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Abstract: Developing models to assess the nutrient status of plants at various growth stages is
challenging due to the dynamic nature of plant development. Hence, this study encoded spatiotem-
poral information of plants within a single time-series model to precisely assess the nutrient status
of aquaponically cultivated lettuce. In particular, the long short-term memory (LSTM) and deep
autoencoder (DAE) approaches were combined to classify aquaponically grown lettuce plants ac-
cording to their nutrient status. The proposed approach was validated using extensive sequential
hyperspectral reflectance measurements acquired from lettuce leaves at different growth stages across
the growing season. A DAE was used to extract distinct features from each sequential spectral dataset
time step. These features were used as input to an LSTM model to classify lettuce grown across a
gradient of nutrient levels. The results demonstrated that the LSTM outperformed the convolutional
neural network (CNN) and multi-class support vector machine (MCSVM) approaches. Also, features
selected by the DAE showed better performance compared to features extracted using both genetic
algorithms (GAs) and sequential forward selection (SFS). The hybridization of deep autoencoder
and long short-term memory (DAE-LSTM) obtained the highest overall classification accuracy of
94%. The suggested methodology presents a pathway to automating the process of nutrient status
diagnosis throughout the entire plant life cycle, with the LSTM technique poised to assume a pivotal
role in forthcoming time-series analyses for precision agriculture.

Keywords: aquaponics; long short-term memory (LSTM); autoencoder; convolutional neural
networks (CNN); nutrition stress

1. Introduction

Lettuce (Lactuca sativa L. var. longifolia) is a globally cultivated and consumed plant
species. This common leafy vegetable is abundant in essential nutrients such as fiber,
vitamins (A, B, C, and K), chlorophyll, and carotenoids, which are crucial in promoting
human health [1]. Under the circumstances of growing lettuce in aquaponics systems, the
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bio-available nutrients from fish metabolism may be insufficient for the plant’s optimal
growth, and the lettuce may experience nutritional deficiency disorders [2]. This can
impact the quality and productivity of lettuce and its morphological characteristics [3,4].
For instance, Yang and Kim compared hydroponics and aquaponics for growing tomatoes,
basil, and lettuce. Their findings demonstrated that the mean concentrations of all nutrients
were markedly reduced in aquaponics compared to hydroponics [3]. Thus, it could be
concluded that the plants in aquaponics systems need nutritional supplements for optimal
quality and growth.

Traditionally, identifying nutrient deficiency depended on visual assessments or chem-
ical techniques, which are known to be time-consuming, labor-intensive, and expensive.
The rapid development of monitoring and machine learning technologies has recently
provided innovative opportunities for real-time monitoring of plant nutritional status [5].
Spectroscopic monitoring methods have proven effective in identifying plants’ health sta-
tus [6]. Spectral reflectance in the range of 350–2500 nm is mainly reliable in applications
related to plant status detection, such as determining the contents of water, chlorophyll,
and nutrients [7]. The spectral characteristics of plants serve as a dependable indicator
of leaf surface qualities, internal structure, and biochemical characteristics (macro- and
micro-nutrient) [8,9]. In addition to leveraging hyperspectral sensors to deepen insights
into plant behaviors, notable progress in big data analysis and advancements in computa-
tional capabilities have ushered in novel opportunities for crafting cutting-edge techniques
to extract plant information [10].

