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Abstract: Characterized by soil moisture content and plant growth, agricultural drought occurs when
the soil moisture content is lower than the water requirement of plants. Microwave remote sensing
observation has the advantages of all-weather application and sensitivity to soil moisture change.
However, microwave remote sensing can only invert 0~5 cm of soil surface moisture, so it cannot
effectively reflect the drought situation of farmland. Therefore, this study took Henan Province as
the study area, used soil moisture active and passive (SMAP) satellite soil moisture data, employed
NDVI, LST, and ET as the independent variables, and took the drought grade on the sample as the
dependent variable. Using the 2017–2019 data as the training set and the 2020 data as the testing
set, a random forest drought monitoring model with comprehensive influence of multiple factors
was constructed based on the training set data. In the process of model training, the cross-validation
method was employed to establish and verify the model. This involved allocating 80% of the sample
data for model construction and reserving 20% for model verification. The results demonstrated an
85% accuracy on the training set and an 87% accuracy on the testing set. Additionally, two drought
events occurring during the winter wheat growing period in Henan Province were monitored, and the
validity of these droughts was confirmed using on-site soil moisture and the vegetation supply water
index (VSWI). The findings indicated a high incidence of agricultural drought in the southwestern
part of Henan Province, while the central and northern regions experienced a lower incidence during
the jointing to heading and filling stages. Subsequently, leveraging the results from the random forest
drought monitoring, this study conducted a time series analysis using the Mann–Kendall test and
a spatial analysis employing Moran’s I index to examine the temporal and spatial distribution of
agricultural drought in Henan Province. This analysis aimed to unveil trends in soil moisture changes
affecting agricultural drought, as observed via the SMAP satellite (NASA). The results suggested a
possible significant spatial auto-correlation in the occurrence of agricultural drought.

Keywords: agricultural drought; soil moisture; multi-source remote sensing; random forest;
spatiotemporal analysis

1. Introduction

As a disaster occurring with high frequency, drought poses a serious threat to agri-
cultural production, food security, ecological environment, and economic and social de-
velopment [1]. Drought can be divided into four main types: meteorological drought,
hydrological drought, agricultural drought, and socioeconomic drought [2]. Among these,
agricultural drought refers to the phenomenon of abnormal crop growth caused by an
insufficient water supply for plant growth due to changes in the soil and atmosphere [3].
Since there has been no precipitation or abnormally low precipitation in the region for
a long time, the soil is short of water or dried up, and agricultural drought will lead to
crop damage and even a loss of production. On a global scale, agricultural drought oc-
curs with high frequency, and it can have a long duration and wide impact area [4]. In
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China, the losses caused by agricultural drought disasters account for more than 50% of
agricultural natural disaster losses, and there is a trend toward gradual aggravation in the
past 20 years [5,6], significantly affecting the safe production of grain in China. Therefore,
developing an effective method to monitor agricultural drought has been the focus of
many disciplines.

The existing methods of agricultural drought monitoring are mainly divided into mon-
itoring agricultural drought according to the vegetation index and monitoring agricultural
drought according to soil moisture. There are many methods to monitor drought based
on the vegetation index. For example, Zhu et al. [7] discussed the potential application of
the soil wetness deficit index (SWDI) in the drought monitoring of Xiangjiang River basin.
Wei et al. [8] analyzed and compared the vegetation condition index (VCI), temperature
condition index (TCI), precipitation condition index (PCI), and synthesized drought index
(SDI) and showed that VCI and TCI could better monitor long-term drought conditions.
Zou et al. [9] analyzed and compared the VCI, TCI, and vegetation health index (VHI),
and the results showed the superiority of TCI drought monitoring’s ability versus that
of VCI and VHI on both seasonal and annual scales. Liu et al. [10] evaluated 12 widely
used drought indices to monitor the effects of drought on crop growth in the Shiyang River
Basin. In summary, the indicative agricultural drought model established according to the
vegetation index assumes that the effects of drought on crops’ physiological structure can
be captured by optical remote sensing signals. Agricultural drought is a phenomenon of
abnormal crop growth caused by changes in soil and meteorological conditions and insuffi-
cient water supply for plant growth. However, diseases and pests, phenology, soil fertility,
and other factors will also change the physiological structure of crops, and these changes
can also cause abnormal changes in the remote sensing index. Consequently, the “foreign
body co-spectrum” phenomenon appears in agricultural drought inversion using optical
remote sensing data [11–13]. Thus, a drought index model based on vegetation remote
sensing index factors shows difficulty in accurately identifying agricultural drought status.

