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Abstract: Cotton (Gossypium hirsutum L.) is one of the main crops in Uzbekistan, which makes
a major contribution to the country’s economy. The cotton industry has played a pivotal role
in the economic landscape of Uzbekistan for decades, generating employment opportunities and
supporting the livelihoods of countless individuals across the country. Therefore, having precise and
up-to-date data on cotton cultivation areas is crucial for overseeing and effectively managing cotton
fields. Nonetheless, there is currently no extensive, high-resolution approach that is appropriate
for mapping cotton fields on a large scale, and it is necessary to address the issues related to the
absence of ground-truth data, inadequate resolution, and timeliness. In this study, we introduced an
effective approach for automatically mapping cotton fields on a large scale. A crop-type mapping
method based on phenology was conducted to map cotton fields across the country. This research
affirms the significance of phenological metrics in enhancing the mapping of cotton fields during the
growing season in Uzbekistan. We used an adaptive feature-fusion network for crop classification
using single-temporal Sentinel-2 images and automatically generated samples. The map achieved an
overall accuracy (OA) of 0.947 and a kappa coefficient (KC) of 0.795. This model can be integrated
with additional datasets to predict yield based on the identified crop type, thereby enhancing decision-
making processes related to supply chain logistics and seasonal production forecasts. The early boll
opening stage, occurring approximately a little more than a month before harvest, yielded the most
precise identification of cotton fields.

Keywords: cotton mapping; crop classification; deep learning; agricultural remote sensing;
feature-fusion network

1. Introduction

Cotton plays a major role in the economy of Uzbekistan; it has been the country’s
most-produced crop since 1980 [1]. Historically, cotton has been the predominant crop in
Uzbekistan, accounting for 70 percent of the irrigated land under cultivation and providing
more than two-thirds of the total production of cotton in the former Soviet Union [2].
According to statistical data from 2022, Uzbekistan was in eighth place among all cotton-
producing countries in the world. It produced 740 thousand metric tons, accounting for
2% of the world’s total production (https://www.statista.com/statistics/263055/cotton-
production-worldwide-by-top-countries/, accessed on 30 November 2023).

Agriculture contributes significantly to the global economy, nutritional security, and
ecological health. It provides humans with grains, non-staple foods, and industrial base
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materials. Cotton is one of the most economically significant fiber crops in the world, with
79% of the world’s natural fiber originating from it and one of the world’s largest textile
industries generating at least USD 600 billion annually [3,4]. As one of Uzbekistan’s most
important cash crops, variations in the planting area and yield of cotton will influence
Uzbekistan’s cotton-related agricultural development decisions. Sustainable monitoring
and administration of cotton’s economics require timely and accurate field mapping [5].
Timely and precise identification of crop types and planted areas is important for several
applications, such as disaster early warning and assessing crop adaptability. It helps
monitor crop conditions and yields from above, which can support and complement
traditional ground-based agricultural statistics and surveys [6].

Employing phenological metrics derived from temporal image series is a vital ap-
proach in advancing agricultural mapping techniques [7]. Most crops possess life cycles
with particular durations and timings, generating distinct signals for each crop type within
a region. In recent years, a notable amount of research used phenology as a primary
metric [8–10]. For instance, Hugo et al. employed land surface phenological metrics de-
rived from dense satellite image time series to classify agricultural land in the Cerrado
biome, Brazil [11]. Zhuokun et al. utilized normalized difference vegetation index (NDVI)
time-series data from HJ-1 A/B Charge-Coupled Device (CCD) for cropland area applica-
tions [12]. However, there is a notable lack of research on phenology-based agricultural
mapping in Central Asian countries, in Uzbekistan in particular. This region has great
potential for using phenological metrics to transform the monitoring and management
of crops. The unique agricultural practices and environments here are not well studied.
Filling this research gap could enable major improvements in agricultural sustainability
across the region.

Traditional cotton area monitoring approaches, like field surveys and statistical sam-
pling, offer superior accuracy at small sizes. When applied to regional sizes, however, these
are often time-consuming and labor-intensive [13,14]. Remote sensing (RS), on the other
hand, does not have these disadvantages. It has been widely used for the identification
of crop types in many agricultural applications. A huge number of methods have already
proved to be effective for crop disease monitoring, weed identification and classification,
yield prediction [15], crop area estimation [16], and crop water requirement estimations [17].
RS provides the most effective tool for crop monitoring, all through its spatial coverage,
high temporal resolution, and relatively low observation costs [18]. RS data are being
acquired through diverse platforms, ranging from handheld devices to airborne sensors
on aircraft and extensive spaceborne instruments. Crop monitoring has become a signif-
icant field in RS-based earth observation [19]. The spatial distribution of crops has been
extensively observed using optical data.

MODIS, Landsat, Sentinel-1, and Sentinel-2 are, indeed, among the satellites frequently
utilized for mapping croplands [20,21]. Each of these satellites and sensors brings specific
capabilities, allowing for comprehensive and accurate cropland monitoring and assess-
ment [22]. As part of the European Copernicus program, the Sentinel-2A and Sentinel-2B
satellites were launched to acquire multispectral imagery [23]. These satellites are capable
of revisiting a given location every five days, collecting data across multiple regions of
the electromagnetic spectrum with spatial resolutions ranging from 10 to 20 m in visible,
NIR, red edge, and short-wave infrared (SWIR). Since the second launch, Sentinel-2 has
provided higher temporal resolution, with a 5-day global revisit frequency and up to 2-day
revisit in the top northern and southern parts of the globe [24].

