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Abstract: Drought stress is one of the key factors impeding agricultural productivity worldwide. This
experiment aimed at investigating the polyethylene glycol (PEG)-induced drought stress effects on
seed germination, physiology, and biochemical mechanisms in Tartary buckwheat genotypes. Four
PEG-induced stress conditions (0%, 10%, 20%, and 30%) were applied to 14 selected genotypes at the
germination stage to evaluate their stress tolerance capacity. Significant differences were obtained
in germination percentage, relative water content (RWC), and all growth parameters among the
studied 14 genotypes. Based on the stress tolerance index (STI), XiNong 9943, XiNong 9940, and
QianKu-5 were found to be tolerant, and QuanKu-4 was susceptible. These cultivars were selected
for further physiological and biochemical characterization. The results demonstrated that the activity
of enzymes was significantly increased with the increase in PEG dose. SOD (superoxide dismutase),
POD (peroxidase), CAT (catalase), and APX (ascorbate peroxidase) levels obtained at 30% PEG in
the XiNong 9943 genotype were 2.01, 2.19, 4.92, and 4.46 times higher, respectively, than the normal
growth condition (T0). Moreover, the secondary metabolite content also increased with the increase in
PEG dose. At 30% PEG, the genotype XiNong 9943 yielded phenols, flavonoids, polyphenol oxidase
(PPO), and phenylalanine ammonia lyase (PAL) levels that were higher by 131%, 95%, 154%, and
164%, respectively, than T0 condition. From both the findings of the activity of enzymes and the
secondary metabolite content, the genotypic response to drought was ranked in the following order:
XiNong 9943 > XiNong 9940 > QianKu-5 > QianKu-4, which supported the STI selection system.
Assessing the overall performance, the genotype XiNong 9943 shows drought tolerance, which can
be useful material for future buckwheat breeding programs.
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1. Introduction

Drought stress is one of the predominant abiotic factors that affects regular plant
growth by disturbing its prevailing vegetative, reproductive, and metabolic processes [1–3].
Depending on the intensity, time, and nature of the crops, drought can reduce the yield
by more than 50%, which can have a great impact on global food security [4,5]. Tartary
buckwheat (Fagopyrum tataricum (L.) Gaertn), a member of the Polygonaceae family, is well
adapted and cultivated in arid and semi-arid regions and its consumption propensity is
increasing due to its innate nutritional and biological properties [6]. It has wide genetic
diversity with some advantageous qualities, including quick growth rates, low agronomic
expenses and great adaptability even in infertile soil [7,8]. Basically, buckwheat seeds
are used as a prime source of traditional medicines and now they are used in daily food
intake, such as bread, noodles, tea, sprouts, and vinegar [6,9], because its seeds contain
a wide range of bioactive phytochemicals, amino acids, dietary fiber, vitamins, minerals,
and trace elements [9,10]. Thus, considering several health-promoting benefits, increasing
production per unit area in the ever-changing climatic conditions is imperative to gaining
global food security.

Unfavorable soil moisture conditions during sowing can often impede buckwheat
seed germination, which leads to irregular seedling emergence [11,12]. Drought stress
reduces water potential and hampers water uptake, thereby impeding seed germination
and seedling growth [13–15]. Polyethylene glycol (PEG)-induced drought stress is the
most popular screening technique used to evaluate the drought tolerance of various crop
varieties during the seed germination stage [16,17]. Determining alterations in radicle and
plumule properties, including radical length, plumule length and biomass of seedlings
exposed to drought stress gives significant insight regarding these traits [14,15,18].

From a physiological and biochemical standpoint, drought stress triggers excessive
generation of reactive oxygen species (ROS) like O2

•−, leading to oxidative damage in
plants [19,20]. Wang et al. [21] suggested that PEG or NaCl can enhance the enzyme activity
in the plumules and radicles of alfalfa. Phenolics also play a key role in the plant’s defense
against ROS-induced damage by eliminating free radicals [22,23]. Drought stress also
influences the formation of secondary metabolites, including phenols and flavonoids which
enhance plant defense mechanisms [24–26]. Phenylalanine ammonia-lyase (PAL), a key
regulating enzyme, promotes the synthesis of phenolic compounds in plant tissues [27–29].
Moreover, the production of PAL and PPO increases during stress, bolstering plant defense
mechanisms [30,31]. In addition, water-stressed plants synthesize low-molecular-weight,
water-soluble organic compounds [32,33]. The resultant lower osmotic potential helps to
maintain the cellular turgor and volume which are crucial for metabolic processes [34–36].

The physiological activities of various crops, including chickpea [37], cowpea [38],
lentil [3], and walnut [39], etc., under PEG-induced drought stress at the germination stage
have been demonstrated. However, no research has been performed so far on Tartarian
buckwheat at seed germination stage under PEG-induced drought stress. This is the first
study in Tartary buckwheat to look at PEG-6000-induced drought stress at the germination
stage to identify tolerant and susceptible genotypes. The results will be helpful in selecting
the most tolerant Tartary buckwheat genotypes for future breeding programs.