Recently, the integration of machine learning techniques, informed by spectral and
image data inputs, has constructed diagnostic models for various crop traits. More recently,
deep learning has emerged as a subclass of machine learning that addresses some of the
problems of traditional machine learning, such as the problem of handcrafted features [11].
Deep learning has shown great success in various disciplines of the agricultural field
thanks to the emergence of deep convolutional neural networks (DCNNs) [12]. CNNs learn
automatically and select high-level features closely related to the target during the transfer
learning process [13]. While convolutional neural networks (CNNs) have demonstrated
impressive capabilities in diagnosing plant nutrient deficiencies, they may not be suitable
for modeling dynamic systems, particularly time-series spectral datasets spanning the
entire growth cycle. Long short-term memory (LSTM) networks have shown promise in
analyzing dynamic systems across various applications [14,15], including the monitoring
of quality features in lettuce using spectral time-series data [16] and the quantitative
characterization of tobacco components using time-series spectral data [17]. Additionally,
Dandıl et al. used the LSTM model with spectral data to diagnose pseudo-brain tumors,
achieving high classification accuracy for brain tumors and normal brain tissue [18]. Also,
Wang et al. combined Raman spectroscopic data with the LSTM network to classify kinds
of blood species; the model achieved a high classification accuracy of more than 93% [19,20].
Irrespective of the model employed, the feature extraction method significantly influences
the accuracy and robustness of the model. This involves extracting features that best
represent the target group. Additionally, various dependable feature extraction techniques
exist, including both traditional methods like GA and SFS, as well as more novel deep
approaches like DAE [21]. Extracting features with DAE before applying classification
approaches like LSTM or CNN substantially enhances the classification results and better
modeling of spatial and spatiotemporal behavior [22].

Despite LSTM’s potential for modeling dynamic systems, a significant gap exists
among various agricultural systems, particularly evident in the distinct characteristics of
aquaponically grown plants compared to their counterparts. Consequently, developing
models explicitly tailored for aquaponics plant datasets becomes vital. This study intro-
duces a hybrid deep learning model that merges the strengths of long short-term memory
(LSTM) and DAE to enable timely and precise diagnosis of nutrient status in aquaponically
cultivated lettuce. In addition to LSTM, we propose a novel CNN model and utilize a
support vector machine (SVM) model as a performance evaluation benchmark. To the best



Agronomy 2024, 14, 2290 3 of 15

of our knowledge, this paper presents the first attempt to hybridize an autoencoder and
LSTM model to detect the nutritional status of aquaponically grown plants using time-
series spectral data. The outcomes of this study are expected to bolster the sustainability of
aquaponics systems and promote their adoption as precision agriculture (PA) technology,
thereby enhancing the intelligence of aquaponic systems and facilitating their deployment
on a commercial scale.

2. Materials and Methods
2.1. Experimental Design and Set-Up

The proposed protocol to detect the nutrient status of aquaponically grown lettuce
is depicted in Figure 1. The proposed methodology has two main stages: data collection
and processing, followed by the modeling stage in which the data are divided, feature
extraction, classification, and, finally, model performance evaluation. An aquaponics
system was developed and built following the standard construction criteria. Given that
lettuce is the predominant and widely favored crop in aquaponics systems, it was selected
as the subject of investigation in this study’s research tests [23]. Lettuce seedlings were
cultivated in a culture tub with four different levels of nitrogen (N), phosphorous (P), and
potassium (K) using an aquaponics solution and nutritional supplements. The seedlings
were transplanted into the tub cultures when they were two weeks old. The optimal growth
of lettuce requires a full-strength nutrient solution containing 28, 36, and 2.4 g/L of N,
P, and K, respectively [24]. However, the aquaponics system provides only 60% of N
(17 g/L), 50% of P (18 g/L), and 5% of K (0.1) [3,25,26]. Accordingly, as shown in Table 1,
9 nutritional levels were prepared (low N, medium N, optimal N, low P, medium P, optimal
P, low K, medium K, optimal K). Figure 2 shows examples of the image dataset. The
nutrient concentration was maintained by measuring pH (6.9) and electrical conductivity
(0.1 dSm−1) at the experiment’s beginning; if there was any daily change, the nutrient
solutions were replenished.
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Figure 1. Flowchart of the proposed protocol to detect the nutrient status of aquaponically
grown lettuce.

Table 1. N, P, and K concentrations for each treatment.

Nutrient
Nutrient Concentration at Each Level, g/L

Low Medium Optimal

N 20 23 28
P 23 28 36
K 0.6 1.1 2.4
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Figure 2. Examples of the image dataset of lettuce plants grown under (a) low (20, 23, 0.6), (b) medium
(23, 28, 1.1), and (c) optimal (28, 36, 2.4) nutritional conditions.