The advantage of Sentinel-2 multi-temporal data for crop-type classification is very
relevant as it reaches high overall accuracies in various crop classifications, while single-
date images show limited results [25]. Sentinel-2 images have been proved to be effective
for high-resolution crop mapping on a large scale [26]. For instance, Hu et al. proposed
a new framework for mapping cotton fields based on Sentinel-1/2 using random forest
(RF) classifiers and multi-scale image segmentation for mapping cotton fields in Northern
Xinjiang [27]. Their network achieved 0.932 overall accuracy (OA). MODIS has also been
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widely employed in various research endeavors. For example, Chen et al. developed a
new approach to identify soy, cotton, and maize, and they mapped an area of 90,000 km2 in
Mato Grosso, the third-largest state in Brazil, using MODIS [28]. Recently, Goldberg et al.
developed a method for deriving crop maps from Sentinel-2 in Israel [29]. Smaller areas are
the focus of RS scientists too. For example, there are lists of studies that were accomplished
using Sentinel-2 in Mali, Greece, and Poland in much smaller regions [30–32].

In recent years, machine learning (ML) and deep learning (DL) approaches have been
widely implemented in earth sciences, particularly for land cover classification and object
identification [33,34]. DL has demonstrated its efficiency in processing various types of RS
imagery, including optical (hyperspectral and multispectral) and radar images [35]. For
instance, Song et al. evaluated the capability of 10 m resolution Sentinel-2A satellite imagery
for detecting cotton root rot. It then proceeded to compare this detection approach with
airborne multispectral imagery, utilizing unsupervised classification techniques at both the
field and regional levels [36]. Another study by Feng et al. created an innovative image-
processing methodology capable of handling Unmanned Aerial Vehicle (UAV) images with
almost real-time efficiency [37]. They used a pre-trained DL model, specifically ResNet-
18 [38], to estimate both the stand count and canopy size of cotton seedlings within each
image frame. The results demonstrated that the devised approach accurately estimated the
stand count, with R2 = 0.95. The existing studies on monitoring crops, particularly cotton,
in Central Asia face several challenges. These include issues related to data availability
and quality, limited temporal and spectral resolution, difficulties in tracking land cover
changes, and the need for better integration of multiple data sources. A lack of ‘ground
truth’ data is one of the main challenges in the field of RS. Moreover, the availability of
ground truth data at a scale sufficient for comprehensive mapping endeavors, especially
over large and diverse regions, can be a logistical challenge [39,40]. Traditional mapping
methods that rely on gathering training samples through field surveys are labor-intensive,
making it difficult to conduct large-scale mapping of cotton. Therefore, it is imperative to
develop methods that enable automated execution of this task. Additionally, considering
the impact of climate change on agriculture and promoting cross-border collaboration are
crucial aspects that need attention. Addressing these challenges is essential for improving
the accuracy of crop monitoring and informing more effective agricultural management.

The main objectives of this study were as follows:

(a) Propose a method for automatically generating cotton samples in the research area.
(b) Clarify the most suitable phase for mapping cotton fields by comparing the accuracy

of cotton field maps extracted from RS data across various crop growth phases.
(c) Generate an accurate cotton map at a resolution of 10 m for Uzbekistan using Sentinel-

2 imagery and the DL model.
(d) Compare selective patch TabNet (SPTNet) with RF in large-scale cotton mapping.

All models were tested using the cross-validation technique where we tested the ability
of the model to map cotton fields that have never been used.

2. Materials and Methods
2.1. Study Area

This study selected Uzbekistan to carry out experiments. Uzbekistan (41◦22′52.20′′ N
and 64◦34′24.89′′ E) is located in Central Asia, bordered by Kazakhstan in the west and
north, Afghanistan and Turkmenistan in the south, and Kyrgyzstan and Tajikistan in the
east, as shown in Figure 1. Uzbekistan has a sharply continental-type climate with hot
dry summers, unstable weather in winter, and wide fluctuations in seasonal and daily
temperatures. The total area of Uzbekistan is 448,000 km2. About 45,000 km2 of land is
suitable for cultivation, of which 40,000 km2 is irrigated land. Agriculture and especially
cotton play an important role in Uzbekistan.
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Figure 1. The geographical location of the study area created using ArcMap software 10.8 (Envi-
ronmental Systems Research Institute, Inc., California, United States of America): (a) map of the
Uzbekistan highlighting each region of the country; (b) location of the study area in Central Asia;
(c) digital elevation map (DEM) of the study area.

The total area of cotton in the country according to 2018 data is 10,830 km2 of land [41].
Cotton plantations are concentrated around Lake Aydar, which is located in central part
of the country (near Bukhara), in Tashkent (North-East), along the Syr-Darya and Amu
Darya (East) in the border region with Turkmenistan. The Fergana Valley is the most
notable instance of large-scale irrigation systems in Central Asia. The main crop types in
Uzbekistan are winter and summer cotton, wheat, corn, and rice. For instance, in 2017,
more than 82.2% of planting fields were planted with cotton and wheat.

Sowing, seedling, squaring, flowering, boll development, and boll opening are the
stages of cotton growth [42]. In this region, cotton is generally sown in late April and
harvested in early September, after undergoing two main stages of vegetative and repro-
ductive growth. Pictures of cotton at differing growth are shown in Figure 2, collected from
the internet.
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Figure 2. Photographs of cotton at different growth stages.