2. Results
2.1. Effect of PEG-Induced Drought Stress on Seed Germination and Seedling Morphology
2.1.1. Germination Percentage

The germination percentage of all the tested genotypes steadily decreased with the
increase in PEG-6000 concentration (Figure 1A). The highest germination reduction was
found at 30% PEG (T3) in QianKu-4 (96%) followed by XiQiao-3 (93%), whereas the lowest
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was in QianKu-5 (39%) followed by XiNong 9943 (43%) in contrast to its normal growth
condition (T0) (Figure 1A). In addition, among the treatments, the germination percentage
at T3 treatments was significantly affected compared to the control.
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Figure 1. Effect of PEG-induced drought stress on germination (A) and relative water content (B) in
different Tartary buckwheat genotypes at germination stage. T0: well-watered, T1: drought stress
maintained at 10% PEG-6000 concentration, T2: drought stress at 20% PEG-6000, T3: drought stress
at 30% PEG-6000. Values indicate the means of four replications and the error bars represent the
standard error. Different letters indicate that the mean values of the presented data are significantly
different according to Duncan’s test at the p < 0.05 level.

2.1.2. Relative Water Content

In the case of relative water content (RWC), all the genotypes showed a decreasing
trend with increasing PEG concentration and eventually, in all cases, the highest reduction
of RWC was reported in QianKu-4 (51%) followed by ChuanKu-1 (49%) at T3 treatment
compared to the respective control (Figure 1B). Genotype XiNong 9943 showed the lowest
reduction of RWC (23%) compared to other genotypes at T3 treatment. This result sug-
gested that severe water stress significantly reduced the RWC of Tartary buckwheat at its
germination stage.

2.1.3. Shoots and Roots Length

Both plumule and radical length of Tartary buckwheat genotypes were reduced with
an increment in PEG percentage (Figure 2). Among the treatments, the highest reduction
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of both parameters was observed in T3 as compared to the normal condition (T0). It is
suggested that the growth length of shoots and roots was severely affected by the imposed
drought level. But lower levels of drought stress were not significantly affected by growth of
shoots and roots. In addition, among all the genotypes, the highest reduction of shoot length
was observed in QianKu-4 (94%) and XiQiao-3 (94%), along with their root reduction at 95%.
The lowest shoot-root length reduction was found in QianKu-5 (69% and 54%), followed
by XiNong 9943 (61%) genotypes, respectively, at T3 treatment compared to control.
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Figure 2. The PEG-induced drought stress effect on (A) shoot length and (B) root length in different
Tartary buckwheat genotypes at the germination stage. T0: well-watered, T1: drought stress main-
tained at 10% PEG-6000 concentration, T2: drought stress at 20% FC PEG-6000, T3: drought stress
at 30% PEG-6000. Values indicate the means of four replications and the error bars represent the
standard error. Different letters indicate that the mean values of presented data are significantly
different according to Duncan’s test at the p < 0.05 level.

2.1.4. Fresh and Dry Weight of Shoots and Roots

All 14 genotypes of Tartary buckwheat revealed a common trend in reduction rate in
fresh and dry weight of both shoots and roots with increasing PEG-6000 concentration due
to osmotic stress. Among the treatments, the highest reduction in fresh and dry weight of
shoots and roots was observed in T3 treatment as compared to control (Figures 3 and 4).
Among the genotypes, the lowest shoot fresh weight was estimated in ChuanKu-1 (6.54 mg)
followed by QianKu-4 (6.63 mg), and shoot dry weight in ChuanKu-1 (1.19 mg) followed
by XiQiao-3 (1.45 mg). Similarly, the lowest root fresh weight was reported in QianKu-4
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(1.55 mg) followed by ZhaoKu-1 (1.56 mg) while root dry weight was in XiQiao-3 (0.18 mg)
and QianKu-4 (0.19 mg) at the 30% PEG treatments.

2.2. Measurement of Stress Tolerance Index Based on Seed Germination and Seedling Morphology

Drought stress is a significant growth-limiting condition that impedes plant growth at
any point in its life cycle. We calculated stress tolerance index (STI) for all 14 genotypes and
selected three tolerant and one susceptible genotype for further biochemical investigation
(Table 1). In our study, genotype XiNong 9943 performed better than other genotypes in
terms of STI for most of the tested shoots and roots-related parameters. For germination,
genotype QianKu-5 had the highest mean STI value (85.56) followed by XiNong 9943 and
the lowest was in FengKu-2. Shoots and roots lengths are both tightly linked with stress
tolerance in the seedling stage. For example, deep root systems easily harvest moisture
from deeper soil. The current study demonstrated a clear decrease in both shoots and roots
length during the PEG-drought-induced condition. Among the genotypes, QianKu-5 had
the highest STI for shoot length, which was 63.11, and the lowest was in the genotype
QianKu-4 (35.21).
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Figure 3. The effect of PEG-induced drought stress on (A) shoot fresh weight and (B) root fresh
weight in different Tartary buckwheat genotypes at the germination stage. T0: well-watered, T1:
drought stress maintained at 10% PEG-6000 concentration, T2: drought stress at 20% FC PEG-6000,
T3: drought stress at 30% PEG-6000. Values indicate the means of four replications and the error bars
represent the standard error. According to Duncan’s test at the p < 0.05 level, different letters denote
statistically different mean values of the reported data.
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We found the highest STI for root length was in genotype XiNong 9943 (68.67) and the
lowest was in ChuanKu-1 (42.68). We also tested STI for shoot fresh weight (SFW), shoot
dry weight (SDW), root fresh weight (RFW), and root dry weight (RDW) and found that
the highest STI for SFW, SDW, RFW, and RDW was in the genotype XiNong 9943 followed
by QianKu-5, and the lowest for QianKu-4. On top of these morphological traits, we also
calculated STI for RWC. The mean STI for all 14 genotypes ranges from 79.93 to 89.75. Like
shoots and roots traits, XiNong 9943 had the highest STI for RWC followed by QianKu-5
and the lowest was found in XiNong 9909. In the overall summation index for all the traits,
STI ranked highest in XiNong 9943 followed by QianKu-5 and XiNong 9940. The lowest
STI summation index was observed in QianKu-4.

