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Abstract: The development of management plans which lead to water efficient landscapes is a
growing need in the turfgrass community. While deficit irrigation as a scheduling method can
improve water conservation, more information is desired on how to best leverage other management
practices, such as mowing height when deficit irrigation is imposed. The objectives of this study
were to characterize actual evapotranspiration (ETa), turfgrass visual quality, clipping production,
and root development of ‘TifTuf’ bermudagrass (Cynodon dactylon × C. transvaalensis Burt Davy)
when irrigated at full (1.0 × ETa) and deficit levels (0.65 and 0.30 × ETa), and cut at four separate
mowing heights (2.5, 5.0, 7.5, and 10.0 cm) over two 8-week experimental runs. An elevated ETa

was observed at the 7.5 cm and 10.0 cm mowing heights compared to the 2.5 cm mowing height
in both runs, and the 5.0 cm mowing height in one run. The visual quality decreased throughout
both study periods and mostly for the deficit irrigation treatments, with visual quality falling below
minimum acceptable levels at the lowest irrigation level (0.30 × ETa) 5 weeks into run A, and 8 weeks
into run B. Despite an elevated ETa and a higher root dry weight at higher mowing heights (7.5 and
10.0 cm), clipping production and visual quality was generally higher at lower mowing heights (2.5
and 5.0 cm) for both full and deficit irrigation levels. These results demonstrate that mowing height
can significantly influence bermudagrass water use, as well as responses to deficit irrigation. When
maintaining ‘TifTuf’ bermudagrass at heights above 2.5 cm, the results from this study indicate a
lower water use and improved response to deficit irrigation at mowing heights ≤ 5 cm.

Keywords: turfgrass; evapotranspiration; irrigation; bermudagrass

1. Introduction

Urban green spaces are an integral part of sustainable development for the rapidly
expanding metropolitan areas of the U.S. and other regions. When properly maintained,
these turfgrass-dominated areas have positive impacts on human health, economic signifi-
cance, and environmental benefits [1]. However, irrigation is usually required to maintain
successful turfgrass function in the many regions where turfgrasses are utilized, since
rainfall normally cannot supply the amount of water necessary [2]. Water shortage is a
continuing challenge for the turfgrass community due to increasing demands from ur-
banized population growth, coupled with increased drought incidence and seasonality of
water availability [3–6]. Therefore, the development of management practices leading to
water-efficient turfgrass landscapes is important across an expanding constituency.

To efficiently utilize water for turfgrass, management practices should maintain tur-
fgrass quality while using minimal water inputs. Mowing is among the most basic and
routinely performed practice for maintaining turfgrass function, as it promotes dense
stands and aesthetic appeal. The height at which a turfgrass area is mowed is often selected
based on species adaptation, maintenance capabilities, monetary considerations, and how
the site is utilized (e.g., residential lawns, parks, open spaces, golf course fairways, greens,
roughs, and sports fields) [7]. Water use generally increases as mowing height increases
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due to additional transpiration from the increased leaf area, along with an increase in gas
exchange from the rougher canopy surface [8]. Biran et al. 1981 found that evapotranspria-
tion (ET) of both ‘Suwannee’ bermudagrass [Cynodon dactylon (L.) Pers.] and kikuyugrass
(Pennisetum clandestinum Hochst. cv. Chiov.) rapidly increased when the mowing height
was increased from 3 cm to 6 cm, until six weeks into the experiment when no significant
differences for ET between mowing treatments were detected [9]. The evapotranspiration
from St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] increased when mowed
at 8 cm compared to 5 cm [10]. Similar patterns have been observed for cool-season species
such as Kentucky bluegrass (Poa pratensis L.), annual bluegrass (Poa annua L.), and creeping
bentgrass (Agrostis stolonifera L.) [11,12]. While turfgrasses maintained at lower mowing
heights may use less water, a higher mowing height can be favorable for maintaining
growth or survival during times of drought, as it promotes increased root development
by providing greater leaf area for photosynthetic activity [13]. For seashore paspalum
(Paspalum vaginatum Swartz), higher mowing heights have been shown to enhance avoid-
ance in moderate-to-high drought stress and improve turfgrass quality under drought
conditions [14,15]. However, during drought the water use at higher mowing heights
in other warm-season turfgrasses has been shown to increase during onset along with
shortened survival times [16,17]. Therefore, more research is needed to understand how to
best manage mowing height for turfgrass quality maintenance when water conservation
strategies like deficit irrigation are implemented.