2.2. Data and Processing
2.2.1. Remote Sensing Data

A time series of Sentinel-2 L2A satellite images from May to September 2018 was
acquired from the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/,
accessed on 30 November 2023). Cloud percentage was confined to less than 10%. The
image processing steps consisted of the following:

1. Pan Sharpening to 10 m: This process improves the resolution of Sentinel-2’s 20 m
and 60 m bands by merging them with the higher-resolution 10 m bands, resulting in
clearer, more detailed images across all spectral bands.

2. Projection to WGS-84: The satellite images are aligned with the WGS-84 geographic
coordinate system, ensuring that the image data correspond accurately to real-world
locations.

3. Mosaic and Standard Map Divisions: Following the removal of overlaps and clouds,
the images are stitched together into a single map (mosaic), then divided into standard
segments for easier analysis.

Band information of Sentinel-2 L2A images is listed in Table 1.

Table 1. Band information of Sentinel-2 L2A images.

Band Name Band Number Central Wavelength (nm) Resolution (m)

Coastal Aerosol 1 443.9 60
Blue 2 496.6 10

Green 3 560 10
Red 4 664.5 10

Vegetation Red Edge 5 703.9 20
Vegetation Red Edge 6 740.2 20
Vegetation Red Edge 7 782.5 20

NIR 8 835.1 10
Vegetation Red Edge 8A 864.8 20

Water Vapor 9 945.0 60
SWIR Cirrus 10 1373.5 60

SWIR 11 1613.7 20
SWIR 12 2202.4 20

2.2.2. Ground-Truth Data

We used a database of ‘ground-truth’ samples on crop types for Central Asia, where
most of the data (97.7%) were collected in Uzbekistan [43]. The database consists of
8435 samples, where 40% or 3374 labels are cotton fields. A huge number of samples
were collected between 2015 and 2018. Field surveys were conducted primarily in the
Fergana Valley and reclamation area. Most were retrieved close to roadways, reflecting the

https://dataspace.copernicus.eu/
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inadequate accessibility within and between fields. During the field surveys, the following
rules were observed to guarantee the representativeness of the samples:

(1) The crop sample database composed of global positioning system (GPS) points col-
lected initially, mainly near roads, highlighting poor field accessibility.

(2) Single GPS point collected for each field, either at its accessible center or edges, and
multiple points around obstructed field borders.

(3) Image interpretation aided in drawing polygons around fields, utilizing high-resolution
Google Earth satellite imagery.

(4) Excluded non-vegetated areas, mixed-crop fields, and samples lacking valid Google
Earth data due to observation limitations or cloud cover.

To ensure accuracy, all samples underwent additional verification by integrating time-
series NDVI with phenological attributes. We used seasonal/annual spectral–temporal metrics
and texture metrics to identify cotton lands. In order to obtain a newer dataset, we filtered
the database and kept only samples for 2018. Therefore, the number of positive samples was
reduced to 1077, and the sample distribution is depicted in Figure 3. This was carried out to
avoid a large time gap between the sample collection year and our research time.
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Figure 3. Spatial distribution of ground samples in the study area. Only summer cotton samples for
the year 2018 were chosen. The total number of ‘ground truth’ samples is 1077.

2.3. Methods
2.3.1. Automatic Sample Generation

We proposed a voting-based sample generation method for land delineation. In the
event of lacking ground-truth data, automatically generated samples become essential,
especially in large-scale extraction. Majority voting is an ML technique used to improve
model accuracy and robustness by combining the predictions of multiple models in an
ensemble, particularly for classification tasks. The final prediction is determined by the
class that receives the most votes from the individual models. This approach helps in
reducing overfitting, lowering variance, and ensuring more reliable predictions, especially
in complex or noisy data scenarios.

The sample generation process, in general, encompasses a sequential progression
comprising five distinct stages. The steps are described in Figure 4. Initially, Sentinel-2
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images were acquired, followed by a targeted sampling of cotton based on the Uzbekistan
crop database as a primary reference. Subsequently, a series of morphological analyses,
including cloud dehaze and mosaic, were employed, then applied for the extraction of
cropland edges using DexiNed architecture. Using a voting mechanism, the differentiation
of cotton fields from other objects was executed. Finally, new samples were generated in
accordance with these processes.
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Figure 4. The process of automatic generation of cotton samples using voting-based classification.

One of the main parts of sample generation is the detection of cropland edges. We
used DexiNed [44] for this purpose since it is a specialized architecture designed for edge
detection. DexiNed is engineered to enable training from beginning to end, without the
necessity for initializing weights from pre-trained object detection models, as is common
in most DL-based edge detectors. It comprises two distinct sub-networks: Dense Extreme
Inception Network (Dexi) and the upsampling network (USNet). Dexi accepts an RGB
image as input and processes it through various blocks. The feature maps generated from
these blocks are then fed into USNet.

The satellite image was split into overlapping patches to reduce edge discrepancies,
with central pixels in each patch given more weight using 2-D Gaussian interpolation. The
final results were determined by a soft voting approach based on these weighted equations:

L = argmax
c

∑k
i wi × pi,c

k
c ∈ {0, 1, 2} (1)

(x, y) = e
−x2−y2

10000 (2)

In Formula (1), the voting rule for each pixel involves wi, the weight of the i prediction
and pi,c the i predicted probability for the class c. The weight wi varies with the pixel’s
position relative to the center of the image. Formula (2) calculates wi (x, y) based on the
pixel coordinates. The total number of predictions k depends on the pixel’s location in the
original image.

Based on the described process, the segmented sections of each image patch were
merged to create a complete, full-sized segmented image. This comprehensive image was
then subjected to multiple processing stages to prepare it for subsequent application in
obtaining samples:
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(1) The segmented results in the image are converted into vector format, maintaining the
topology of the fields and their boundaries.