2.3. Effect of PEG-Induced Drought Stress on Physiological and Biochemical Mechanisms

Based on the STI summation index, three tolerant (XiNong 9943, QianKu-5, and
XiNong 9940) and one susceptible (QianKu-4) cultivars were hypothetically selected to
investigate the impact of drought stress on physiological and biochemical activities at the
germination stage of Tartary buckwheat.
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Figure 4. The PEG-induced drought stress effect on (A) shoot dry weight and (B) root dry weight in
different Tartary buckwheat genotypes at the germination stage. T0: well-watered, T1: drought stress
maintained at 10% PEG-6000 concentration, T2: drought stress at 20% FC PEG-6000, T3: drought
stress at 30% PEG-6000. Values indicate the means of four replications and the error bars represent
the standard error. Using Duncan’s test at the p < 0.05 level, different letters denote statistically
significant differences in the mean values of the reported data.
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Table 1. Stress tolerance index performance based on germination percentage and morphological characters at germination stage.

Variety GM (%) Shoot Length
(mm)

Root Length
(mm/Seedling)

SFW
(mg/Seedling)

RFW
(mg/Seedling)

SDW
(mg/Seedling)

RDW
(mg/Seedling) RWC (%) STI Rank

Summation Index Ranking

XiNong 9943 79.55 51.89 68.67 53.81 71.32 74.29 70.50 89.75 1.63 1
QianKu-5 85.56 63.11 64.97 53.37 56.69 69.88 70.14 88.01 2.38 2

XiNong 9940 73.33 42.77 52.03 46.63 59.42 57.31 54.10 83.71 6.88 3
Jin Jiang 72.41 53.17 63.08 51.85 53.11 58.05 53.24 82.53 6.88 4
YunKu-2 71.86 49.25 49.92 42.73 55.63 59.95 57.82 83.62 7.00 5

XiNong 9909 66.24 55.18 65.00 42.72 48.72 73.50 58.21 79.28 7.13 6
YunKu-1 66.95 48.43 54.14 38.86 57.80 54.42 62.52 82.51 7.50 7
DiKu-1 64.36 54.22 48.90 46.75 54.43 58.86 56.28 80.25 7.63 8

FengKu-2 51.00 44.30 53.30 45.20 51.46 57.74 62.17 84.26 8.38 9
ChuanKu-1 60.23 48.59 42.68 48.89 54.42 62.92 57.80 80.09 8.75 10

XiQiao-3 52.19 42.57 43.98 44.47 55.70 66.56 56.34 82.78 8.88 11
FengKu-3 63.79 38.67 45.46 46.18 56.95 64.89 52.36 81.13 9.13 12
ZhaoKu-1 61.17 42.19 48.20 44.22 53.17 57.05 54.44 85.18 9.63 13
QianKu-4 52.54 35.21 47.47 37.24 43.85 46.38 50.34 79.93 13.25 14

STI—stress tolerance index, GM—germination, SFW—shoot fresh weight, RFW—root fresh weight, SDW—shoot dry weight, RDW—root dry weight, and RWC—relative water content.
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2.3.1. ROS, MDA, and Osmotic Solutes Content

In comparison to the control, all examined cultivars underwent a progressive rise
in MDA content and O2

•− production at varying levels of PEG-induced drought stress
(Figure 5A,B). The highest increasing values of MDA and O2

•− concentration were observed
in susceptible variety QianKu-4 (4.56 and 1.56 µmol g−1 FW) at T3 treatment, whereas the
lowest was calculated in XiNong 9943 cultivars. Meanwhile, among the treatments, T0 and
T1 treatments did not show significant differences. However, the result suggested that the
MDA content and O2

•− generation were increased by drought stress.
Pro and soluble protein content increased significantly under PEG-induced drought

stress at the germination stage. Data presented in Figure 5C,D show that Pro and soluble
protein content significantly increased with increasing levels of PEG-6000 concentration and
eventually, the maximum increment was observed at T3 treatment in all genotypes. At 30%
PEG, the highest Pro and soluble protein content accumulated in XiNong 9943 which was
5.55 and 6.23-fold higher than its control, QianKu-4. This result indicates that the XiXong
9943 genotype has a higher drought (PEG) tolerance capacity than the other genotypes.
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Figure 5. The effect of drought stress induced by PEG-6000 on (A) superoxide (O2
•−), (B) mal-

ondialdehyde (MDA), (C) proline, and (D) soluble protein content in different Tartary buckwheat
genotypes at the germination stage. T0: well-watered, T1: drought stress maintained at 10% PEG-6000
concentration, T2: drought stress at 20% PEG-6000, T3: drought stress at 30% PEG-6000. Values
indicate the means of four replications and the error bars represent the standard error. Different letters
indicate that the mean values of presented data are significantly different according to Duncan’s test
at the p < 0.05 level.