Among the existing methods for monitoring agricultural drought based on soil mois-
ture, the soil moisture data based on site observation have high accuracy, which can be
used as the “true value” to verify and correct the accuracy of remote sensing soil moisture
data and model simulated soil moisture data [14,15]. This can also be directly applied to
agricultural drought monitoring in the field. The traditional method for observing soil
moisture is the drying method. This artificial method is time-consuming and laborious, and
it is difficult to observe soil moisture continuously and synchronously in time and space.
With the reduction of the cost of soil moisture sensors and the development of information
transmission technology, wireless soil moisture observation networks have developed
rapidly in recent years, making it possible to observe the dynamic changes in soil moisture
in real time from the field or watershed and providing real-time access to distributed soil
moisture sensor data [16]. Among the methods for the automatic observation of soil mois-
ture, the electromagnetic method is a commonly used method for observing soil moisture. It
measures soil moisture content by using the difference in the soil dielectric coefficient with
different water contents [17], including time domain reflectometry (TDR) and frequency
domain reflectometry (FDR). Because of the high accuracy of soil moisture measurements,
FDR is widely used in the construction of automatic soil moisture observation networks.
However, regardless of their high precision and frequency, the observation stations are
distributed discretely in space, so the continuous surface soil moisture information cannot
be obtained. In addition, the cost of soil moisture observation stations is high, and these
factors restrict the application and popularization of soil moisture observation at stations
in agricultural drought monitoring.

Using satellite remote sensing soil moisture to monitor agricultural drought is a
new method developed in recent years that is more efficient in obtaining regional soil
moisture data. Satellite remote sensing observation of soil moisture has the advantages of
continuous space, wide observation range, and low cost, and it has become the best current
means through which to observe soil moisture. Based on these advantages, researchers
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have carried out a large number of studies on satellite remote sensing observation of
soil moisture [18–20]. Relevant departments have also successively released a variety of
soil moisture products based on microwave satellite remote sensing data inversion, such
as ASCAT, AMSR2, ESA CCI SM, SMOS, soil moisture active and passive (SMAP), and
SMAP/Sentinel-1, which can provide continuous surface soil moisture information in time
and space [21–25]. Studies have shown that SMAP soil moisture products have relatively
high accuracy among the abovementioned microwave satellite remote sensing soil moisture
products [26–30]. However, the SMAP satellite can only obtain soil moisture at a depth of
about 0–5 cm from the surface layer, while the soil moisture that best expresses agricultural
drought is located at a soil depth of 20–30 cm, which also limits the application of SMAP
soil moisture products in agricultural drought monitoring [31,32].

In general, compared with conventional vegetation index and soil moisture moni-
toring techniques for agricultural drought, microwave satellite remote sensing offers the
advantage of all-weather observation without geographical constraints. Remote sensing
data obtained through this method provide a more realistic depiction of dynamic surface
changes, enabling timely monitoring of regional agricultural drought. Furthermore, ad-
vancements in modern satellite remote sensing technology have led to the availability of
vast amounts of Earth observation data with multi-spatiotemporal and multi-spectral reso-
lutions [33–37]. Leveraging microwave satellite remote sensing of soil moisture presents
significant potential for monitoring agricultural drought. Several scholars have conducted
assessments of soil moisture and ocean salinity (SMOS) (European Space Agency) and
soil moisture active passive (SMAP) satellite (NASA) soil moisture (SM) products, fo-
cusing on product accuracy and drought monitoring across the North China Plain from
2015 to 2018. Their findings indicate that SMAP generally surpasses SMOS in terms of
SM data validation and drought monitoring within the North China Plain region. This
suggests promising potential for SMAP in enhancing drought monitoring capabilities.
Furthermore, researchers have explored the application of microwave remote sensing for
drought monitoring, particularly in Senegal. Utilizing various microwave satellite-based
datasets, they have demonstrated the efficacy of microwave-based approaches in accurately
detecting droughts. These studies underscore the complementary role of microwave-
based drought indices alongside established methodologies, offering unique insights into
drought monitoring.

These investigations highlight the significance of microwave satellite-derived soil
moisture products in the context of drought monitoring and provide valuable references for
their utilization in agricultural drought monitoring practices. However, there is relatively
limited research specifically focused on drought monitoring using microwave satellite soil
moisture products in the Henan region. This indicates a potential area for further research
and underscores the importance of expanding the application of microwave satellite data for
drought monitoring in diverse agricultural regions. As such, this paper adopted microwave
satellite remote sensing soil moisture data and built an agricultural drought monitoring
model based on satellite remote sensing soil moisture, integrated the influence of multiple
factors on agricultural drought, realized the monitoring of agricultural drought in Henan
Province based on multi-source remote sensing data, and further studied the temporal and
spatial distribution of agricultural drought in Henan Province.