2.2. Spectral Dataset Collection

Ten lettuce seedlings were assigned to each nutrient level, with a total of 90 plants. Leaf
reflectance was measured starting from the third or fourth leaf during the growing season.
A total of 8100 hyperspectral reflectance measurements were obtained from lettuce plants
cultivated under various nutrient levels using a full-range hyperspectral ASD FieldSpec
4 Hi-Res (Analytical Spectral Devices Inc., Boulder, CO, USA) spectroradiometer. The total
number of hyperspectral reflectance measurements and acquisition dates are summarized
in Table 2. The spectral range of the ASD detector was 350 to 2500 nm, with a 1 nm sampling
interval between contiguous bands comprising 2151 points for each spectrum. The spectral
dataset was partitioned into training (60%), validation (20%), and test (20%) sets. Model
construction and data analysis were performed on the Kaggle platform, which offers free
access to NVidia K80 GPUs in kernels. An Intel Core i7-3630QM processor operating at
2.4 GHz and 8 GB of RAM was used to test this platform on the computer. The CNN and
LSTM modules from the TensorFlow library version 2.6.2 were employed for the classifica-
tion task. Figure 3 shows the average spectra of lettuce plants grown in low (20, 23, 0.6 g/L),
medium (23, 28, 1.1 g/L) and optimal (28, 36 and 2.4 g/L) nutritional levels of N, P and
K, respectively. Interestingly, as the content of macronutrients in plants (such as nitrogen,
phosphorus, and potassium) increases, reflectance in the blue bands (475 nm), green bands
(530 nm), red bands (668 nm), and the red edge (717 nm) significantly decreases [2]. This
phenomenon occurs due to higher nutrient levels, which lead to an increase in chlorophyll
content and photosynthesis, resulting in greater absorption of visible light and reduced
reflectance [2]. Reflectivity transitions from a negative correlation to a positive correlation
from the beginning of the red edge (720 nm) to the near-infrared range (1300 nm), indicating
that a higher presence of nutrients corresponds to increased reflectivity. This effect is largely
attributed to elevated nutrient levels, which enhance canopy structure, leaf area index,
water content, and biomass, thereby improving the absorption of chlorophyll and dry
matter. Additionally, increased multi-photon backscattering in the near-infrared region
leads to heightened near-infrared reflectance [2].

Table 2. Hyperspectral reflectance measurements and acquisition dates.

No. Acquisition Date Number of Measurements Total

1 15 November 2023 900

8100

2 22 November 2023 900
3 3 December 2023 900
4 10 December 2023 900
5 16 December 2023 900
6 23 December 2023 900
7 28 December 2023 900
8 4 January 2024 900
9 8 January 2024 900
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optimal (28, 36, and 2.4) nutritional levels of N, P, and K, respectively.

2.3. Deep Autoencoder (DAE)

The DAE is a deep-based methodology for feature extraction [22]. Autoencoders are
unsupervised neural network approaches to building models based on unlabeled data.
These approaches learn the representation of input datasets by training the neural network
to discard non-target data (noise). This restructures the input data and reduces the loss
between inputs and outputs. A typical autoencoder consists of an input layer, an output
layer, and hidden layers. Autoencoding processes are separated into encoding, decoding,
and reconstruction loss, as shown in Figure 4. Autoencoder-based feature extraction has
been proven reliable in many scientific contributions. Hinton et al. were the first to
demonstrate the effectiveness of autoencoders in dimensionality reduction (DR) on large
datasets [27]. Han et al. developed FlowNet, a framework that uses autoencoders to extract
features such as streamlines and stream surfaces [28]. Guo et al. introduced a sophisticated
convolutional autoencoder that focuses on minimizing reconstruction and clustering losses
to acquire embedded information for clustering [29].
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In the encoding phase, the inputs (x1, x2, x3, . . .. . . xn) are high-dimensional vectors
that are mapped to represent the low-dimensional bottleneck layer (h) after removing
unimportant features, as shown in Equation (1).

h = f1(wix + bi) (1)

where wi is the weight matrix, bi is a bias, and f1 is an activation function.
During the decoding step, the bottleneck layer representation of (h) was used to

generate the output x̂ that maps back to the reconstruction of x, as shown in Equation (2):

x̂= f2
(
wjh + bj

)
(2)

The activation function for the decoder is denoted as f2. The weight matrix is denoted
as wj, the bias is represented by bj, and x̂ represents the reconstructed input sample.