Deficit irrigation is a process in which water is intentionally applied to crops in
quantities below their maximal consumptive use [18–20]. For turfgrass management, this
can be an effective method to achieve water conservation goals when utilized during
times of drought, or in areas where water availability is limited [21]. However, a sound
understanding of the plant’s water needs is required to properly enact a deficit irrigation
program, which are often based on estimates of plant evapotranspiration (ET, ETa) relative
to site-specific measurements of reference ET (ETo). Field measurements of ETa utilizing
weighing lysimeters, relative to ETo (from an onsite or nearby weather station), determines
a crop coefficient (Kc) to assist in scheduling irrigation for productivity [22,23]. To irrigate
at deficit levels, irrigation is applied utilizing a coefficient value below the predetermined
Kc value for optimal growth.

Hybrid bermudagrass (Cynodon dactylon × C. transvaalensis Burt Davy) is a turfgrass
species that is widely used, where crop coefficient values range between 0.52 to 0.89 × ETo
showing a capacity to maintain acceptable performance at water deficit levels [20,24]. For
instance, ‘Tifway’ bermudagrass was generally able to maintain acceptable turfgrass quality
while receiving irrigation in the amounts of 0.3 × ETo during two consecutive summer
periods in College Station, TX, USA [25]. However, tolerable levels of irrigation necessary
to maintain hybrid bermudagrass quality were higher (0.66 to 0.75 × ETo) when deficit
irrigation was implemented in a more arid region with higher evaporative demand for four
hybrid bermudagrass cultivars: ‘Tifway’, ‘Tifsport’, ‘Tifgreen’, and ‘Midiron’ [26].

The need for improved management programs that reduce water use on turfgrass,
combined with an understanding of how to best leverage mowing height for irrigation man-
agement, underscores an importance to further explore how mowing height impacts water
use and tolerable levels of an irrigation deficit. To address this need, two greenhouse exper-
iments were conducted over 8 week periods to characterize ETa, visual turfgrass quality,
clipping production, and root production of ‘TifTuf’ bermudagrass (Cynodon dactylon × C.
transvaalensis Burt Davy) while receiving irrigation at well-watered (1.0 × ETa) and deficit
levels (0.65 and 0.30 × ETa), and cut at four separate mowing heights (2.5, 5.0, 7.5, and
10.0 cm).

2. Materials and Methods

A turfgrass experiment took place in two greenhouses at the U.S. Arid Land Agricul-
tural Research Center (ALARC) in Maricopa, Arizona over 8-week periods during Fall 2023.
Two experimental runs were conducted in separate greenhouses, which were both initiated
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11 October 2023. Air temperatures in each greenhouse was measured using a HC2S3 probe
(Rotronic Instrument Corp, Hauppauge, NY, USA) placed inside a 41003-5 10-plate radia-
tion shield (R.M. Young Comp., Traverse City, MI, USA). The average daily temperature in
each greenhouse was 28.6 ◦C and 29.6 ◦C for run A and run B, respectively. The average
nightly temperature for run A and run B was 24.13 ◦C and 24.51 ◦C, respectively.

Seven weeks prior to each run, plugs of ‘TifTuf’ bermudagrass were extracted from
sod, washed free of soil, and established in 72 lysimeters constructed from polyvinyl
chloride pipe (15.2 cm diameter × 30.5 cm depth). TifTuf was co-released by the University
of Georgia and the U.S. Department of Agriculture—Agricultural Research Service and
was selected for this experiment having shown improved drought tolerance and enhanced
adaptability in water-stressed environments [27,28]. The soil medium for the experiment
was a U.S. Golf Association (USGA) specification sand [90:10 (vol:vol) sand:peat moss].
Each lysimeter was equiped with a drilled 10 mm drainage hole at the bottom over which
a plant and seed guard cloth (DeWitt, Sikeston, MO, USA) was laid to avoid the loss of
sand. Four weeks after the sod plugs were planted, all lysimeters were fertilized at a
rate of 2.4 g N/m2 using a 21-7-14 fertilizer (Turf Royale, YaraMila, Tampa, FL, USA). All
lysimeters were held in the same greenhouse until five weeks into the establishment period.
At six weeks, 36 of the lysimeters remained in the original greenhouse constituting run A
and the other 36 lysimeters were moved to an adjacent greenhouse for run B. To encourage
establishment, water was routinely applied during the establishment period prior to the
experiment’s initiation.