2.3.2. Activities of Enzymatic Antioxidants

The damaging effects of oxidative stress induced by increasing ROS content in ger-
minated seeds of Tartary buckwheat genotypes were ameliorated by increasing activity
of enzymatic antioxidants such as SOD, POD, CAT, and APX under drought stress. The
activity of enzymes such as SOD, POD, CAT, and APX were elevated in all the genotypes
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under varying degrees of drought stress induced by PEG (Figure 6). Ultimately, the highest
increase in antioxidants across all the genotypes of Tartary buckwheat was observed at
30% PEG treatment. The maximum activities SOD, POD, CAT, and APX were recorded in
the XiNong 9943 genotype and increased by 2.01, 2.19, 4.92, and 4.46 times, respectively,
greater than its normal growth condition (T0). The lowest activity of enzyme was found
in the QianKu-4 genotype, which increased by 1.39, 1.45, 3.04, and 2.72 folds, respectively,
compared to the control (T0). The results showed that the activity of enzymes increased in
the following order: XiNong 9943 > XiNong 9940 > QianKu-5 > QianKu-4 among the four
tested genotypes.
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Figure 6. The impact of PEG-6000-induced drought stress on various genotypes of Tartary buckwheat
at the germination stage: (A) superoxide dismutase (SOD), (B) peroxidase (POD), (C) catalase (CAT),
and (D) ascorbate peroxidase (APX). T0: well-watered, T1: drought stress maintained at 10% PEG-6000
concentration, T2: drought stress at 20% FC PEG-6000, T3: drought stress at 30% PEG-6000. Values
indicate the means of four replications and the error bars represent the standard error. According to
Duncan’s test at the p < 0.05 level, different letters denote statistically different mean values of the
reported data.

2.3.3. Secondary Metabolites as Antioxidants

In comparison to the corresponding control plants, all cultivars underwent a consider-
able rise in the content of secondary metabolites, PAL and PPO, under varying levels of PEG
concentration (Figure 7A,B). The highest increment of PAL and PPO activity was observed
in XiNong 9943 (164% and 154%, respectively), followed by XiNong 9940 (158% PAL) and
QianKu-5 (146% PPO) at 30% PEG treatment. On the other hand, the lowest PAL (106%)
and PPO (105%) activity were observed in the QianKu-4 genotype at the same treatments.

To evaluate the effects of PEG-induced drought stress in all Tartary buckwheat
genotypes, total phenol and flavonoid levels were calculated as non-enzymatic activities
(Figure 7C,D). The concentration of phenolics and flavonoids was dramatically increased
under PEG-induced drought stress. At 30% PEG-induced drought, the XiNong 9943 geno-
type yielded the highest phenolic and flavonoid content, which was 131% and 95% higher
than their controls, respectively. On the other hand, the lowest was found in the QianKu-
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4 genotype, which increased by 72% and 63% higher than the respective control at the
same treatment.

This study also used the FRAP assay and free radical DPPH scavenging activity
measurement to assess the total antioxidant capacity (Figure 7E,F). The result showed
that increasing levels of DPPH scavenging and FRAP capacity gradually increased with
increasing levels of PEG concentration, eventually increasing in all cases to levels that
were 1.60 and 3.90 times higher at T3 treatment than the control. The lowest activity was
observed in the QianKu-4 genotype.
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Figure 7. The impact of PEG-6000-induced drought stress on various Tartary buckwheat genotypes at
the germination stage in terms of (A) phenylalanine ammonia lyase (PAL), (B) polyphenol peroxidase
(PPO), (C) flavonoids, (D) phenolics, (E) DPPH scavenging activity, and (F) ferric reducing antioxidant
power (FRAP). T0: well-watered, T1: drought stress maintained at 10% PEG-6000 concentration,
T2: drought stress at 20% FC PEG-6000, T3: drought stress at 30% PEG-6000. Values indicate the
means of four replications and the error bars represent the standard error. Different letters indicate
that the mean values of presented data are significantly different according to Duncan’s test at the
p < 0.05 level.

2.3.4. Pearson’s Correlation Analysis

The result of Pearson’s correlation analysis illustrated that MDA and O2
•− significantly

(p ≤ 0.01) have a positive correlation with Pro, soluble protein, SOD, POD, CAT, APX, PAL,
PPO, flavonoids, phenolics, FRAP, and DPPH scavenging capacity (Table 2).
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Table 2. Pearson’s correlation analysis among the biochemical parameters.