The reconstruction loss (L) is computed to minimize the discrepancy between the
output and the input, as depicted in Equation (3):

L(x − x̂) =
1
n∑n

n=1|x̂ − x| (3)

where x represents the input data, x̂ indicates the output data, and n is the number of
samples in the training dataset.

2.4. Genetic Algorithm (GA) and Sequential Forward Selection (SFS)-Based Feature Extraction

Two traditional methods, namely GA and SFS, were used as comparison benchmarks
to evaluate the performance of the DAE. GA is one of the most popular data dimen-
sion reduction methods. It has shown remarkable performance when used to determine
the chemical composition of plants compared to many techniques for selecting optimal
wavelengths [30,31]. To obtain the optimal solution to the targeted problem, the genetic
parameters of the GA, such as crossover rate, mutation rate, and population, must be
adjusted. This work used a crossover rate of 0.8 and a mutation rate of 0.15, and the
number of generations was assigned as 10. The sequential forward selection (SFS) method
selects the optimal wavelengths without data loss or distortion, which gives it an additional
advantage over its counterparts [32].

2.5. Long Short-Term Memory (LSTM)

Figure 5 depicts the primary constituents of a long short-term memory (LSTM) unit.
LSTM is a recurrent neural network (RNN) type that can acquire knowledge about im-
mediate and long-lasting relationships among time steps in sequential input. LSTM was
initially proposed by Hochreiter and Schmidhuber (1997), who made fundamental changes
to the architecture of standard RNNs by incorporating memory cells and a gate mechanism
in hidden layers [33]. The LSTM model has proven its worth in addressing sequential
problems such as time series, speech recognition, and signal analysis. Notably, LSTM is the
foundation for most contemporary classification models. It has also been demonstrated
that LSTM is relatively successful at classifying spectral dataset [18,19].

The LSTM module architecture consists of a cell state (c) and hidden state (output state;
h). Four gates regulate these states: 1. forget (sigmoid activation function, f ), 2. filter (g),
3. input (sigmoid activation function, i), 4. output (sigmoid or tanh function, o). Figure 4
shows the main components of the LSTM model. The cell state retains information acquired
from earlier time steps, and at each time step, gates regulate the flow of information to
and from the cell state. First, the forget gate remembers or forgets the data flowing from
the prior cell state, ct−1, where the decision to forget is formed by processing the input
information, xt, and the previous hidden state, ht−1, through a sigmoid activation function,
whose output, ft, is between [0, 1], as in Equation (4). The input gate, gt, then generates a
new memory state by passing the input information xt and the hidden state of the previous
time step (ht−1) to the cell activation function as in Equation (5). In the meantime, the input
gate takes any parts of gt that will be forgotten by creating an input state it, as in (6), and
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subsequently generates the new memory cell state, ct, as in (7). The output gate generates
the updated hidden state, ht, using the recent memory cell state, ht, and the output state, ot,
as in (8) and (9).

ft = σg

(
W f xt + R f ht−1 + b f

)
(4)

gt = σc
(
Wgxt + Rght−1 + bg

)
(5)

it = σg(Wixt + Riht−1 + bi) (6)

ct = ft ⊙ ct−1 + it⊙gt (7)

ht = ot ⊙ σc(c t) (8)

ot = σg(Woxt + Roht−1 + bo) (9)

where W, R, b, σg, and σc denote the input weights, recurrent weights, offset, gate activation
function, and cell activation function, respectively.
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2.6. Deep Autoencoder–LSTM (DAE-LSTM)