We employed a completely randomized design with three replications for each experi-
ment. All possible combinations of three irrigation levels (1.0, 0.65 and 0.30 × ETa) and
four mowing heights were used (2.5, 5.0, 7.5, and 10.0 cm). Two weeks after planting, 36
of the 72 lysimeters were cut with scissors to a height of 5.0 cm to represent the 2.5 cm
and 5.0 cm treatments. Thereafter, cutting heights on 18 of those lysimeters were lowered
by 0.5 cm each week to reach and then maintain a 2.5 cm cutting height for the 2.5 cm
treatments. Lysimeters representing the 7.5 cm and 10 cm treatments were monitored
weekly, until they reached their respective treatment heights and then were maintained at
that height. Mowing height treatments were selected as a range in which ‘TifTuf’ bermuda-
grass is tolerant, and as representative of heights utilized for home-lawns, parks, and
utility landscapes.

Immediately prior to each experiment’s initiation, each lysimeter was fully submerged
in bucket of water until the release of air bubbles was no longer seen (≈4-min submersion) to
attain saturation. Immediately after, field capacity was reached by allowing each lysimeter
to drain freely for 30–36 h. Field capacity weights were then recorded to be used for future
application during reweighing and irrigation events. Each lysimeter was irrigated twice
during each week of the experiment. Irrigation levels included well-watered [1.0 × actual
evapotranspiration (ETa)], and deficit treatments (0.65 and 0.30 × ETa).

Actual evapotranspiration (ETa) was determined by twice-weekly weighing and
calculating the mean mass change of three well-watered (1.0 × ETa) lysimeters within each
of the four mowing height treatments. Then irrigation was applied in amounts matching
exact mass change for each of the well-watered lysimeters and average deficit (0.65 and
0.30 × ETa) replacement levels within each mowing height treatment.

Turfgrass visual quality assessments were conducted weekly on each lysimeter by
a single observer for turfgrass quality using a modified National Turfgrass Evaluation
Program (NTEP) visual quality ranking system (Scale 1–9; minimum quality = 5) [29].
The quality ratings accounted for a combination of color, density, and uniformity of the
turfgrass canopy. For reference, a numeric rating of 1 would indicate completely fired and
water stressed turf, and a rating of 9 would represent perfectly conditioned turf that is fully
uniform and dark green in color.

Productivity was assessed through weekly clipping collections. Every 7 days and for
each lysimeter, the turfgrass was trimmed to the predetermined mowing height treatment
level (2.5, 5.0, 7.5, or 10.0 cm) using scissors and a ruler. After each collection, clippings
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were oven dried for 72 h at 65 ◦C and weighed to obtain dry weight values. For each period,
dry weights were divided by the number of growing days to calculate a daily shoot growth
for each lysimeter. The roots were harvested for each lysimeter at the conclusion of each
study by washing the roots free of sand and by careful separation from stem tissue. The
roots were then oven dried for 72 h at 65 ◦C and weighed to obtain dry weight values.

The data for all parameters were subjected to analysis of variance (ANOVA) in JMP
15.2.0 (SAS Institute, Cary, NC, USA). For instances where ANOVA indicated a significant
run A and B effect, the parameters were presented by study. The mean separation proce-
dures were performed using Tukey’s honestly significant difference test at p ≤ 0.05 level.

3. Results and Discussion
3.1. Effects of Mowing Height on ETa

Mowing height had a highly significant (p ≤ 0.001) effect on daily ETa in both runs
(Table 1). Overall, average daily ETa for both run A (5.3 to 6.9 ± 0.18) and B (5.7 to 7.3 ± 0.23)
across mowing heights within the 1.0 × ETa treatments were within the typical reported
range of daily ETa for bermudagrass in well-watered conditions [20]. In run A, the daily
ETa was lower in the turfgrass mowed at 5 cm and 2.5 cm, compared to both 7.5 cm (25 and
29% lower, respectively) and 10 cm (27 and 31% lower, respectively) (Figure 1). In run B, the
daily ETa of the 2.5 cm turfgrass was lower than the 5 cm (19% lower), 7.5 cm (23% lower),
and 10 cm (26% lower) (Figure 1). These results are consistent with prior research with
bermudagrass, other warm-season turfgrass species, and ‘Merion’ Kentucky Bluegrass in
which higher mowing resulted in greater ETa compared to shorter turfgrass [9,11,14,30].
Shahba et al. (2014) reported no differences in ET at full irrigation levels for three seashore
paspalum cultivars at three different mowing heights; however, their range of mowing
heights (2.5 cm to 4.5 cm) was smaller compared to the present study (2.5 cm to 10.0 cm) [15].
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Table 1. ANOVA table for mowing height, irrigation level, and measuring date effects on evapotran-
spiration, visual quality, clipping production, and root dry weight for run A and B.