(2) In this step, the boundaries delineated in the map are removed, leaving only the
categories of agricultural fields and background.

The final vector data produced include numerous objects, depicted as polygons, that
represent both agricultural fields and surrounding land parcels. Notably, areas adjacent to
the field boundaries were intentionally omitted from these data.

2.3.2. An Adaptive Feature-Fusion Network

In this study, we used a novel adaptive feature-fusion network for crop classification
using single-temporal Sentinel-2 Images [45]. The selective path module was developed
to address complex scenarios. It incorporates an adaptive approach, whereby features
extracted from multiple patch sizes are combined, allowing for the integration of contextual
information at varying scales. Spectral information of the central pixel of the patches was
extracted using TabNet [46]. The adaptive feature-fusion network uses multitask learning
to supervise the extraction phase to improve the weight of the spectrum features and
alleviate the negative impact of insufficient samples.

In order to achieve more accurate results, we added an attention model to the fusion
network. This helps to improve long-range dependencies, reduce information loss, provide
adaptability, and offer interpretability. This modification aligns with our goal of optimizing
the network’s performance and boosting its capabilities since our task requires nuanced
understanding and selective attention to specific features.

The SPTNet architecture of the network introduces a selective patch module (SPM)
for acquiring adaptive multi-size patch features, alongside a TabNet branch that handles
spectral data of center points and multiple loss functions. This approach enhances spatial
information while minimizing noise through patch fusion. The architecture incorporates
multitask learning to emphasize spectral details through added loss. This refines crop plot
boundaries and mitigates mixed pixel interference, improving overall model performance.
The SPTNet framework combines these elements to effectively enhance image analysis for
crop identification.

Figure 5 shows the workflow of crop classification based on an adaptive feature fusion
network. This classification framework consists of three steps:

1. Data collection and sampling.
2. Training and evaluation of the model.
3. Prediction, cotton field mapping, and accuracy assessment.
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2.3.3. Selective Patch Module

Due to the varying sizes of crop plots across different scenarios, the utilization of
oversized patches introduces a surplus of pixels that differ from the central pixel’s category,
possibly leading to the misclassification of certain pixels as noise. Conversely, opting for
patches that are excessively small results in an insufficient spatial information pool, thereby
compromising classification precision. The module addresses a scale-dependence issue
analogous to the receptive field dilemma in semantic segmentation. Whereas receptive
field manipulation is employed there, this method involves adaptive patch size selection to
extract multi-scale features commensurate with the target. SK-Conv [47] stands as a solution
by autonomously determining the convolutional receptive field. Various studies have
employed SK-Conv, which computes the weight of feature maps generated by convolution
kernels of diverse dimensions, merging the maps based on these weights to achieve an
adaptable selection of the convolutional kernel receptive field.

Just like the SK-Conv technique, this method devises a Spatial Pyramid Module (SPM)
to dynamically amalgamate features from distinct patch sizes. The framework is shown in
Figure 6. This innovation serves to address scalability challenges while garnering more
precise spatial insights. The SPM comprises three key stages: split, fusion, and selection.
This tripartite arrangement optimizes the generation of diverse patch sizes, as well as the
aggregation of patch details to derive a comprehensive representation of selection weight.
Consequently, feature maps of various patch sizes are obtained according to this weight.
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The split phase initiates the process by segmenting input patches into P̂, P, and
∼
P based

on prescribed dimensions. In our study on crop classification in Uzbekistan, we employed
patch sizes of 7 × 7, 9 × 9, and 13 × 13 pixels, aligning with the regional land scale. The
ensuing fusion stage involves two convolutions on the patches to generate equivalent-sized

feature maps Û, U, and
∼
U. Subsequently, the fusion stage combines information from

different branches, yielding U = Û + U +
∼
U. To infuse global context and establish channel

statistics for s ∈ RC, global average pooling Fqp is applied. Employing the full connection
layer Ff c reduces the dimension of channel statistics and yields the ultimate channel weight
z ∈ RD, as expressed by Formula (3):

z = Ff c
(

Fqp
(
Û + U +

∼
U
))

(3)

Concluding this process, the selection phase involves the creation of three weight
matrices: Wa, Wb , and Wc. These matrices are derived from the final channel weight z,
ensuring coherence through the application of the softmax function. The module enforces
a constraint, and the sum of corresponding elements across weight matrices is normalized
to one. Subsequently, these weight matrices are employed to assign weights to the feature

maps P̂, P, and
∼
P. The result is an adaptively chosen spatial feature, denoted as V, which



Agronomy 2024, 14, 75 10 of 26

is obtained by summing the weighted feature maps. This entire sequence of operations is
encapsulated by Formulas (4) and (5):

Wa, Wb, Wc = Fso f tmax(z), (4)

V = Wa·Û + Wb·U + Wc·
∼
U, (5)

2.3.4. Loss Function

Choosing the right loss function is critical for guiding the optimization process and
converging to an accurate model. The loss function used to optimize the neural network
has two components. In this study, we utilized cross-entropy loss as it is commonly applied
for multi-class classification tasks. Cross-entropy loss measures the difference between the
predicted class probabilities and the true labels. It is widely used because its value depends
only on the probability of the correct class, making it convenient to calculate and optimize.
The cross-entropy loss sums the negative log probabilities of the true target classes based
on Formula (6):

LossCE = − 1
N ∑N

i=1(y1logŷi + (1 − yi)(1 − logŷi)) (6)

In Formula (6), “y1” represents the true label value, “ŷi” signifies the classification
probability, and “N” corresponds to the number of classes. The overall loss function of the
network comprises two branch loss functions, and this depicted as:

Loss = λ1 × Loss1 + λ2 × Loss2, (7)

In the context of Formula (7), where the total loss is a combination of two cross-entropy
(CE) loss functions (Loss1 and Loss2), the use of λ1 and λ2 as coefficients serves to balance
the contribution of each loss function to the total loss. This approach allows for fine-tuning
the model’s learning process.