First, an LSTM-based nutrient status detection using hyperspectral measurements
was built. A dropout layer was incorporated into this model to mitigate overfitting in
deep learning models [34]. The dense layer, which is a fully connected neural network
layer, ensures that each neuron in the dense layer receives input from every neuron in
the preceding layer. This layer is utilized to adjust the dimensions of a vector through
matrix-vector multiplication, with backpropagation assisting in training and updating
the matrix values. Dense layers are primarily employed for the output layers, utilizing
the softmax activation function to provide a probability for each class. The model then
predicts the class with the highest probability. Then, the deep autoencoder and LSTM unit
were combined. The autoencoder extracts the deep features and feeds them directly to the
LSTM unit. Figure 6 presents the suggested DAE-LSTM model for diagnosing nutrient
deficiencies in aquaponically grown lettuce. The time-series spectral dataset was fed to
the autoencoder to extract the most representative features. The extracted features were
fed to the LSTM model as a j × 1 cell array, where j is the number of samples at each time
step explained in Table 2, which comprises 900 spectra (samples) for the four classes (low,
medium, optimal) in each run. Each cell comprises an m × n matrix, where m represents
the number of feature values and n is the number of time steps (the number of time steps
for each dataset is described in Table 2). A backpropagation approach was used to train
the end-to-end LSTM model. After completing the training process, the final hidden state
ht−S encodes significant information about the sequential spectral data. ht−S was used
as a representation vector. The fully connected (FC) layer was employed to convert this
vector into a vector of the same length as the number of classes (aquaponics, low, medium,
optimal). Finally, the softmax layer classifies the datasets into target categories. In the
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softmax layer, the number of neurons is adjusted to match the number of classes. In training
the LSTM model, the extracted features were randomly split into 60% for training, 20% for
validation, and 20% for testing. The sigmoid activation function was utilized for the input
gate and forget gate. Both sigmoid and tanh were employed for the output gate, while tanh
was used as the hidden layer function. The Adam optimization function was applied, with
cross-entropy serving as the loss function.
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2.7. Convolutional Neural Network (CNN)

A CNN architecture was developed as a comparison benchmark for the performance of
the DAE-LSTM model, as depicted in Figure 7. The standard CNN architecture comprises
three main types of layers: the input layer, responsible for providing the network with
a collection of spectral data; the hidden layers, commonly consisting of convolutional,
pooling, and flatten layers; and lastly, the output layer, which is a fully connected layer
that flattens the outputs from the preceding layers and transforms them into the desired
target categories. We added some other layers to our framework, such as dense layers,
leaky layers, and leaky rectified linear units (LeakyReLU). All properties of the schematic
CNN model layers are exhibited in Table 3. The first layers in the CNN architecture are
the convolutional layers, which are the most important in the CNN. Convolutional layers
apply a series of filters (2, 2) to the input volume in convolutions. These layers act as
feature extractors from the input dataset. The LeakyReLU layers alter input values that are
below zero by multiplying them with a fixed scalar via a specific thresholding procedure.
The pooling layers perform a spatial downsampling operation on the input volume by
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computing the maximum value (max pooling) or the mean value (average pooling) [34].
To reduce the chance of overfitting problems occurring during the training process, a
max-pooling layer of size 2 × 2 was applied [34]. Mathematically, max-pooling is described
by Equations (10)–(12):

m(L)
1 = m(L−1)

1 (10)

m(L)
2 =

m(L−1)
2 − F(L)

SL + 1 (11)

m(L)
3 =

m(L−1)
3 − F(L)

SL + 1 (12)

where SL denotes the stride and m(L)
1 , m(L)

2 , and m(L)
3 are filters for feature maps such as

2 × 2 or 3 × 3.
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lettuce using a time-series spectral dataset.

Table 3. Components of the proposed deep CNN structure.