p Values
Evapotranspiration Visual Quality Clipping

Production
Root

Dry wtA B A B

Mowing (M) *** *** *** *** *** ***
Irrigation (I) - - *** *** *** NS

Date (D) *** *** *** *** *** -
M × I - - *** *** * NS
M × D NS NS NS NS NS -
I × D - - *** *** * -

M × I × D - - NS NS NS -
Parameters were separated by study where a main study effect was found. NS, *, *** Nonsignificant or significant
at p ≤ 0.05 or 0.001, respectively.

3.2. Mowing Height and Irrigation Level Effects on Visual Quality

There was a highly significant (p ≤ 0.001) mowing height × irrigation level inter-
action for the visual quality of both runs (Table 1). In run A, no significant differences
were observed between all mowing heights at full irrigation levels (1.0 × ETa) (Figure 2).
However, at both deficit levels in run A (0.3 and 0.65 × ETa), the average visual quality
ratings for both 2.5 cm and 5.0 cm mowing heights were significantly higher than for the
7.5 cm and 10.0 cm mowing heights. Further, both average visual quality ratings fell below
the minimum quality threshold (≥5) at the 0.3 × ETa irrigation level for both of the 7.5 cm
and 10.0 cm mowing heights. For run B, the same general trend of average visual quality at
lower mowing heights (2.5 cm and 5.0 cm) compared to higher mowing heights (7.5 cm
and 10.0 cm) was observed. In run B, the 2.5 cm mowing height had a significantly higher
average visual quality compared to the 7.5 cm and 10 cm at full irrigation levels (1.0 × ETa).
Further, the visual quality was higher at the lower mowing heights (2.5 cm and 5.0 cm)
with the lowest deficit irrigation level (0.3 × ETa) compared to the 7.5 cm and 10.0 cm,
although the average visual quality did not fall below minimum acceptable levels (≥5) at
the higher mowing heights like they did in run A (Figure 2). Shahba et al. (2014) reported
lower visual quality at 0.50 × ETa of ‘Salam’ seashore paspalum at a 4.5 cm mowing height
compared to 2.5 cm and 3.5 cm; however, ‘Excalibur’ seashore paspalum had a reduced
visual quality at the 2.5 cm compared to 3.5 cm and 4.5 cm [15]. Considering most hybrid
bermudagrasses are tolerant to mowing heights below 2.5 cm, the relative differences in
the present study between the larger range of mowing heights on a hybrid bermudagrass
affirm the need for further evaluation at mowing heights lower than 2.5 cm [31].

An analysis of variance also revealed an irrigation level × date interaction for the
visual quality (Table 1). When averaging across mowing heights, there was a general decline
in visual quality within the deficit treatments compared to the well-watered treatments
(1.0 × ETa) in which mean separation occurred after week 2 in run A, and week 3 in
run B (Figure 3). Average visual quality of the 0.65 × ETa treatment remained above the
minimum quality threshold throughout the study period while average visual quality of
the of the lowest deficit level (0.3 × ETa) fell below the minimum quality threshold in week
4 of run A, but not until week 8 in run B (Figure 3). Similar results for greenhouse studies
have also been reported in which the average visual quality of ‘Tifway’ bermudagrass
irrigated at 0.3 × ETa fell below the minimum quality threshold 6-weeks into the study
period [32]. Wherley (2011) reported ‘Empire’ zoysiagrass (Zoysia japonica Steud.) irrigated
at 0.20 × ETa drastically fell to below the minimum quality threshold 2–3 weeks into the
study period, while the visual quality of the 0.4 × ETa treatment fell below the minimum
quality at 5–6 weeks [33].
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Figure 2. Visual quality as affected by mowing height and irrigation levels averaged across all
rating dates for both run A and B. Bars with the same letter for either run A or run B are not
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3.3. Effects of Mowing Height and Deficit Irrigation on Clipping Production

Clipping production showed a significant (p ≤ 0.05) mowing height × irrigation level
interaction, along with a significant mowing height × date interaction (Table 1). Since no
run effect was observed, the results averaged across run A and B are presented.