Parameter O2•− MDA Pro SP SOD POD CAT APX PAL PPO Flav Phenol DPPH FRAP

O2 1
MDA 0.94 ** 1
PRO 0.611 ** 0.766 ** 1
SP 0.651 ** 0.815 ** 0.952 ** 1

SOD 0.597 ** 0.756 ** 0.932 ** 0.956 ** 1
POD 0.45 ** 0.645 ** 0.913 ** 0.915 ** 0.91 ** 1
CAT 0.602 ** 0.773 ** 0.911 ** 0.963 ** 0.941 ** 0.919 ** 1
APX 0.556 ** 0.74 ** 0.928 ** 0.96 ** 0.962 ** 0.946 ** 0.963 ** 1
PAL 0.627 ** 0.801 ** 0.916 ** 0.963 ** 0.956 ** 0.92 ** 0.949 ** 0.967 ** 1
PPO 0.58 ** 0.763 ** 0.929 ** 0.942 ** 0.93 ** 0.94 ** 0.939 ** 0.951 ** 0.953 ** 1
Flav 0.604 ** 0.78 ** 0.924 ** 0.972 ** 0.96 ** 0.942 ** 0.964 ** 0.974 ** 0.974 ** 0.964 ** 1

Phenol 0.661 ** 0.808 ** 0.908 ** 0.919 ** 0.886 ** 0.901 ** 0.935 ** 0.924 ** 0.907 ** 0.938 ** 0.923 ** 1
DPPH 0.62 ** 0.792 ** 0.93 ** 0.967 ** 0.937 ** 0.921 ** 0.967 ** 0.955 ** 0.958 ** 0.951 ** 0.963 ** 0.93 ** 1
FRAP 0.681 ** 0.825 ** 0.949 ** 0.975 ** 0.938 ** 0.907 ** 0.965 ** 0.939 ** 0.943 ** 0.938 ** 0.961 ** 0.928 ** 0.971 ** 1

Here, O2
•−—superoxide, MDA—malondialdehyde, Pro—proline, SP—soluble protein, SOD—superoxide dis-

mutase, POD—peroxidase, CAT—catalase, APX—ascorbate peroxidase, PAL—phenylalanine ammonia lyase,
PPO—polyphenol peroxidase, Flav—flavonoids, DPPH—free DPPH radical scavenger, FRAP—ferric reducing
antioxidant power, and ** indicates 1% significance (p < 0.05).

2.3.5. Heatmap and PCA

The heatmap hierarchical analysis revealed a gradual decline in seedling growth
parameters and relative water content (RWC) with increasing drought stress levels, with
the highest values observed in T0 and T1 treatments (Figure 8A). The most substantial
enhancements were observed in T3 treatment, while the lowest values were recorded in T0
and T1 treatments. Hierarchical clustering identified five distinct clusters among the sixteen
treatments, with drought being the key clustering factor. T2 and T3 treatments of all the
genotypes formed individual clusters, while T0 and T1 treatments clustered together due
to higher germination values and growth parameters, suggesting no significant differences
between them. Additionally, T2 and T3 treatments formed separate clusters due to increased
levels of MDA, ROS, osmolytes (soluble protein and Pro), enzymatic and non-enzymatic
antioxidants, and total antioxidant capacity. The clustering indices suggested that drought
stress alters phytochemical parameters and establishes strong correlations among them.

Principal component analysis (PCA) was employed to assess the tolerance levels of
tested genotypes and explore correlations under drought stress (Figure 8B). PCA results
aligned with heatmap clustering, illustrating distinct clusters for control and PEG-induced
drought stress genotypes. PC1 and PC2 explained 88.9 and 6.7% of cumulative variance,
respectively, forming separate clusters, consistent with heatmap findings. PC1 indicated
strong positive correlations among MDA, ROS, the activity of enzymes, and total antioxi-
dant capacity, while PC2 showed negative correlations. The second PCA aimed to evaluate
the genotypic performance (Figure 8C), revealing significant differences among the studied
genotypes under severe drought stress. However, T0 and T1 treatments showed no signifi-
cant genotype distinctions. XiNong 9943, QianKu, and XiNong 9940 genotypes showed
higher tolerance to drought, characterized by elevated osmotic solutes, antioxidant capacity,
and enzymatic/non-enzymatic antioxidants. Conversely, QianKu-4 showed the lowest
performance due to increased MDA content and ROS levels under PEG-induced drought
stress. These findings provide insight into genotype-specific responses to drought and
potential markers for drought tolerance.
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Figure 8. Drought stress impacts were assessed through hierarchical clustering analysis using various
enzymatic and non-enzymatic activities, ROS, MDA, plant growth parameters, photosynthesis rate,
Chl pigments, stomata properties, RWC, and osmotic solutes (A). Principal component analysis (PCA)
was among the treatments (B). PCA was performed between all treatment and varieties using all trails
(C). Here, T0: well-watered as maintained at 80% field capacity (FC), T1: drought stress maintained at
60% FC, T2: drought stress at 40% FC, T3: drought stress at 20% FC.

3. Discussion

Drought stress poses a significant challenge to agricultural productivity, particularly in
arid and semi-arid regions [40,41], affecting seed germination and seedling emergence [12].
Our research showed that when PEG-induced drought stress increased, Tartary buckwheat
seed germination and early seedling establishment gradually decreased. This decline in
germination percentage is attributed to various factors, including reduced water availability,
which hinders reserve mobilization, respiration, hormonal and enzymatic activities, and
protoplasm dilution necessary for efficient embryonic growth [42]. Our findings corroborate
previous research on lentils, indicating a gradual reduction in germination percentage with
increasing PEG concentration [3].