Utilizing two separate loss functions can address different aspects of the learning task
or handle distinct types of data within the model. The values for λ1 and λ2, which sum
up to 1, determine the relative importance of each loss function. Adjusting these values
can help in emphasizing one aspect of learning over another, depending on the specific
requirements of the classification task. For example, if Loss1 is more critical for model
performance, λ1 would be set higher than λ2.

2.3.5. Random Forest Classifier

For method comparison, we chose RF [48] algorithm. It has demonstrated considerable
effectiveness across numerous RS applications, such as land cover change detection, crop
mapping, and estimation of soil constituents [49,50]. It has been proved to be one of the most
efficient ML techniques for classification tasks [51–53]. Its algorithms work by aggregating
the predictions from multiple decision tree models to generate an overall output [54]. As
shown in Figure 7, unlike decision tree algorithms that construct a single tree for making
predictions, RF creates numerous decision trees during training and then averages their
probabilistic predictions to make a final classification or regression prediction.

As this research aims to assess specific phenology-related measurements that could
assist in identifying cotton through surface reflectance data, only two categories of land
cover were created: cotton and non-cotton. The non-cotton class combined multiple land
cover types, like bare soil, water, other crops, pastures, and native vegetation. In the
conducted study, various RF models were established with varying numbers of decision
trees. The assessment criteria employed to explore the ideal number of decision trees
encompassed both the OA and the KC. Through an analysis of model accuracies, a count of
23 decision trees was chosen as optimal.
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Furthermore, the number of features utilized for each split was determined to be the
square root of the total input features. In the conducted experiments, the data fed into both
the RF and SPTNet consisted of a vector with a size of 1 × 12, representing the values of
12 different spectral bands for an individual pixel. In the experiment, all deep learning
methods used a 7 × 7 × 12 vector for input. This represents a patch with the central pixel
having a size of 7, capturing a comprehensive array of spectral data across 12 different
bands for each pixel within the 7 × 7 area. The other parameters used in the model were
set to their default values without modification.

The RF was implemented using the Scikit-learn open-source Python library. Scikit-
learn provides a diverse set of machine learning modules and capabilities [55]. Using Scikit-
learn makes it easy and efficient to implement ML workflows, including data loading,
dividing data into training and validation sets, preprocessing, and applying learning
algorithms.

2.4. Analysis and Sampling
2.4.1. Feature Preparation

The Google Earth Engine (GEE) offers a comprehensive cloud-based platform for
effortless access and efficient processing of vast quantities of openly accessible satellite
imagery [56]. This includes imagery procured by the Sentinel-2 satellite, presenting a
powerful tool for researchers and analysts in the fields of Earth observation and geospatial
analysis. The GEE includes some of the most advanced classification algorithms for pixel-
based classification that can be implemented in agricultural mapping applications [57]. For
instance, we used GEE to calculate NDVI and VH spectra in classified regions. The results
are presented in Figures 8 and 9.
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Figure 9. Temporal Synthetic Aperture Radar (SAR) backscatter profile (VH polarization) of sample
cotton fields in Uzbekistan for each month of 2018 obtained with GEE.

2.4.2. Sampling Process

In addition to ‘ground truth’ data, we added another 200 cotton and 400 non-cotton
samples using GEE (Figure 10). Satellite imagery was collected throughout the full crop
growing season in order to obtain the spectral reflectance measurements across different
bands for each pixel. Using this time series of multi-spectral images, the Normalized
Difference Vegetation Index (NDVI) was derived per pixel by calculating the normalized
ratio between the near-infrared and red spectral bands [58] (Formula (8)):

NDVI = ρNIR − Red

ρNIR + Red
(8)

2.5. Accuracy Assessment

In order to evaluate the accuracy of classification, a high-quality verification database
at an appropriate spatial and temporal scale should be obtained. Thus, such verification
databases are a critical element of the mapping process [59]. In our research, the main
source of accuracy assessment was a dataset of crop types in Central Asia [43]. Among
8435 samples of different crops, 4025 were cotton. We utilized Sentinel-2 imagery and
GEE to identify and sample non-cotton fields. Using these tools, we drew rectangles over
the areas of interest in the satellite imagery to sample fields that did not contain cotton.
This sampling included a variety of other crops and also encompassed different ground
objects such as roads and buildings. This comprehensive approach allowed us to accurately
categorize and analyze various land uses and cover types beyond just agricultural fields.
We then added automatically generated samples to the database.
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Figure 10. Sampling process in GEE. Band-8, band-6, and band-4 of Sentinel-2 images are composited
to increase the variability of the cotton crop from other features. Red polygons represent positive
samples (cotton), blue polygons—negative (non-cotton). Negative samples include other crops,
forests, roads etc.

A confusion matrix was used to analyze the classification results. It is a common
format for assessing crop classification accuracy. The first metric we used was producer
accuracy (PA), which is a performance metric that evaluates a model’s ability to correctly
classify positive instances out of all instances predicted as positive. The second evaluation
metric was user accuracy (UA), which is the proportion of pixels correctly classified into
the class compared to the total count of pixels classified to that class. The OA signifies the
ratio of pixels that have been accurately classified to the total number of pixels. Lastly, the
kappa coefficient (KC) serves as an indicator of consistency and can also be employed to
assess the impact of classification. We also used F1 score for evaluation purposes. To better
measure categorization accuracy, the F1 score, which considers the accuracy and recall rate,
is a regularly used evaluation index.