Layer Type Input Size Layer Type Input Size

0 Input data 1 × 120 × 1 8 Droput 1 × 30 × 64
1 Conv2D 1 × 120 × 1 9 Conv2D 1 × 30 × 64
2 LeakyReLU 1 × 120 × 32 10 LeakyReLU 1 × 30 × 128
3 Maxpooling2D 1 × 120 × 32 11 Maxpooling2D 1 × 30 × 128
4 Droput 1 × 60 × 32 12 Droput 1 × 15 × 128
5 Conv2D 1 × 60 × 32 13 Dense 1 × 15 × 128
6 LeakyReLU 1 × 60 × 64 14 Flatten 1 × 15 × 128
7 Maxpooling2D 1 × 60 × 64 15 Dense 1 × 15 × 128

Dropout layers were added to reduce overfitting problems [34]. The dense layer is a
type of fully connected neural network layer in which each neuron is connected to every
neuron in the previous layer. The last layer is fully connected, and it acts as a classifier
through the softmax function.

2.8. Traditional Machine Learning

A multi-class support vector machine (MCSVM) is one of the most common classi-
fication methods; therefore, it was utilized in this study to assess the performance of the
LSTM model. In this case, the spectral data were treated as a single growth phase (as a
single time step).

2.9. Performance Evaluation of the Proposed Framework

To evaluate the performance of competing approaches, several performance met-
rics were used, including accuracy (Acc), precision (Pr), recall (Re), and F-measure (Fm)
(Equations (13)–(16)). Acc indicates the number of correctly classified samples relative to
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the test dataset’s total samples. Pr is the ratio of correctly predicted observations to the
total number of predicted observations. Re is the ratio of correctly predicted observations
to total observations. Fm is the harmonic mean of Pr and Re and it is a better measure of
incorrect observation cases.

Acc =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + ∑ FN
× 100 (13)

Pr = ∑ TP
∑ TP + ∑ FP

× 100 (14)

Re =
∑ TP

∑ TP + ∑ FN
× 100 (15)

Fm = 2 ×
(

Pr × Re
Pr + Rel

)
× 100 (16)

3. Results and Discussion
3.1. Evaluation of the Training Process

Both intra- and inter-class heterogeneity influence the accuracy of model training.
Figure 8 illustrates the training accuracy, validation accuracy, training loss, and validation
loss for each period of the training process for DAE-LSTM and DAE-CNN. Both models’
training and validation accuracies improved gradually, even after 400 iterations, after
which they were reasonably established. Similarly, the decrease in loss for models was
gradual until it reached the halting threshold at 600 iterations (Figure 8). The DAE-LSTM
model exhibited superior performance by achieving the highest training accuracy, at 98.5%,
and validation accuracy, at 94.7%. The DAE-CNN model achieved a training accuracy of
92.7% and a validation accuracy of 83.3%. We also observed a slight difference between the
training and validation accuracy of the DAE-LSTM model, indicating that the model fits
the data better than the DAE-CNN. To avoid overfitting, the network was trained by the
back-propagation algorithm with early stopping [34]; therefore, no overfitting issues were
observed during the training process.
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3.2. DAE vs. GA and SFS

This study utilized three distinct feature extraction methods on spectral data: two con-
ventional techniques (GA and SFS) and a deep learning approach (DAE). These extracted
features were employed as inputs for a range of classification models. DAE extracts high-
level representative features for each nutrient without knowing the nature of these features,
which directly feed into the deep classification model. The GA and SFS selected the most
representative features of the three nutrients, each selecting 900 spectral features for nitro-
gen in the spectral range of 450–1728 nm, 900 spectral features for potassium in the spectral
range of 512–1899 nm, and 900 spectral features for phosphorus in the spectral range of
503–1881 nm. These results align with the study of Sun et al., who identified the spectral
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range of 544.1–1229.00 nm for determining NPK in tomatoes [35]. In addition, Pacumbaba
and Beyl found that nutrient shortage significantly affected the spectral reflectance of
lettuce leaves in the visible range of 401–780 nm [36]. Moreover, Herrmann et al. reported
that the shortwave infrared (SWIR) region (1200–2500 nm) is highly sensitive to NPK [37].
A comparative study and quantitative analysis were undertaken to delve deeper into the
impact of deep features on the diagnostic capabilities for plant nutritional status, focusing
on key metrics such as Acc, Pr, Re, Fm, and IoU. The findings revealed that deep feature-
based models extracted through DAE outperformed traditional feature-based approaches.
This may be due to the ability of DAE to extract deep features and wavelengths that are
more discriminative between different classes than those extracted by traditional methods.
Specifically, within the same classification model (LSTM), substituting GA with DAE to
substantially improve Acc, Pr, Re, and Fm by 29.1%, 27.9%, 29.1%, and 31.3%, respectively.
Similarly, in the case of the CNN model, replacing GA with DAE resulted in very significant
enhancements in Acc, Pr, Re, and Fm by 49.2%, 31.7%, 49.01%, and 48.6%, respectively, as
illustrated in Table 4.

