), Norway (NO); two years—2021 and
2022; two N rates—75 kg N ha−1, N150—150 kg N ha−1 across four crop growth stages: GS25—tillering growth
stage; GS55—heading growth stage; GS75—milk growth stage; GS85—dough growth stages. RMSE—root mean
square error; * p < 0.05; ** p < 0.01; *** p < 0.001.

4. Discussion

Given that the price of common wheat is determined by the GPC in most wheat
markets, including the Nordic–Baltic region, this study focused on the GY and GPC as
the most critical economic traits. This comprehensive multifactorial study of spring wheat
genotypes, incorporating remote phenotyping data, marks a pioneering effort under the
conditions of the Nordic–Baltic region, supplying practical knowledge for breeders.
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4.1. Variations in Meteorological Conditions across Trial Years and Locations Resulted in
Differences in the GY and GPC

The impacts of climatic variability have been observed in the last few decades, where
drought stress is a major factor that affects the wheat GY and GPC, increasing the variability
in these traits under Baltic region conditions [7]. A meta-analysis based on wheat data
showed that drought significantly decreased GYs and increased GPCs [32]. In our study,
drought conditions were recorded in 2021, but to a different degree, in different growing
periods, and for varying durations across the four locations, resulting in substantial GY and
GPC variation. In 2021, when higher average daily temperatures and lower precipitation
were seen, a significantly lower GY was obtained in three out of the four trial locations
(EE, LV, and NO). Considering that the complete amount of N fertilizer was applied before
sowing, the heavy rainfall experienced in LT in June of 2022 caused leaching of N from the
upper soil layer, which is likely the main reason for both the lower GY and GPC in this
location. Elevated temperatures during grain filling can result in high protein percentages
because these conditions tend to reduce starch synthesis more than protein synthesis [33].
In 2021, temperature and moisture conditions were more favourable for the formation of a
higher mean GPC compared to 2022 in EE, LV, and LT, but in NO, the mean value of the
GPC did not exceed 12% because of comparatively lower mean daily temperatures in June
and July in this location.

In our study, the estimated field traits were significantly affected by N fertilization
rates in almost all locations, with some exceptions, which can also be explained by differ-
ences in meteorological conditions between locations. It is generally acknowledged that an
appropriate increase in nitrogen supply improves plants’ yields, grain quality, and resis-
tance to abiotic stresses [34]. Recently, several attempts have been made to compare plants’
yield penalties due to drought and heat stresses under low and high nitrogen supplies in the
field conditions for wheat. Giménez et al. (2021) [35] proved that an increased temperature
overnight resulted in an increased tiller mortality only under a high nitrogen supply. A
recent study showed that a high nitrogen supply mitigated the adverse effects of drought
and heat stresses when they were applied separately. However, when the two stresses were
combined, wheat growth and grain yield were negatively affected by a high N supply [36].
In 2021, comparatively worse drought conditions were present in EE and LT; however,
the timing of water shortages was different in these locations. In EE, plants experienced
drought in June, while the water deficit was mostly in July in LT. In EE, the average yield
was significantly higher under a high nitrogen supply, while it was significantly higher
under a low nitrogen supply in LT in 2021. The obtained results of yield reductions under a
high N rate imply that a high nitrogen supply under a water deficit together with unusually
high temperatures at anthesis and during grain filling might cause higher plant sensitivity
to drought stress. Considering that drought and high temperatures are becoming more
frequent due to global warming, the rates of N fertilization might need to be revised to
avoid not only pollution of the environment, but also yield penalties.

In this study, the UAV-derived NDVI obtained at four growth stages also showed sig-
nificant variation between trial years, although there was no marked consistency between
locations due to the aforementioned differences in meteorological variables. The NDVI, as
a basic measure of plant vitality and vegetation density, can be influenced by plant growth
stages, vegetation cover percentages, plant health and stress, weather conditions, and crop
management [37]. In a study by Thapa et al. (2019) [38] in winter wheat, it was detected that
as the water stress increased, NDVI values across seasons decreased. Our results showed
that the NDVI exhibited a significant difference between N treatments consistently in all
locations during GS55, GS75, and GS85, with higher values found under high N compared
with low N conditions, although in the study of Yousfi et al. (2019) [39], the NDVI did not
show significant differences under contrasting N conditions (N0 and N160).
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4.2. Spring Wheat Genotypes Grown under Contrasting N Rates Differed in Stability and
Exhibited Different Patterns in NDVI Profiles during Seasons