Formulas are shown below:

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

F1 = 2 × Precision × Recall
Precision + Recall

, (11)

In Formulas (9)–(11) above, true positive (TP) refers to correctly identified pixels that
were indeed positive cases. False positives (FP) correspond to positive pixels that were
inaccurately categorized. A false negative (FN) represents a negative pixel that has been
mistakenly classified.

2.6. Training Details

We implemented all the deep neural networks in this study using the Pytorch DL
library. The training and validation data samples were used to train the models on an
NVIDIA GeForce RTX 3090 GPU with 24 GB memory. During model training, the batch
size was 256, optimization was via the Adam [60] algorithm, the initial learning rate was
0.001, and cosine annealing [61] was used to gradually reduce the learning rate. For the
hyperparameter setting of the loss function, we set the values of λ1 to 0.7 and λ2 to 0.3.
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3. Results
3.1. Automatically Generated Samples

An example of the obtained results of agricultural parcel land of Uzbekistan is shown
in Figure 11. The red regions shown in the figure indicate parcels, illustrating the poten-
tial for automatically creating training samples using existing multisource RS products.
Utilizing the proposed collection strategy significantly enhanced the representativeness
of training samples. The DexiNed edge detection method was effectively employed to
delineate crop boundaries in Uzbekistan, providing a clear demarcation of agricultural
fields. The model demonstrated high performance in identifying field boundaries.
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Figure 11. Agricultural parcel land map produced by DexiNed model.

Next, we used a voting mechanism to distinguish cotton from other objects on the
ground. The results of the obtained vector samples are shown in Figure 12. In every
classified map, the central pixel’s label undergoes refinement based on the majority voting
rule applied within a flexible region, a process known as adaptive majority voting. This
refinement is carried out methodically for each pixel across the initial classified maps.

3.2. Spatial Distribution of Cotton Fields

The results of mapping cotton fields in the study area are depicted in Figure 13. This
includes the classification maps generated from the Sentinel-2 images for 2018. The model
was trained by automatically generated samples and evaluated using ground-truth data.
Our results show that the total area of cotton fields in Uzbekistan is 1148 thousand hectares.
Cotton fields are distributed across all provinces and regions, and the smallest cotton
planting areas are Kashqadaryo, Surkhandaryo, Bukhoro, and Sir-Darya. The cotton field
planting areas in the counties Tashkent, Khorazm, and Bukhoro were the largest ones
(Figure 14).
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Figure 13. Spatial distribution of cotton in Uzbekistan for year 2018 obtained with automatically
generated samples, using adaptive feature fusion network and Sentinel-2 imagery.
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Figure 14. Examples of predicted cotton fields in Uzbekistan for 2018.

3.3. Classification Accuracy Assessment

In the creation of the cotton distribution map for Uzbekistan in 2018 using SPT-
Net, validation of the mapping outcomes was critically important. To achieve this, this
study used statistical data obtained from the State Statistics Committee of Uzbekistan
(https://stat.uz/, accessed on 30 November 2023), which presumably provided official
data on cotton production, including the area of cultivation and yield for 2018. These
statistics were instrumental in the validation process, where cross-validation techniques
were employed. This process involved comparing the SPTNet mapping results with the
official data to assess accuracy, ensuring that the cotton distribution map reliably reflected
the actual cotton production scenario in Uzbekistan.

The accuracy assessed using cross-validation is presented in Figure 15.

https://stat.uz/
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Figure 15. Illustration of the contrast between the cotton cultivation area determined from Sentinel-2
imagery and the statistical data on a sub-national level in Uzbekistan for the year 2018.

Precision–recall (PR) curves are presented in Figure 16, where the area under the curve
(AUC) equals 0.91. PR curves allow us to visualize the tradeoff between precision and
recall that results from choosing different probability thresholds, gaining insight into model
performance that single metrics like accuracy cannot provide.
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To make a comparison with the statistical data regarding the cotton area, the count
of cotton pixels identified from the mapping results was computed for each state and
subsequently multiplied by the size of the Sentinel-2 pixel, as described in Figure 17. The
cotton areas in 2018, derived from Sentinel-2 data using the proposed method, were 1148
thousand hectares. A minor overestimation was observed when comparing these results
with the statistical cotton areas, with a relative error of 5.60%.

Agronomy 2024, 14, x FOR PEER REVIEW 19 of 27 
 

 

To make a comparison with the statistical data regarding the co�on area, the count 

of co�on pixels identified from the mapping results was computed for each state and sub-

sequently multiplied by the size of the Sentinel-2 pixel, as described in Figure 17. The 

co�on areas in 2018, derived from Sentinel-2 data using the proposed method, were 1148 

thousand hectares. A minor overestimation was observed when comparing these results 

with the statistical co�on areas, with a relative error of 5.60%. 

 

Figure 17. The percentage of co�on area within each state concerning the overall co�on area in Uz-

bekistan during the year 2018. Blue color represents our results, orange color is official statistics. 

Most regions experienced a slight overestimation in co�on areas, with Khorazm state 

showing notable overestimations. Conversely, Navoiy state had an underestimation in 

co�on areas. The classification results at different phases of co�on vegetation are shown 

in Figure 18. 