Table 4. Comparison of the classification accuracy of all proposed methods.

Model Method
Classification Performance Metrics, %

Acc Pr Re Fm

LSTM
DAE 94.7 94.8 94.7 94.7
GA 73.4 74.1 73.4 72.1
SFS 80.4 81.5 81.4 80.5

CNN
DAE 83.3 83.2 83.3 83.3
GA 55.8 56.3 55.9 56.09
SFS 78.9 80.9 78.9 78.9

MCSVM
GA 72.2 72.1 72.2 72.2
SFS 70.7 70.3 70.7 70.7

3.3. LSTM vs. CNN and MCSVM

This study demonstrates the suitability of the LSTM model for monitoring plant nu-
tritional status using time-series spectral data. Table 4 shows the performance evaluation
of LSTM, CNN, and MCSVM using deep feature extraction methods and choosing the
optimal wavelengths. Regardless of the input method, the LSTM model performed impres-
sively in the classification task, outperforming both CNN and MCSVM. The LSTM model
obtained the highest values for all performance criteria, demonstrating its effectiveness
for monitoring the nutritional status of aquaponically growing plants. The DAE-LSTM
model achieved the highest performance scores for accuracy (Acc), precision (Pr), recall
(Re), and F-measure (Fm). Specifically, the LSTM model achieved scores of 94.7, 94.8, 94.7,
and 94.7 for Acc, Pr, Re, and Fm, respectively. These results are consistent with Petkovski
and Shehu, who used DAE-LSTM to detect anomalies in aquaculture time-series sensor
data, achieving a classification accuracy of 95.1, 93.4, and 95.1 for the pH, dissolved oxygen,
and water temperature datasets, respectively [38]. The DAE-CNN model demonstrated
good performance, achieving good values for Acc, Pr, Re, and Fm of 83.3, 83.2, 83.3, and
83.3. On the contrary, the MCSVM-SFS model exhibited the lowest performance across
all performance criteria, at 70.7, 70.3, 70.7 and 70.7. These results are consistent with the
study of Abdalla et al., who compared LSTM and SVM to classify oilseed rape based on its
nutritional status, demonstrating the significant superiority of LSTM (Acc = 95) over SVM
(Acc = 29) [14]. The findings presented here showcase the effectiveness of the LSTM model
in accurately identifying and understanding the temporal dynamics in feature changes.
Several contributions compared the performance of LSTM, CNN, and traditional models
(e.g., SVM) for classifying spectral data, proving the superiority of deep models, in par-
ticular LSTM [39–41]. The hybridization of DAE and LSTM performed better than other
deep learning methods, as demonstrated in this study and some previous contributions.
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Yu et al. developed a model that combined stacked auto-encoders (SAEs) and a fully con-
nected neural network (FNN) to detect nitrogen in oilseed rape leaves using hyperspectral
images, achieving an accuracy of 90.3%. SAEs were used to extract deep spectral features
from hyperspectral images [42]. Zhou et al. presented a deep method involving wavelet
transform (WT) and stack convolution auto encoder (SCAE) to extract deep features from
visible–near-infrared (400.68–1001.61 nm) hyperspectral image of lettuce for monitoring
the content of cadmium (Cd) and lead (Pb) in lettuce, achieving an accuracy of 93.1 and
94.1% [43]. To detect nitrogen and potassium in rice, Fubing Liao et al. combined CNN and
LSTM using sequential images collected by an unmanned aerial vehicle (UAV) achieved an
accuracy of 88.38% [44], which also demonstrates the superiority of DAE-LSTM.