2. Study Area and Datasets
2.1. Study Area

Henan Province is located in the hinterland of the North China Plain, spanning across
the Yellow River, Haihe River, Huaihe River, and Yangtze River. Most of the province is
located south of the Yellow River. It covers an area of 167,000 square km2. The terrain
of most of the study area is flat, with a small number of mountainous areas in the west
(Figure 1a). The main type of agricultural land in Henan Province is predominantly
cultivated, with winter wheat being the primary crop, interspersed with small patches of
grassland and forest primarily located in the southern and western regions of the study
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area (as shown in Figure 1b). The study area experiences a temperate semi-moist monsoon
climate, characterized by dry winters with minimal rainfall and hot, rainy summers. The
average annual rainfall in the region ranges from 500 mm to 800 mm, with 60% to 80%
occurring during the summer months. Throughout the winter wheat growing season,
typically, 3 to 5 irrigation sessions are necessary to meet crop water requirements. In this
paper, 55 automatic soil moisture monitoring stations in the study area were selected as
research objects. The general picture of the study area is shown in Figure 1.
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2.2. Datasets
2.2.1. SMAP L3 Passive Soil Moisture Product

NASA launched a SMAP satellite on 31 January 2015. It provided global data on soil
moisture, vegetation cover, and soil temperature. The satellite, a polar sun-synchronous
orbit satellite carrying an L-band radar (3 km) and an L-band radiometer (9 km and 36 km),
began acquiring regular data on 31 March 2015. However, due to a hardware failure
that could not be resolved, the radar was discontinued on 7 July 2015, after six weeks of
operation [38]. Currently, SMAP uses only L-band (1.40 GHz) radiometer data to provide
global soil moisture and freeze-thaw status data every two to three days. On ground
that is not frozen or covered with water, SMAP measures the soil moisture 5 cm under
the surface and uses this information to create a global soil moisture map. SMAP offers
soil moisture data products with spatial grid resolutions of 3 km, 9 km, and 36 km, with
approximate nominal spatial resolutions of 9 km, 33 km, and 40 km, respectively [30,39].
At present, a number of studies have confirmed the accuracy of SMAP volumetric water
content estimation [40,41].

In this study, SMAP L3 passive soil moisture product data were used, with a spatial
resolution of 9 km. The time resolution of the product was usually once a day, with global
coverage capability. Some studies have demonstrated that the observation accuracy of
the SMAP satellite at 6:00 a.m. is notably higher [42,43]. In our research, the decision
to select a 9-km spatial resolution was grounded in several fundamental considerations.
Soil moisture products derived from passive remote sensing of SMAP L3 typically offer
various options for spatial resolution. However, for our study, we determined that a 9-km
resolution best suited the geographic scope and target variables of our research. Moreover,
this resolution is readily accessible on NASA’s data retrieval platform. The 9-km resolution
strikes a balance between capturing adequate spatial detail and encompassing a diverse
array of surface features. This enabled us to evaluate soil moisture without distortion
while accommodating the complexities of surface conditions. Previous studies have also
indicated that a 9-km spatial resolution generally provides sufficient information when
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studying surface parameters like soil moisture, and it can help mitigate noise impacts to a
certain extent. Given these considerations, the selection of the 9-km spatial resolution in our
study is deemed a rational decision, taking into account various factors such as research
requirements, data availability, surface characteristics, and computational costs. Therefore,
we utilized observation data from the SMAP satellite in the morning as the primary focus
of our research. Interested parties can access the data through the following download
address: https://search.earthdata.nasa.gov/search (accessed on 25 May 2023).

2.2.2. MODIS Data Products

The MODIS satellite was developed and designed by NASA and has the characteristics
of multiple channels and high global coverage. The MODIS image data adopted in this
paper include the normalized difference vegetation index (NDVI) product MOD13A1,
evapotranspiration (ET) product MOD16A2, and land surface temperature (LST) product
MOD11A1. The time-fixed number of years were 2017~2020, and the data source was
as follows: https://earthengine.google.com/ (accessed on 10 June 2023). The order of
magnitude units of NDVI, LST, and ET are shown in Table 1.

Table 1. Usage of MODIS data.

Data Unit Proportional Coefficient Time Resolution Spatial Resolution

NDVI 0.0001 16 day 500 m
LST K 0.02 8 day 1000 m
ET kg/m2/8 day 0.1 8 day 500 m

The extraction of NDVI, LST, ET, and other related data required the processing of
multi-source remote sensing data into a unified spatial resolution and temporal resolution
that was consistent with the resolution of the SMAP soil moisture data. Firstly, the remote
sensing data were resampled in space to obtain the same spatial resolution remote sensing
data. Then, all types of remote sensing data during the period without data were interpo-
lated to obtain the same time-resolution data. However, for SMAP satellite soil moisture
and LST, the missing values had to be filled because they are easily affected by atmosphere
and clouds. For ET, due to the influence of ground cover rain and snow, it was necessary to
remove some of the outliers 32,761~32,767.