Figure 17. The percentage of cotton area within each state concerning the overall cotton area in
Uzbekistan during the year 2018. Blue color represents our results, orange color is official statistics.

Most regions experienced a slight overestimation in cotton areas, with Khorazm state
showing notable overestimations. Conversely, Navoiy state had an underestimation in
cotton areas. The classification results at different phases of cotton vegetation are shown in
Figure 18.

As a result, we received a 10 m distribution map for cotton fields in Uzbekistan based
on an adaptive feature fusion network for crop classification using Sentinel-2. Validation
samples were used to perform accuracy evaluations on the resulting cotton field map,
revealing that the extracted map from this study exhibited a notably high level of accuracy.
The highest results were achieved in August. The obtained results exceeded the accuracy
of existing cotton maps of Uzbekistan. The confusion matrix results are shown in Table 2.

Table 2. Confusion matrix of the cotton map in August for Uzbekistan.

Metrics PA UA OA KC F1

Results 0.854 0.838 0.947 0.795 0.953

An OA of 0.947, producer accuracy of 0.854, UA of 0.838, KC of 0.795, and F1 score
of 0.953 were achieved. The obtained results are consistent with statistical data for cotton
fields in Uzbekistan in 2018. The estimated total cropland area reached 11 840 km2 for 650
km2, higher than the statistical cropland area.
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3.4. Optimal Classification Phase

One of the main objectives of this study was to identify the most suitable phases for
cotton field mapping. This could potentially streamline the process of crop classification by
narrowing down the focus to specific phenological phases of the cotton in the study area [62].
The cotton fields were extracted based on single-phase data from May to September. As
mentioned above, our results demonstrated that in the event of single-phase data extraction,
mapping cotton land based on the data in the boll-forming phase was highly accurate. In
the period of boll forming, the characteristics of cotton differed significantly from those of
other crops. Therefore, the accuracy of the cotton map in August was the highest, with an
OA of 0.947 and KC of 0.795, respectively (Table 3). On the other hand, the precision of the
cotton field map derived from seedling phase data was the lowest, registering an OA of
0.865 and a KC of 0.526. Cotton shares similarities with the attributes of other crops in the
corresponding growth period, such as corn.

Table 3. Accuracy of the cotton field extraction for SPTNet during phases of cotton vegetation.

Phase Overall
Accuracy

User’s
Accuracy

Producer’s
Accuracy

Kappa
Coefficient

Seedling 0.865 0.670 0.583 0.526
Seedling 0.892 0.812 0.799 0.789
Squaring 0.924 0.811 0.765 0.754

Boll forming 0.947 0.838 0.854 0.795
Boll opening 0.911 0.789 0.823 0.720

The results for RS show that in the case of single-phase extraction, SPTNet is notably
better than RS. On the other hand, the outcomes of the data extraction approach with
RF for cotton fields revealed that merging the images captured in June and August led
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to improved accuracy, resulting in an OA of 0.929 and a KC of 0.789. During both of
these months, the cotton was in distinct stages: the late seedling stage in one case and the
early boll-opening stage in the other. This disparity in growth stages resulted in notable
dissimilarities in the RS attributes of cotton fields, as compared to other crops.

As a result, the incorporation of multi-phase data from June and August facilitated
the classification technique in mitigating redundancy in features during the cotton field
extraction procedure, subsequently lightening the workload related to image processing.
This optimization significantly bolstered the efficiency of the cotton field extraction process.
Consequently, this approach enabled the precise delineation of cotton fields with heightened
accuracy during the boll-opening period in August. Cotton harvesting in Uzbekistan
usually takes place at the end of September and early October; therefore, the mapping
work can be established about 35 to 40 days before harvest. This would offer punctual
and precise judgments that aid in effectively distributing labor resources for the cotton
harvesting process across different spatial areas (Table 4).

Table 4. Accuracy of the cotton field extraction for RF during single and multi-temporal data
extraction.

Month Overall
Accuracy

User’s
Accuracy

Producer’s
Accuracy

Kappa
Coefficient

May 0.839 0.676 0.577 0.526
June 0.911 0.819 0.789 0.789
July 0.909 0.821 0.776 0.754

August 0.923 0.841 0.858 0.789
September 0.894 0.782 0.783 0.723

May and June 0.921 0.841 0.829 0.784
May and July 0.919 0.834 0.835 0.779

May and August 0.922 0.847 0.841 0.785
May and September 0.918 0.833 0.816 0.764

June and July 0.924 0.829 0.837 0.792
June and August 0.929 0.836 0.835 0.789

June and September 0.913 0.811 0.817 0.761
July and August 0.927 0.823 0.858 0.785

July and September 0.922 0.827 0.849 0.789
August and September 0.926 0.824 0.865 0.791

Using RF with the multi-temporal data extraction showed that combining data in June
and August, June and July, and July and August could achieve better accuracy compared
to RF single-phase extraction. The OAs for these three months were 0.924, 0.929, and 0.927,
respectively, with the combination of June and August achieving the highest accuracy
among them.

3.5. Comparison of SPTNet and RF Results

In Figure 19, we performed analyses to compare the crop maps of Uzbekistan gen-
erated using SPTNet against those produced by RF. It relies solely on spectral data of
individual pixels, without considering spatial or temporal context. In our experiments, the
input was a 1 × 12 vector of pixel reflectance values across 12 spectral bands. We used the
combined CNN-RF method, which initially extracts features via a CNN before employing
RF for classification. This approach harnesses the strengths of both techniques to enhance
the model’s generalization capability, thereby capitalizing on the benefits offered by each
method.
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The results showed that SPTNet reaches higher accuracy compared to RF in cotton
classification at a large scale. The highest OA for RF was 0.929, obtained in June and August,
while for SPTNet, it reached 0.947, obtained in August.