Shoots and roots lengths are crucial indicators of drought resistance in plants. Our
results delineated a consistent decrease in shoots and roots lengths across all the genotypes
under PEG-induced drought stress, with higher reductions observed in drought-sensitive
cultivars like QianKu-4. This pattern aligns with prior investigations on cowpea, Lactuca
sativa, wheat, and maize, elucidating notable variations in shoots and roots length during
germination under drought stress conditions [31,32,43]. Moreover, our analysis of fresh
and dry weights of roots and shoots revealed a reduction in response to PEG-induced
drought stress across the studied genotypes. While tolerant cultivars showed minimal
changes in biomass accumulation, susceptible cultivars experienced significant reductions
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in seedling water content and biomass accumulation. Notably, XiNong 9943, QianKu-
5, and XiNong 9940 genotypes demonstrated a greater ability to withstand drought, as
evidenced by their reduced shoots and roots length reductions and biomass accumulation
in comparison to other cultivars. Several previous studies demonstrated that genotypes
with elongated shoots and roots lengths [24,44], and lesser reductions in seedling water
content and biomass accumulation [45,46] under drought stress conditions are essential for
sustainable agricultural practices. These results emphasize the importance of identifying
and selecting genotypes with superior drought tolerance traits to enhance crop productivity
in water-stressed environments.

Our results highlight the significance of maintaining optimal leaf water status and devel-
oping osmotic adjustment mechanisms to enhance ROS detoxification, protein and enzyme sta-
bility, and cell membrane protection under PEG-induced drought stress conditions [26,27,47].
Consistent with the observations in other crops, our study demonstrated a reduction in
relative water content (RWC) in Tartary buckwheat seedlings under PEG-induced drought
stress [5,43]. The XiNong 9943 genotype showed higher RWC, suggesting a more effective
water uptake system possibly associated with increased proline (Pro) content and osmotic
solute accumulation. Malondialdehyde (MDA) levels serve as crucial indicators of mem-
brane lipid peroxidation and damage, reflecting a variety tolerances to stress [16,48]. Under
drought stress, we found increased ROS and MDA accumulation, with the susceptible geno-
type (QianKu-4) showing the highest concentrations and the tolerant genotype (XiNong
9943) showing the lowest. Tolerance mechanisms may mitigate O2

•− and MDA concentra-
tions by regulating osmotic solutes and enhancing antioxidant defenses, thereby preserving
membrane permeability [49]. Compatible solutes like Pro play pivotal roles in maintain-
ing osmotic potential and scavenging free radicals under drought conditions [37,41,50].
Our study indicated that the dramatic increases in soluble protein and Pro levels in PEG
drought-stressed seedlings, with the susceptible genotype (QianKu-4) being more neg-
atively impacted, highlighted its higher susceptibility to osmotic stress. These results
corroborated past research showing elevated Pro content in response to drought stress,
facilitating seed germination and seedling development [51,52].

Plants possess inherent defense mechanisms against excess ROS-induced oxida-
tive damage by upregulating the activity of enzymes, including SOD, POD, CAT, and
APX [53,54]. Our study demonstrated that PEG-induced drought stress significantly aug-
mented the activity of these antioxidant enzymes across Tartary buckwheat genotypes,
reflecting their role in mitigating oxidative stress, a finding consistent with previous re-
search in spinach and maize [55]. With the phenylpropanoid pathway, PAL catalyzes
the conversion of L-phenylalanine to trans-cinnamic acid, a precursor for phenolic com-
pounds like phenols and flavonoids [26,32,41]. All genotypes showed an increase in PAL
activity under PEG-induced drought stress, indicating PAL’s function in promoting the
synthesis of phenolic compounds in response to ROS exposure. Another phenolic enzyme,
PPO, plays a critical role in oxidizing phenols to quinones, contributing to plant stress
tolerance [56,57]. Our results revealed heightened PPO expression levels in response to
drought stress, consistent with research indicating the induction of PAL and PPO activi-
ties under stress conditions to bolster phenolics and flavonoids, thus reducing oxidative
damage [19,37,50]. Furthermore, secondary metabolites, including phenols and flavonoids,
were found to be substantially influenced by drought stress and genotype variations, with
tolerant cultivars exhibiting higher concentrations. The positive correlation between PAL
activity and phenolic content underscores the significance of PAL in regulating phenolic
metabolism under drought stress conditions, aligning with previous studies suggesting that
drought-stressed plants increase phenolic compound production through enhanced PAL
activity [58,59]. These results clarify the critical roles that phenolic and enzymatic pathways
play in protecting Tartary buckwheat genotypes from oxidative stress and improving their
resistance to drought.