2.2.3. Statistical Irrigation Data

The statistical data for agricultural water came from the water resources bulletin issued
by the water conservancy department. Since 1997, China’s Ministry of Water Resources
has annually released statistics based on the previous year’s water use amount for Henan
Province, including domestic, industrial, and agricultural use. Since 1999, the Water
Resources Department of Henan Province has also released the water use amount of each
city and county based on statistical methods every year. Agricultural water in the water
resources bulletin refers to agricultural forestry irrigation water and fishery aquaculture
water, of which irrigation water accounts for the largest proportion, approximately 90%.
For example, of the 12.28 billion m3 of agricultural water in Henan Province in 2017,
10.85 billion m3 was irrigation water. It should be noted that, with the diversification of
irrigation methods, the term “irrigation water” mentioned in this study refers to the total
volume of water used for all types of irrigation, including surface irrigation, drip irrigation,
sprinkler irrigation, etc. When there were no statistical data on irrigation water in a region,
this paper used the statistical agricultural water amount to replace the approximate water
amount for irrigation in the region. Table 2 shows the statistical irrigation water amount of
Henan Province from 2017 to 2020.

https://search.earthdata.nasa.gov/search
https://earthengine.google.com/
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Table 2. Statistical irrigation water amount in urban areas of Henan Province from 2017 to 2020.

Region Area
(10,000 km2)

2017
(100 Million m3)

2018
(100 Million m3)

2019
(100 Million m3)

2020
(100 Million m3)

Sanmenxia 1.03 1.44 1.36 1.13 1.83
Xinyang 1.89 10.05 10.19 10.92 10.95
Nanyang 2.66 13.15 13.36 13.47 16.53
Zhoukou 1.20 11.34 11.53 12.04 13.02
Shangqiu 1.07 9.16 8.87 8.97 8.46
Anyang 0.56 8.79 9.50 8.98 9.43

Pingdingshan 0.79 3.07 2.79 2.72 2.76
Kaifeng 0.63 9.12 9.91 8.96 8.43

Xinxiang 0.82 14.52 12.76 14.02 13.26
Luoyang 1.52 4.92 4.89 5.08 4.62

Luohe 0.26 1.49 2.05 1.53 2.67
Puyang 0.42 9.84 8.16 9.30 8.32
Jiaozuo 0.41 8.59 8.11 8.10 6.89

Xuchang 0.50 3.56 3.12 2.88 3.73
Zhengzhou 0.74 5.44 4.23 4.24 3.68
Zhumadian 1.51 4.59 5.28 5.47 5.13

Hebi 0.23 2.81 2.69 2.80 2.56

2.2.4. Winter Wheat Related Data

The sown area and yield of winter wheat, as reported by the statistical yearbook of
Henan Province, are shown in Table 3. According to the analysis of the statistical yearbooks
in 2017, 2018, 2019, and 2020, the sown area and yield of winter wheat have changed to
different degrees over those four years. This paper mainly considers the impact of drought.

Table 3. Sowing area and yield of winter wheat in Henan Province.

Time Sown Area
(Thousand Hectares) Production (Tons) Wheat Planting Area

Proportion (%)

2017 5714.64 3705.21 54.23
2018 5739.85 3602.85 52.38
2019 5706.65 3741.77 53.21
2020 5673.67 3753.13 54.42

3. Methods
3.1. Sample Collection and Processing

The water amount in the 0–20 cm soil layer accounts for 40% to 70% of the total water
amount of the entire soil layer, and it is also the main water amount soil layer. The water
amount of each soil layer under different water conditions is shown in Table 4 [44]. The
study of 20 cm soil moisture can directly reflect the amount of water absorbed by crops in
the soil. The influence of soil moisture factors on agricultural drought refers to the drought
classification standard of relative soil moisture, which is expressed as a percentage (%), and
its classification is shown in Table 5.

Table 4. Changes of water amount in different soil layers under different water conditions.

Depth (cm) Percentage of Water Amount in Different Depths (%)

20 41.0
40 25.3
60 17.2
80 6.3

100 4.4
120 4.0
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Table 5. Drought classification of relative soil moisture.