Genotypes and their genetic characteristics are also key factors that affect the variation
in traits in spring wheat. Our results showed that genotype effects were highly significant
(p < 0.001) for all traits, showing the presence of wide genetic variation among the geno-
types. This is explainable, as the set of 16 genotypes included in this study consisted of
both older and newly registered spring wheat genotypes (Table S1), which also differed
significantly in terms of PH and the length of the DM (Table 6). Higher input prices and en-
vironmental concerns are now also focused on common wheat breeding programs towards
low-input agricultural practices, and, more particularly, low N input management [40]. In
our research, we were also interested in determining the significant genotype-by-nitrogen
(G × N) interaction variability for the studied traits, which would indicate wheat tolerance
to N constraints. An analysis of variance showed that in our study, the G × N interac-
tion was not significant for any of the investigated traits (Table S4). Other studies have
found both significant [25] and non-significant [41] effects of this interaction factor on GY
variability. Hitz et al. (2017) [25] indicated that to select for high yield potential (or NUE),
breeding material must be evaluated under both low and high N conditions. A high yield
potential only under low N conditions will not be enough to ensure success, since the
ability to respond to high rates of N is also important to achieve wide cultivation of a
genotype. The three top-yielding spring wheat genotypes DS-655-7-DH, DS-17-16-DH, and
DS-720-3-DH (all originated from LT) have been characterized by breeders as high-yielding
breeding lines, which was also confirmed in our study, as these genotypes showed the best
results under both low and high N rates. The results also showed that the grain yield is
strongly associated with the DM; a longer vegetation period comes with a higher GY. In
turn, early-maturing genotypes Voore, 876 (both from EE) and Runar (NO) provided the
lowest yield, but at the same time exhibited a higher GPC under both N rates. The focus on
more yield-stable genotypes will prevent N losses in unfavourable years [42]. We found
signs that a genotype that is stable with respect to variation in one influencing factor will
not always be relatively stable in response to variation in a different influencing factor,
as also shown by Weiner at al. (2021) [43]. We determined genotype performance and
stability under different N rates in eight environments by using the WAASB stability index,
which is based on the AMMI model [30]. Only a limited amount of published research was
found on yield stability investigations under different N rates for wheat [44]. We found that
genotypes had different yield stabilities depending on the N rate. DS-17-16-DH was the
most stable for GY only under low N, but genotype 990-2 in contrast has the best WAASB
stability results under high N. The genotypes Zombi, with a below average GY, and 013-074,
with a below average GPC, has a high WAASB stability ranking across both rates of N.

An analysis of variance showed that a comparatively high magnitude of the genotype
as a factor effect for the NDVI was seen in the milk (GS75) and dough (GS85) development
stages, except in EE in 2022 (Table S4). We recognized that all identified high-yielding
genotypes were characterized by the highest NDVI values in GS75 and GS85 (Table 6).
During earlier stages of plant development (GS25; GS55), the characteristics of those geno-
types showed different patterns in terms of NDVI profiles. For instance, for top-yielding
DS-655-7-DH, comparatively high values of the NDVI were detected in all investigated
growth stages, while the old, early-maturing, high-protein cultivar Runar showed one of
the highest NDVI values only in GS25.

4.3. Correlations and Linear Relationships between the GY, GPC, and UAV-Derived NDVI
Highlight Key Crop Growth Stages

We used the UAV-derived NDVI as the main vegetation index, since it has been
widely used in vegetation assessments in general and wheat phenotyping in particular [19].
Our preliminary checks showed that the use of red edge indices (in this case, NDRE)
strongly correlates with the NDVI. The correlation between NDRE and yield is weak, not
significantly better. A study of rapid wheat phenotyping using the NDVI in China showed
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that it had more consistent correlations with grain yield compared to other indices like
NDRE and NGRDI [45]. Wheat trials in Australia found that UAV-derived NDVI values
were strongly correlated with the hand-held GreenSeeker sensor (R2 = 0.85) [46], which can
be considered as a baseline for such measurements.

Analysing the relationships between NDVI and grain yield (GY) data in each of the
16 environments, we found the strongest correlations between the NDVI and GY at GS75
(r = 0.74, p < 0.01), which shows that this period can be used for the exploration of the
predictive power of the NDVI by linear models. By using a split-plot design, Sultana et al.
(2014) [47] found that the NDVI had the strongest correlations (R2 > 0.9) with GY in booting,
grain filling, and maturity stages.