A significantly higher clipping production was observed for turfgrass at all irrigation
levels for the 2.5 cm and 5.0 cm grass height, compared to 7.5 cm turfgrass at the lowest
irrigation level (0.3 × ETa) (Table 2). Further, clipping production was highest for 2.5 cm
turfgrass irrigated at well-watered levels and 5 cm turfgrass at the 0.65 × ETa irrigation
level, compared to 7.5 cm turfgrass at deficit levels (0.3 and 0.65 × ETa) and the 10 cm
turfgrass at all irrigation levels (0.3 and 1.0 × ETa) (Table 2).

While there was a slight increase in clipping production at 4 to 6 weeks, clipping pro-
duction generally declined for all mowing heights throughout the study period (Figure 4).
Further, there were three rating dates in which more clipping production occurred for
turfgrass mowed at 2.5 cm compared to 7.5 cm and 10.0 cm, and multiple rating dates
in which clipping production was higher for 5.0 cm mowed turfgrass compared to either
7.5 cm or 10 cm mowed turfgrass (Figure 4).
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Increased ETa is normally accompanied by increased biomass accumulation as ob-
served in multiple studies [32–34]. However, our results show a conflicting trend in
which a lower ETa of grasses mowed at lower mowing heights was accompanied by an
elevated shoot growth when compared to the higher mowing heights. This difference
may be explained by more turbulent gas exchange of bulk air within the higher turfgrass
canopies. Therefore, higher canopy resistance between the canopy surface and the bulk air
would have occurred at the lower mowing heights, which contributed to a more efficient
utilization of water inputs as evidenced through increased visual quality and elevated
clipping production.
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Table 2. Turfgrass clipping production as affected by mowing height and irrigation level averaged
across run A and run B. Means with the same letter are not significantly different based on Tukey’s
HSD at p ≤ 0.05.

Mowing
Height

Irrigation
Level

Clipping Production
(mg d−1)

2.5 cm 1.0 × ETa 31.77 a
0.65 × ETa 31.05 ab
0.30 × ETa 27.34 a–c

5.0 cm 1.0 × ETa 28.29 a–c
0.65 × ETa 31.96 a
0.30 × ETa 24.34 a–c

7.5 cm 1.0 × ETa 24.71 a–c
0.65 × ETa 21.83 cd
0.30 × ETa 15.39 d

10.0 cm 1.0 × ETa 23.40 bc
0.65 × ETa 21.54 cd
0.30 × ETa 23.19 c

p value *
*, significant at p ≤ 0.05.
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3.4. Mowing Height Effects on Root Dry Weight

For the root dry weight, no run effect was observed so the results are presented as an
average across runs. While ANOVA detected no significant differences due to irrigation
level, there was a highly significant (p ≤ 0.001) effect for root dry weight due to mowing
height (Table 1). When averaging across irrigation level, the root dry weight increased
linearly with increased mowing height (Figure 5). Root dry weight was significantly higher
at the 10.0 cm mowing height treatment compared to all other mowing heights, and the root
dry weight was also significant for the 7.5 cm treatment compared to the 2.5 cm (Figure 5).
These results are consistent with prior studies that report that increased root production
can accompany higher mowing heights [14]. Increased root biomass with increased cut
height is likely due to a greater capacity for photosynthetic activity from an increased leaf
surface area [13]. However, this did not lead to increased roots at higher mowing heights
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in the deficit irrigation treatments, as reported in other studies [15,35]. Given our research
was conducted in a soil volume limiting rootzone (limited soil profile), the advantages
of higher root development at higher mowing heights could possibly be better realized
in nonlimiting soil volume conditions (unlimited soil profile). Thus, a need for similar
mowing height studies conducted in field conditions is apparent.
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4. Conclusions

As the need for water conservation in turfgrass landscapes increases, it is important to
examine how cultural management factors, such as mowing height, influence water use
and other critical elements governing growth and quality during deficit irrigation. For
bermudagrass landscapes maintained at heights ≥ 2.5 cm, our results indicate a shorter
mowing height (≤5 cm) could be favorable for water conservation due to the observed
general trend of decreased water use at the lower mowing heights and improved quality
and growth responses given deficit irrigation. Improved root production as seen by higher
root dry weights at the highest mowing height, highlight the need for similar research
conducted under field conditions to evaluate mowing height ranges below 2.5 cm. Further,
more information is needed regarding required mowing frequencies and associated costs

with management findings.
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