Grade Type Relative Soil Moisture at Depth of 20 cm

1 No drought 60% < RSM
2 Mild drought 50% < RSM ≤ 60%
3 Moderate drought 40% < RSM ≤ 50%
4 Severe drought 30% < RSM ≤ 40%
5 Extreme drought RSM ≤ 30%

Soil moisture content is one of the main factors affecting the water requirement of
winter wheat. The crop water requirement increases with the increase in soil moisture
content in a certain range and decreases with the increase of soil moisture content when
the soil moisture content approaches the field water capacity for a long period of time.
Therefore, soil moisture in 20 cm stations and crop water requirements at different pheno-
logical periods were selected as reference indexes to reflect the optimal agricultural drought
conditions (Tables 5 and 6).

Table 6. Changes of water demand in different phenological periods.

Winter Wheat Phenology Period NDVI Reflects the Change of Water
Requirement of Winter Wheat

Seeding emergence period 0.2 < NDVI < 0.3
Tillering period 0.3 < NDVI < 0.4

Wintering period 0.3 < NDVI < 0.4
Regreening jointing period 0.4 < NDVI < 0.5
Heading and filling period NDVI > 0.5

3.2. Construction of Agricultural Drought Monitoring Model

The random forest classification algorithm offers several advantages, including its
ability to discern interactions between different features, its reduced susceptibility to over-
fitting, relatively fast training speed, and straightforward implementation. Additionally, it
can effectively handle imbalanced datasets by balancing errors. Even in scenarios where
a majority of features are missing, it can still maintain accuracy. In this study, various
metrics were computed for model evaluation, including accuracy, precision, f1-score, recall,
macro average, and weighted average. Accuracy measures the ratio of correctly classified
predictions to the total predictions. However, for imbalanced datasets, accuracy alone may
be insufficient to assess the overall performance of the model. Therefore, this study also
considered precision, recall, and f1-score. These metrics collectively form the confusion
matrix in machine learning, with the relevant calculation equation s outlined below:

accuracy = TP+TN
TP+FN+FP+TN (1)

precision = TP
TP+FP (2)

recall =
TP

TP + FN
(3)

f 1 − score =
2 × recall × precision

recall + precision
(4)

In Equation (4), TP (true positive) represents the number of instances where the
model predicts class A and the actual class is also A. The abbreviation FP (false positive)
denotes the instances where the model predicts class A, but the actual class is not A. The
abbreviation FN (false negative) refers to the instances where the actual class is A, but the
model predicts it as not A. The abbreviation TN (true negative) represents the instances
where the actual class is not A, and the model correctly predicts it as not A.
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The mechanism behind agricultural drought and its influence on agricultural systems
are very complicated. It is difficult to accurately describe the state of agricultural drought
and its influence by only considering soil moisture. Accordingly, this study built a random
forest drought monitoring model with multiple factors. The main steps were as follows.
(1) The location of soil moisture observation station in Henan Province was selected as the
location of agricultural drought sampling in this study, and soil moisture data and other
data at the location of sample points were collected. (2) The agricultural drought model
and sample data were constructed by this study, and the agricultural drought grade on
the sample was calculated. (3) SMAP satellite soil moisture, the NDVI, LST, ET data from
sample points, and their unified spatial and temporal resolutions were extracted. (4) Using
the random forest model, the quantitative relationship between the drought grade on the
sample and the multi-source remote sensing data was mined, and the agricultural drought
grade of the region was calculated accordingly. (5) The regional drought grade was used to
show the spatial distribution of agricultural drought in Henan Province.

In the process of model training, the cross-validation method was adopted to establish
and verify the model. Eighty percent of the sample data was selected for model construction,
and 20% of the sample was used for model verification. The modeling and verification
were repeated many times, and the optimal model was finally obtained. The evaluation
indexes of the training set and testing set are shown in Tables 7 and 8.

Table 7. Evaluation index of training set.

Precision Recall f1-Score Support

0 1 1 1 349
1 0.82 1 0.9 1512
2 1 0.06 0.12 161
3 0 0 0 82
4 1 0.01 0.03 68
5 0 0 0 29

accuracy 0.85 2201
macro avg 0.64 0.35 0.34 2201

weighted avg 0.83 0.85 0.79 2201

Table 8. Evaluation index of testing set.

Precision Recall f1-Score Support

0 1 1 1 45
1 0.85 0.99 0.91 170
2 0 0 0 16
3 0 0 0 5
4 0 0 0 8
5 0 0 0 1

accuracy 0.87 245
macro avg 0.31 0.33 0.32 245

weighted avg 0.77 0.87 0.82 245

As shown in Tables 7 and 8, there were 2201 training sets and 245 testing sets, re-
spectively. The training set accuracy was 85%, and the testing set accuracy was 87%. The
accuracy indicated that the classification accuracy of random forest was high and had a
good advantage.