Confusion matrices were generated to assess the predictive efficacy of the proposed
classification models in discerning various nutrient levels. A confusion matrix is a detailed
tabular representation of classification outcomes, illustrating the correspondence between
actual and predicted classes. The confusion matrix’s vertical axis corresponds to the actual
classes, while the horizontal axis represents the predicted classes. The first row of Figure 9
displays the confusion matrices of the DAE-LSTM model, followed by the second row
showing those of the DAE-CNN model and the third row depicting MCSVM with SFS.
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The study revealed that DAE-LSTM exhibited superior performance in distinguishing
between different levels of nutrient symptoms (low, medium, optimal) with minimal classi-
fication errors, as depicted in Figure 9a. Despite incorporating CNN with deep features
extracted by DAE, it demonstrated comparatively inferior performance when contrasted
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with LSTM. Figure 9b illustrates an escalation in classification errors for CNN. The amal-
gamation of features selected by SFS, GA, and both LSTM and CNN led to a notable
rise in classification errors compared to models relying on deep features extracted with
DAE. Moreover, the combination of MCSVM and SFS exhibited notably poor performance,
indicating a substantial increase in classification errors and the inability of the traditional
machine learning classifier to differentiate between various nutrient levels. Increasing
the model size of the DAE-LSTM can significantly increase the accuracy of nutritional
status detection systems. However, the continual expansion of DAE-LSTM’s size may
pose challenges for deploying deep learning in embedded systems for real-time applica-
tions [14]. Leveraging pre-trained deep learning networks and reducing their size by model
pruning or explicitly searching for more straightforward and compact network topologies
is a recent focus of study. Pruning pre-trained networks involves removing redundant
weights and connections that have minimal impact on improving the objective function. By
implementing pruning techniques, the computational demands of the network are signifi-
cantly reduced, enabling training and deployment on resource-constrained devices. As a
result, forthcoming research endeavors are centered on computational complexity and its
implications. Plants at various growth stages exhibit distinct responses to nutritional stress
and other stimuli. Hence, depending solely on one growth stage to assess a plant’s health
and nutritional condition may lead to incorrect conclusions. Moreover, modeling each
plant growth stage individually is difficult and does not provide a comprehensive view for
decision-makers. Recent developments in various sensing technologies, such as imaging
and non-imaging spectral sensors, have reached a state of maturity, enabling them to obtain
time-series data with high spatiotemporal data accuracy [45]. Hence, to reach a depend-
able determination regarding the nutritional status of plants, it is imperative to construct
models based on spatiotemporal data acquired at various stages of growth. Conventional
classification models such as MCSVM cannot capture dependencies from time-series data
due to their inability to retain past information. Despite the high classification ability
of CNN models, they do not prove worthy when modeling dynamic systems such as a
time-series spectral dataset. Long short-term memory (LSTM) has demonstrated its efficacy
in modeling dynamic systems due to its ability to learn short- and long-term dependencies
between time steps in sequential data [16,18]. Hence, in this investigation, the LSTM
model exhibited remarkable efficacy in identifying the nutritional status of aquaponically
cultivated plants using spectral data collected at various stages of plant development.

4. Conclusions

This study introduced a robust deep learning time-series approach incorporating
deep features to detect the nutritional status of aquaponically cultivated lettuce. The
results indicated the superior performance of deep feature extraction methods compared to
conventional approaches. Moreover, this research highlighted the significance of integrating
multiple temporal data into a cohesive, dynamic model for effective plant status diagnosis.
Furthermore, this study demonstrated the superiority of DAE over both SFS and GA.
The DAE-LSTM model achieved the highest overall classification accuracy of 94.7%. The
presented method offers a pathway to identify the type of nutrient stress and classify the
nutrient status in aquaponically grown lettuce plants. Additionally, the adaptive nature of
this approach with further investigation, study, and re-training on appropriate dataset may
allow it to be easily expanded to other applications, such as disease diagnosis and drought
stress, with minor modifications.
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