In addition, we measured the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scaveng-
ing activity and ferric reducing antioxidant power (FRAP) to determine the total activity
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of enzymes in germination seedlings of Tartary buckwheat genotypes. The higher FRAP
and DPPH activities observed in drought-exposed plants compared to drought-unexposed
plants indicate enhanced total antioxidant capacity under drought stress conditions, consis-
tent with previous research [19,60,61]. These results underscore the influence of phenolic
and flavonoid levels on overall antioxidant activity, highlighting the positive relationship
between PAL activity, phenolic compounds, FRAP, and DPPH scavenging activity [16,47,62].
Our results validate the hypothesis that higher PAL activity raises phenolic compound
levels, which in turn increases total antioxidant activity and helps Tartary buckwheat
genotypes resist drought better [6].

Heatmap hierarchical clustering, PCA, and Pearson’s correlation analysis were per-
formed to assess genotypic performance under drought stress by evaluating the interrela-
tions among principal components and plant adaptation indexes. The correlation analysis
revealed significant positive correlations among MDA, O2

•−, osmotic solutes, total antiox-
idant capacity, enzymatic, and non-enzymatic antioxidants, align with previous studies
demonstrating the intricate network of biochemical responses to drought stress [18,63,64].
Strong correlations between physiological and biochemical indices were revealed by the
heatmap hierarchical clustering, which also showed the intricate relationships between sev-
eral traits across various treatments. PCA results echoed the heatmap clustering findings,
observing positive correlations among traits assessing drought tolerance. The distinct clus-
tering observed among all traits, particularly the identification of the XiNong 9943 genotype
as exhibiting the highest drought tolerance. This result is consistent with prior research
indicating the importance of RWC regulation, osmotic adjustment, and antioxidant defense
mechanisms in conferring stress resilience [17,65–67]. Overall, the integration of these
analytical approaches enhances our understanding of genotypic responses to PEG-induced
drought stress, elucidating key physiological and biochemical mechanisms underlying
drought tolerance in Tartary buckwheat genotypes.

4. Materials and Methods
4.1. Experimental Materials and Locations

Fourteen genotypes of Tartary buckwheat were collected from the Northwest A&F
University in Shaanxi, China (34.26◦ N, 108.06◦ E). Prior to sowing, uniform seeds were
properly cleaned, surface sterilized for 15 min with 0.3% (v/v) sodium hypochlorite solution,
and then rinsed three times in sterile distilled water. After this, for each genotype, 25 seeds
were placed on two-layer filter paper in a Petri dish (9 cm) containing 10 mL of deionized
water as control (T0) or solutions of 10% (T1), 20% (T2), and 30% (T3) PEG-6000 to induce
drought stress. Four replications were performed for each treatment of every genotype.
The Petri dishes were arranged in a complete randomized block design within a controlled
growth chamber set at 25 ± 1 ◦C, with a dark condition and 70% relative humidity. After
11 days, germinated seeds were collected for morphological and physiological analysis.
Shoots were separated from roots, immediately frozen in liquid nitrogen, and stored at
−80 ◦C for subsequent biochemical assays.

4.2. Germination Percentage, Morphological Parameter, and Relative Water Content

To assess germination percentage, seeds were monitored daily for the first 8 days
in the growth chamber, considering the emergence of the radical through the seed coat
as germination. After 11 days, five seedlings were randomly selected for measuring
plumule and radical length, as well as fresh and dry weights. Plumule and radical lengths
were determined using a vernier scale, and the electronic balance meter was used to
record the fresh and dry weights. The relative water content (RWC) of leaf samples
was determined following the method of Bowman [68]. After measuring fresh weight
(FW) initially, samples were then saturated with deionized water for one day in darkness.
After carefully wiping away surface water with a paper towel, the turgid weight (TW)
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was calculated. Subsequently, samples were oven-dried at 80 ◦C for 72 h, enabling the
calculation of dry weights (DW). RWC was then calculated by the following formula:

RLWC (%) = [FW − DW]/[TW − DW] × 100

4.3. Measurement of Stress Tolerance Index

The most severe and contrasting genotypes for a thorough physio-biochemical analysis
were identified by ranking the genotypes based on their total STI value. The stress tolerance
index (STI) was calculated for each genotype against those traits using the formula:

STI = (trait value under drought treatment/trait value under control) × 100

STI value ranging from 0 to 100 indicates tolerance, where a low value indicates
drought tolerance among the genotypes [69].

4.4. Determination of Superoxide Anion, MDA Content, Antioxidant Activity, and
Osmotic Solutes

The determination of O2
•−, MDA content, antioxidant activity, and osmotic solutes in

Tartary buckwheat leaves was performed following the method described in our previous
report [1]. Briefly, fresh samples (0.3 g) were homogenized with 10 mL of 0.05 M Na-
phosphate buffer (pH 7.8) and subjected to two rounds of centrifugation at 12,000× g for
10 min at 4 ◦C. The O2