3.3. Timing Analysis Method

The Mann–Kendall test method is suitable for analyzing long-term trends and muta-
tions in multi-source remote sensing data, and a few outliers have no influence on it. It can
reveal the trend change and mutation of the entire time series. Therefore, this method has
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been widely used to study changing trends in agricultural drought. This method can be
selected as an important reference method for the agricultural drought time series analysis.

3.4. Spatial Analysis Method

Moran’s I index is a geostatistical method that is widely used to measure spatial
correlation. It includes global Moran’s I (GMI) and local Moran’s I (LMI). GMI can analyze
the potential spatial dependence of drought recovery time in different subregions and use
a single value to reflect its spatial auto-correlation degree. The exponential distribution is
shown in Table 9. The LMI index reveals the correlation between grid response units and
adjacent units in drought recovery time, indicating the spatial aggregation or dispersion
state. Therefore, with Henan Province as the study area, geostatistical analysis (GMI and
LMI index) can be used to reveal the spatial auto-correlation of agricultural drought.

Table 9. Global Moran ‘s I Index distribution.

Global Moran’s I Index Degree of Correlation

0 < GMI < 1 Positive correlation
−1 < GMI < 0 Negative correlation

GMI = 0 Uncorrelated

4. Results
4.1. Drought Monitoring Results

This study selected drought events in Henan Province in 2018 and 2020 (Figures 2 and 3).
According to the results of random forest drought monitoring, the national meteorological
distribution data of droughts and floods released by the National Climate Center of China
Meteorological Administration, and the monthly report on agricultural meteorology in Henan
Province, different degrees of drought occurred in the winter wheat growth period in Henan
Province in 2018 and 2020. The following is the distribution of two drought events in the
winter wheat growth period.

As shown in Figure 2, winter wheat grew during the wintering period, and there
was basically no drought in a large area of Henan Province during the middle and late
January of 2018. In late February, the drought in the west of Henan Province suddenly
intensified, and various degrees of drought appeared in the central and southern parts
of Henan Province. Among them, moderate drought and severe drought accounted for
5.6% and 5.4%, respectively, and extreme drought accounted for 11.8%. In late March, the
probability of drought in the northern region was still low because the statistical irrigation
water amount in Henan Province showed more irrigation water in the north and less
irrigation water in the south. The drought further expanded in the southern region and
showed a trend of spreading throughout Henan Province. Moderate drought and severe
drought accounted for 8.5% and 12.4%, respectively, and extreme drought accounted for
15.3%. In late April, when the water demand of winter wheat reaches its maximum, the
precipitation was significantly reduced, the wheat was most prone to drought during the
entire growth period, and the drought distribution area of the province was the most
extensive. The proportion of moderate drought and severe drought was as high as 12.3%
and 17.1%, respectively, and the proportion of extreme drought was as high as 16.0%. In
late May, when winter wheat was in its heading and filling period, the drought in Western
China was further alleviated; moderate drought and severe drought were reduced to 7.7%
and 9.6%, respectively, and moderate drought was reduced to 6.5%.
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As shown in Figure 3, precipitation occurred for several consecutive days in late
December 2019 and late January 2020. There was no drought in a large area of Henan
Province, while only a mild drought occurred in the eastern part of Henan Province. In
mid-February, during the winter wheat wintering period, the drought in the eastern region
continued to worsen compared with January, and the precipitation was 1–4% less than the
same period of the year. In late March, there was a severe drought in the west and south
of Henan and a moderate drought in the east. In late April, during the jointing period for
winter wheat, the water demand of winter wheat was large and a large area of drought
occurred in Henan Province, accounting for 25.8% of the occurrence of extreme drought.
The precipitation in the province continued to be low, and the temperature was higher
than usual. The drought situation had a great change compared with March, making the
drought situation in the region worse than that in March. In late May, the drought in Henan
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Province was significantly alleviated, and several days of continuous precipitation occurred.
The areas of severe drought and above were mainly distributed in Jiyuan, Shangqiu, and
other places.
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In general, the occurrence of drought is a gradual process, and the occurrence of
drought is often accompanied by a change in soil moisture. Therefore, the amount of soil
moisture is a direct variable reflecting agricultural drought. In addition, affected by the
growth state of vegetation, crops will also show different drought conditions. So, soil
moisture and the vegetation index can be used to verify the agricultural drought.
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4.2. Verification of Site Soil Moisture

The soil moisture data from 55 strategically positioned soil moisture monitoring sta-
tions within the study area were collected, with all farmland soil moisture monitoring
stations strategically placed to align with the agricultural production environment. During
the data collection process, these monitoring stations acquired two types of data: soil
volumetric water content and relative water content within 1 m of the surface. Soil moisture
readings were obtained at intervals of 10 cm starting from 10 cm below the surface, utilizing
time domain reflectometry (TDR) sensors. The soil moisture monitoring data at these sta-
tions were provided by the agricultural weather station of the local meteorological bureau.
Based on the soil moisture data obtained from the soil moisture observation stations in the
study area, the agricultural drought status at each station was assessed, thereby validating
the accuracy of agricultural drought calculation using this research methodology.