UAV data collected at the heading stage were superior for predicting GPCs, while the
GY was more accurately predicted during the grain filling stage [48]. A study in Idaho,
USA [49], reported similar findings, with strong linear relationships between GY and NDVI
values in the middle phase of plant development (R2 = 0.78). Yousfi et al. (2016) [50]
showed correlation coefficients between GY and NDVI ranging from 0.36 to 0.74.

Another main response variable—the grain protein content (GPC)—expressed a nega-
tive relationship with the NDVI, which is typical and has been reported in several stud-
ies [51,52]. GPC prediction is less straightforward compared to GY prediction, often
requiring machine learning methods and ensembles of predictors [53,54]. Li-Hong et al.
(2007) [55] concluded that using a single measurement of spectral reflectance was not
enough to predict GPCs reliably in wheat. A study in China [54] found that in GPC predic-
tion from UAV-derived NDVIs using machine learning methods, the RMSE did not exceed
0.74. Our study also found a weaker relationship between the NDVI and GPC compared to
GY. Research has found that the weak relationship between the NDVI and GPC makes it a
suboptimal index for protein content prediction in wheat [56].

A study using correlation analyses for wheat trials with high-resolution NDVI data
for yield found average to strong correlations (r = 0.60–0.81) and was able to distinguish
between various rates of fertilization [27]. Here, we showed that N fertilization rates did
not significantly affect the strength of correlations between the NDVI and GPC, since the
highest r values were found at the same locations and growth stages for both N75 and N150.

Differences in correlations between environments were quite pronounced for all yield
parameters. Two locations, NO and EE, stood out, especially for significant correlations be-
tween the NDVI and GY in GS25 and GS85, absent in other environments. Such differences
in early and late stages of crop development could be explained by variations in biophysical
parameters of the environments in these trials. Sánchez et al. (2023) [57] mention that NDVI
values are influenced by soil type and moisture as well as local meteorological conditions,
which are impossible to control in field trials.

Our study proved that UAV-derived NDVI data, combined with field-collected agro-
nomic data, may be successfully employed for multi-environmental trials of wheat phe-
notyping. One of our main findings is that NDVI values at GS55 and GS75 were the
most significant linear predictors for spring wheat GYs. Other studies [58,59] reported
the highest R2 values for linear relationships between the wheat NDVI and GY at these
stages. However, it is important to note that uncertainties arise from differences in growing
conditions during crop development stages. In our study, GY showed more significant
relationships compared to GPC. This is also visible in many studies which use GY as the
main response variable, see [60].

In our trials, a higher N application rate (N150) exhibited slightly more significant
linear relationships compared to N75, although this was not clear from a correlation
analysis. This effect was expected since the N fertilization rate is known to influence
NDVI values [24,61]; however, the influence on R2 values between environments was
quite modest.

A single growing season with a major meteorological influence, for example, sig-
nificant drought stress, can alter expected NDVI values. Thapa et al. (2019) [38] report
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that drought stress at the later stages of wheat development reduced the strength of the
relationship between the NDVI and GY.

5. Conclusions

Overall, our study reveals the intersection of climate issues and agricultural devel-
opment in the Nordic and Baltic region. Unusual temperatures and water deficits during
critical stages of plant development emphasize significant meteorological differences be-
tween years and locations. The study shows a clear link between these deviations and
their effects on nitrogen uptake, causing substantial phenotypic changes and altering trait
relationships in different environments. Our findings supply important insights into the
development of resilient crops under changing environmental conditions.

In brief, our research found high-yielding spring wheat genotypes that performed
well under both high and low nitrogen rates. Genotypes with early maturity exhibited
higher grain protein contents. This study revealed that variations in grain yield stability
among different genotypes depend on nitrogen rates.

This study underscores substantial enhancements in wheat phenotyping research
through UAV-derived data, particularly in a multi-environment pilot project. A key finding
is the importance of the role of NDVI analysis at GS55 and GS75, serving as a significant
linear predictor, particularly for spring wheat grain yields. However, it is crucial to note
that the impact of these indices varies across different growing conditions at various
locations, limiting their universal applicability. To perfect their effectiveness, a nuanced
understanding of the intricate relationships between NDVI values and local growing
conditions is essential. Further research and optimization of these indicators for specific
environments are necessary.
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Results of a two-way ANOVA for GY, GPC, and NDVI at different growth stages.
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