•− concentration was quantified by measuring nitrite formation from
hydroxylamine photometrically, with absorbance recorded at 530 nm. MDA content was
assessed using thiobarbituric acid method to assess lipid peroxidation. The SOD activity
was evaluated by its ability to prevent the photochemical reduction of nitro tetrazolium
to blue formazan at 560 nm. POD activity was measured by guaiacol oxidation, with
absorbance read at 470 nm. CAT activity was determined by changes in spectrophotometer
readings at 240 nm at one-minute intervals. The activity of APX was measured based on
H2O2-dependent oxidation of ascorbate, and the decrease in absorbance was measured
at 290 nm. Secondary metabolites content: polyphenol peroxidase (PPO) activity was
determined by assessing the oxidation of substrates like catechol, while phenylalanine
ammonialyase (PAL) activity was measured by monitoring the production of trans-cinnamic
acid, which is described in our previous studies [1]. For quantifying Pro content, fresh
leaves (0.5 g) were homogenized with 10 mL of 3% sulfosalicylic acid. After centrifugation,
the supernatant (2 mL) was mixed with 2 mL of acid-ninhydrin (1.25 g ninhydrin in
30 mL glacial acetic acid and 20 mL 6 M phosphoric acid) and 2 mL of glacial acetic acid,
boiled, and then cooled. The reaction mixture was extracted with 4 mL of toluene, and
the absorbance was recorded at 520 nm. The concentration of Pro was determined from a
standard curve and calculated on a fresh weight basis as follows:

µg proline/g FW = [(µg proline/mL × mL toluene)/115.5 µg/µmole]/[(g sample)/5]

4.5. Estimation of Total Antioxidant Capacity and Non-Enzymatic Antioxidant Activity

Tartary buckwheat seedling samples were freeze-dried, then ground with a mortar
and pestle and sieved through a 60 mm mesh screen to determine the amount of flavonoid,
total phenol, and total antioxidant capacity. After shaking the ground samples at 200 rpm
and 50 ◦C for two hours, 0.2 g of the samples was extracted using a 6 mL solution of 80%
ethanol, then centrifuged at 4000× g for ten minutes. The determination of phenolic content
was conducted using the Folin-Ciocalteu colorimetric method with slight modifications [70].
A mixture comprising 1 mL of the extract, 0.75 mL of Folin-Ciocalteu reagent, 0.25 mL of
sodium carbonate (7.5%), and 1 mL of distilled water was incubated for 90 min at 30 ◦C. The
absorbance was measured at 765 nm against a blank. Flavonoid content was determined
using the AlCl3 colorimetric method [71], where a solution of 0.3 mL of 5% NaNO2 was
vortexed with the extract and supernatant, followed by the addition of 2 mL of 1 M NaOH,
and absorbance was measured at 510 nm. The free radical scavenging activity of ethanol
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dry leaf extracts was determined using the DPPH (1,1-diphenyl-2-picryl hydrazyl) method
suggested by Chen and Ho [72]. Extracts were diluted with 80% ethanol (10 to 100 g mL−1),
then mixed with DPPH reagent and vortexed. After 30 min of dark incubation at room
temperature, the mixed sample (Asample) and negative control (the mixer of DPPH reagent
and ethanol extract solution without the sample, Acontrol) were measured at 517 nm. Trolox
was used as a reference drug for free radical scavenging capacity. The DPPH-free radical
discoloration percentage was estimated by using the following formula:

Radical Scavenging Activity (%) = (1 − (Asample/Acontrol) × 100

Additionally, the antioxidant capacity was assessed following the ferric-reducing
antioxidant power (FRAP) method [73]. To create a FRAP working reagent, 10 mM 2,4,6-tri-
pyridyl-s-triazine, 0.3 M acetated buffer (pH 3.6), and 20 mM FeCl3 were combined in a
10:1:1 (v/v/v) ratio. To the mixture, 0.3 mL of FRAP reagent, 0.2 mL of extract sample, and
0.3 mL of deionized water were added. The absorbance was measured at 593 nm, and the
FRAP activity was calculated using Trolox as a standard.

4.6. Statistical Analysis

For the ANOVA, SPSS version 20 was utilized. Most data are presented as mean and
standard error. The statistical program SPSS 2020 performed the correlation analysis. The
R program was used to perform both hierarchical cluster analysis and principal component
analysis (PCA). Duncan’s multiple range test (p ≤ 0.05) was used to identify the samples’
significant differences.

5. Conclusions

Drought can impede the germination and consequent growth of seedlings, impairing
the establishment of crops through a higher accumulation of ROS and lipid peroxidation.
Therefore, germplasm screening at germination or an earlier seedling establishment stage
is a suitable approach for selecting drought tolerant genotypes. PEG induction is an easy,
cost-effective, and rapid method of inducing drought that allows for screening of many
germplasms. The genotype XiNong 9943 was comparatively more tolerant to drought
stress conditions than all other genotypes, and this tolerance is associated with its higher
germination percentage, shoots and roots length, RWC, PRO accumulations, and lower ROS
and MDA concentration accumulations. Meanwhile, increased enzymatic activities such as
SOD, CAT, POD, and APX, secondary metabolite enzymatic activities such as PAL and PPO,
and non-enzymatic activities such as phenolics and flavonoids were beneficial to antagonize
oxidative stress, as indicated by lower lipid peroxidation and ROS accumulation at the
germination stage. Our results add evidence to support the view that Tartary buckwheat is
a treasure trove of useful genes in response to drought stress, which is important to further
understand the mechanism and identify specific genes of drought resistance and the future
improvement of cultivated Tartary buckwheat. Further experiments are now required to
define the molecular and cellular mechanisms underlying the acclimation more precisely
of the XiNong 9943 to abiotic stresses using molecular and genetic approaches.
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