Figure 4a displays the satellite soil moisture of a specific day during the growth period
of winter wheat. It reveals a significant contrast in soil moisture content between the
northern and southern regions of Henan Province, with higher levels observed in the
former and lower levels in the latter. In Figure 4b, the drought grade divided by the soil
moisture of the 20 cm site is depicted. While the southern region of Henan Province appears
to be free from drought, a severe drought was evident in the central region. According to
the Pearson correlation coefficient, the soil moisture of the 5 cm satellite data negatively
correlated with the drought grade at the site. Therefore, it was evident that the monitoring
of agricultural drought by soil moisture at the site displayed some accuracy.
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4.3. Verification of Vegetation Supply Water Index

The vegetation supply water index is a method used to monitor drought based on the
vegetation index and land surface temperature. This method comprehensively considers
the response of crops in different reflection bands under the influence of drought and has
the advantages of clear physical meaning and easy parameter acquisition. This index can
be used to verify the accuracy of drought. Generally, the smaller the value, the lower
soil moisture content, and the more severe drought grade in the region. In contrast, the
larger the value, the higher soil moisture content and the less obvious the drought grade.
Therefore, this study combined the local data of Henan Province because relevant national
departments do not have strict criteria for classifying drought grade based on the vegetation
supply water index (Table 10, Figure 5).



Agronomy 2024, 14, 758 13 of 18

Table 10. Drought classification of the vegetation supply water index.

Grade Type Vegetation Supply Water Index

1 No drought 0.5 < VSWI
2 Mild drought 0.4 < VSWI ≤ 0.5
3 Moderate drought 0.3 < VSWI ≤ 0.4
4 Severe drought 0.2 < VSWI ≤ 0.3
5 Extreme drought VSWI ≤ 0.2

Agronomy 2024, 14, x FOR PEER REVIEW 14 of 20 
 

 

4.3. Verification of Vegetation Supply Water Index 
The vegetation supply water index is a method used to monitor drought based on 

the vegetation index and land surface temperature. This method comprehensively consid-
ers the response of crops in different reflection bands under the influence of drought and 
has the advantages of clear physical meaning and easy parameter acquisition. This index 
can be used to verify the accuracy of drought. Generally, the smaller the value, the lower 
soil moisture content, and the more severe drought grade in the region. In contrast, the 
larger the value, the higher soil moisture content and the less obvious the drought grade. 
Therefore, this study combined the local data of Henan Province because relevant national 
departments do not have strict criteria for classifying drought grade based on the vegeta-
tion supply water index (Table 10, Figure 5). 

Table 10. Drought classification of the vegetation supply water index. 

Grade Type Vegetation Supply Water Index 
1 No drought 0.5 < VSWI 
2 Mild drought 0.4 < VSWI ≤ 0.5 
3 Moderate drought 0.3 < VSWI ≤ 0.4 
4 Severe drought 0.2 < VSWI ≤ 0.3 
5 Extreme drought VSWI ≤ 0.2 

 
Figure 5. Spatial variation of VSWI during the growth period of winter wheat in Henan Province: 
(a) March; (b) April; (c) Early May; (d) Late May. Figure 5. Spatial variation of VSWI during the growth period of winter wheat in Henan Province:

(a) March; (b) April; (c) Early May; (d) Late May.

According to the change trend of VSWI during the growth period of winter wheat,
excluding the influence of a null value or outlier value on the result, VSWI ranged from
0.09 to 1 on a certain day in March. A lower VSWI in the western part of Henan Province
indicated that the soil water content in the region was lower and drought was more severe,
while a higher VSWI in the eastern part of Henan Province indicated that the possibility
of water stress was lower and the degree of agricultural drought less severe (Figure 5a).
On a certain day in April, the VSWI ranged from 0.16 to 0.99, and the VSWI in Luoyang,
Zhengzhou, and Xinyang was small and prone to drought (Figure 5b). The VSWI ranged
between 0.19 and 1 on a certain day in early May, when winter wheat was heading and
drought occurred in Xinyang, Zhengzhou, and other places as usual (Figure 5c). Figure 5d
shows the VSWI values for a day in late May, with an overall range of 0.17 to 1. A large area
of the VSWI value was low in the central and northern regions, indicating that large-scale
agricultural drought had occurred, while a large area of VSWI value was between 0.51 and
0.70 in the western region, indicating that the occurrence of drought in the western region
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had slowed down. In general, compared with the monitoring results of the random forest
model, the vegetation supply water index better verified the rationality of the drought
monitoring results.