4. Discussion
4.1. Advantages and Limitations

Mapping crops with high resolution over extensive agricultural areas presents a
significant difficulty in the field of RS. In this research, we used an adaptive feature-fusion
network that is reliable for extracting crops on a large scale. The network achieves a high
classification accuracy using solely single-temporal Sentinel-2 images. Compared to other
well-known methods, our network does not require a huge number of samples.

It is worth mentioning that the SPTNet has the capability to dynamically adjust
and combine spatial information based on the plot size in a real-world scenario. This
adaptability ensures that the system is able to effectively capture and extract small and
intricate features, even in varying conditions. The ability to adapt and extract small features
in near-real-time scenarios provides timely decision support to farmers, enabling them to
respond quickly to changing conditions and optimize their crop management strategies. It
is worth mentioning that the processing speeds were fast considering the massive dataset,
extensive timeframe, and broad region studied. It took a mere 26 h to analyze the entire
country using a readily available computer.

Even though the cotton map created for Uzbekistan at a 10 m resolution exhibited a
notable level of accuracy, it is important to acknowledge the presence of certain limitations
and uncertainties [63]. One of the main limitations pertains to the accessibility of images
of critical phenological stages. One potential way to improve future research would be to
integrate Sentinel-2 data with additional RS sources, like MODIS, RapidEye, and Landsat,
to acquire more complete and complementary observations. Fusing multi-platform satellite
imagery could help mitigate the constraints posed by limited revisit frequency and cloud
contamination in Sentinel-2 data alone. The combined strengths of diverse sensors like the
high resolution of Landsat and the large coverage of Sentinel-2 may enable more robust
analyses.

Thirdly, this study focused only on the adaptive feature-fusion network and RF
classifier while excluding other ML and DL algorithms like XGBoost, SVM, etc. Since no
single model works best for all cases, future efforts could enhance accuracy by using a
multi-classifier system that combines diverse models.
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4.2. Future Perspectives

This study utilized Sentinel-2 imagery for its high spectral resolution to automati-
cally generate cotton samples and perform cotton field classification. Additionally, high-
resolution satellite data were leveraged for their detailed spatial resolution to plot field
boundaries. The high spectral resolution enables identifying crops, while the spatial res-
olution supports extracting field edges precisely [64]. Combining these complementary
strengths of the multi-resolution data will potentially improve the overall performance
of crop-type classification within accurately mapped agricultural plot boundaries. The
integration of detailed plot-level delineation and crop-type classification is an area worth
exploring further.

4.3. Future Research

Future research may involve integrating Synthetic Aperture Radar (SAR) data into
the crop classification process of the network. SAR satellites possess the capability to
capture images, regardless of weather conditions, compensating for the absence of optical
data. Additionally, SAR data’s sensitivity to crop canopy structure and water content
holds the potential to enhance the distinctive features utilized in crop classification, thereby
contributing to an elevated level of classification accuracy [65,66].

This approach allows for mapping not just cotton but various other crops as well. At
the same time, there is a diversification of agricultural produce in Uzbekistan, evidenced
by the transformation of cotton fields into areas cultivating different types of crops. Wheat,
soybean, and corn are a few of them. The proposed method has proven to be effective for
crop classification at a large scale.

5. Conclusions

The automated generation of cotton samples proves to be an indispensable asset in
expediting and refining the training process of machine and DL models for RS applications.
Training the model using automatically generated samples proved to have satisfactory
accuracy. Additionally, acquiring information about the planting area and spatial distri-
bution of cotton fields holds vital importance for ensuring timely and precise agricultural
management practices in Uzbekistan. Therefore, this research assessed the potential of
Sentinel-2 imagery and DL techniques for large-scale cotton field classification. We used
an adaptive feature-fusion network to assess the ability of the Sentinel-2 satellite to detect
cotton fields at the country level. Employing the suggested framework, we created a cotton
field map for Uzbekistan in 2018, with a spatial resolution of 10 m. The experiment achieved
an OA of 0.947, indicating that the results are in alignment with the statistical data for
cotton fields in Uzbekistan for 2018. When comparing the obtained results with the official
statistical cotton areas, a minor overestimation was observed. This discrepancy amounted
to a relative error of 5.60% or 650 km2. Based on the results and analyses, we reached the
following results and conclusions:

(1) The results show that voting-based classification is a reliable choice for sample generation.
(2) The classification models were predominantly influenced by phenological features

based on dates.
(3) In the case of single-phase mapping with SPTNet, August was the most suitable

month for mapping cotton in Uzbekistan. The combination of June and August
achieved the highest accuracy in the case of multi-temporal data extraction using RF.

(4) We obtained a 10 m Sentinel-2 cotton map of Uzbekistan for 2018 using an adaptive
feature-fusion network.

Two methods were used to evaluate the results. Firstly, the ground-truth database for
different crops obtained in 2018 was used for reference data. Secondly, we compared the
obtained results with the official statistics of the country for 2018. The accuracy assessment
showed that the classification of cotton fields using the proposed method had high OA. Our
classification results highlight the boll-opening stage as a significant phenological stage for
cotton identification.
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Although the current study focused on detecting cotton fields in Uzbekistan, its
applicability could extend to other geographic regions and other crop types. It is important
to note, however, that the approach relies on “ground truth” data, which may limit its
usability in areas where such data are scarce.
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