5. Discussion

To further explore the practical application of the model, the spatiotemporal evolution
law of winter wheat drought monitoring in Henan Province was studied. The growth
period of winter wheat in Henan Province was analyzed using the Mann–Kendall test
of time series analysis and Moran’s I index of space analysis, and the change trends of
agricultural drought in the growth period of winter wheat in Henan Province was studied
from the perspective of time and space (Figures 6 and 7).
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The Mann–Kendall test was conducted on the surface microwave satellite soil moisture
SMAP of the winter wheat growing period in Henan Province from 2017 to 2020. Given the
significance level of 0.05, UFk is the standard normal distribution in the figure, and UBk
is the reverse sequence of UFk. If there is an intersection point between the two curves,
UFk and UBk, then the moment corresponding to the intersection is the beginning of the
mutation. If Z > 0, then there is an upward trend in the time series, and vice versa. This
passes the 95% confidence level when |Z| > 1.96. As shown in Figure 6, during the growth
period of winter wheat in Henan Province from 2017 to 2020, the UFk curve significantly
exceeded a significant horizontal line of 0.05. So, the change trend was relatively significant;
there were more intersection points of UFk and UBk, and it showed obvious mutation
points. Taking 2018 and 2020 as examples, two drought events occurred around 26 March
2018 and 13 March 2020 respectively, indicating that the degree of drought evolution was
more drastic at this time.

As shown in Figure 7, Moran’s I index of global spatial auto-correlation in all regions
was greater than 0.3 and was significant at a 99% confidence level. This finding means that
the occurrence of agricultural drought has a significant spatial auto-correlation.

Taking the growth period of winter wheat in 2017 as an example, Figure 8 shows
that the results of the local spatial auto-correlation test in most regions of Henan Province
were non-significant. These data indicate little difference in the occurrence of agricultural
drought between neighboring regions, while there was a significant high–high aggregation
phenomenon in the western region on 19 February 2017 and 23 March 2017, indicating that
the occurrence of agricultural drought in this region was significantly higher than that in
neighboring regions and was significant at a 99% confidence level. On 24 April 2017 and
24 May 2017, there was a low–low aggregation phenomenon in central Henan Province,
indicating that the occurrence of agricultural drought in this region was significantly lower
than that in neighboring regions.Agronomy 2024, 14, x FOR PEER REVIEW 17 of 20 
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6. Conclusions

This study initially proposed a method for monitoring agricultural drought by SMAP
satellite surface soil moisture data. However, due to the complexity of agricultural drought,
relying only on soil moisture to monitor agricultural drought has certain limitations. There-
fore, this study developed a random forest drought monitoring model with comprehensive
multi-factor influence and considered the influence of various related factors for agricul-
tural drought from multiple dimensions. The rationality of the drought monitoring results
was verified through the verification of site soil moisture and the vegetation supply wa-
ter index, and the spatiotemporal distribution of winter wheat in Henan Province was
further studied.

The method proposed in this study is operable and requires more types of data, so it
can be applied to agricultural drought monitoring research in large areas. According to
the research results, the following conclusions can be drawn: (1) The original resolution of
SMAP soil moisture products is 36 km, and the enhanced SMAP soil moisture products
are 9 km. The enhanced SMAP soil moisture products used in this study have relatively
high accuracy. (2) The comprehensive consideration of soil moisture at 20 cm stations and
water requirements of winter wheat at different phenological periods as reference indexes
can reflect the best agricultural drought accuracy. (3) Taking the two drought events as an
example, the water demand of winter wheat was the largest around late April. Southwest
Henan Province was the area with the highest incidence of agricultural drought, and the
proportion of extreme drought in 2018 and 2020 was as high as 16.0% and 25.8%. Affected
by precipitation and irrigation, the central and northern part of Henan Province had a
low incidence area of agricultural drought. (4) From the perspective of time, the temporal
variation trend of SMAP satellite soil moisture affecting agricultural drought during the
winter wheat growth period was revealed. (5) From the perspective of space, the global
spatial auto-correlation Moran’s I index of Henan Province was greater than 0.3, and was
significant at a 99% confidence level, indicating that the occurrence of agricultural drought
had a significant spatial auto-correlation.

The method proposed in this study presents an effective agricultural drought moni-
toring approach, particularly beneficial for regions lacking robust agricultural monitoring
facilities. The monitoring and prediction of regional droughts provide crucial information
for decision-makers and agricultural producers, enabling them to make informed choices.
These include devising irrigation strategies, optimizing resource allocation, and enhancing
resilience to agricultural disasters.
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