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Abstract: One of the crucial research areas in agricultural decision-making processes is crop yield
prediction. This study leverages the advantages of hybrid models to address the complex interplay
of genetic, environmental, and management factors to achieve more accurate crop yield forecasts.
Therefore, this study used the data of wheat growth environment, crop management, and historical
yield in experimental fields in Anding District, Dingxi City, Gansu Province from 1984 to 2021 to
construct eight machine learning models and ensemble models. Furthermore, Agricultural Production
Systems sIMulator (APSIM), machine learning (ML), and APSIM combined with machine learning
(APSIM-ML) were employed to predict wheat yields in 2012, 2016, and 2021. The results show that
the APSIM-ML weighted ensemble prediction model, optimized to minimize the MSE, performed the
best. Compared to the optimized ML and APSIM models, the average improvements in the RMSE,
RRMSE, and MBE for the test years were 43.54 kg/ha, 3.55%, and 15.54 kg/ha, and 93.96 kg/ha,
7.55%, and 104.21 kg/ha, respectively. At the same time, we found that the dynamic flow of water
and nitrogen between the soil and crops had the greatest impact on wheat yield prediction. This
study improved the accuracy of dryland wheat yield prediction in Gansu Province and provides
technical support for the intelligent production of dryland wheat in the loess hilly area.

Keywords: model algorithm construction; prediction of dryland wheat yield; APSIM; ML; hybrid
weighted ensemble model

1. Introduction

Crop yield prediction stands as a pivotal research domain within agricultural decision-
making processes. Presently, the methods used for forecasting the dryland wheat yield
in Gansu primarily revolve around crop and statistical models. These individual models
leverage data on environmental and management factors to make predictions, exhibiting
a certain level of accuracy. However, the continual integration of new technologies, data,
data-processing methods, and more efficient computational techniques with simulated data
from crop models demands exploration. This pursuit aims to design predictive models
that are not only more accurate and robust but also possess a stronger interpretability
than the existing models. Such advancements are crucial for their application in crop
production decision-making practices. The Agricultural Production Systems sIMulator
(APSIM) combined with machine learning (ML) algorithms, which we have designed, is
based on this premise and serves as a step forward in this area of research.

Crop models express the plant growth process through mathematical equations on
computers, aiding scholars in summarizing and correlating complex crop growth phenom-
ena. They allow an in-depth understanding of agricultural system operations and predict
crop yields, as well as forecasting the impact of environmental shifts on crops [1–3]. In
recent years, crop models have achieved significant research milestones in predicting crop
growth and development [4], variety selection and optimizing breeding [5], water and nu-
trient management [6], and climate adaptation assessment [7]. While single-process-based
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crop models comprehensively capture crop growth timing, frequency, and intensity, they
exhibit limitations. These limitations involve the excessive simplification or ambiguous
descriptions of specific procedures and uncertainties in parameterization, subsequently
affecting the accuracy of prediction outcomes in crop yield forecasting [8,9]. This article
summarizes key studies in agricultural research that utilize crop models, focusing on
aspects such as crop yield, drought risk, and optimal fertilization strategies (Table 1).

Table 1. The summary outlines the research references, the crop models used, and the main findings
of each study.

Study Model Key Findings Reference

Islam et al. DSSAT (rice)
The BRRI dhan 29 variety showed the best
performance under a nitrogen fertilizer
treatment of 150 kg/ha, yielding 6000 kg/ha.

[10]

Kipkulei et al. DSSAT-CERES (maize)

In Trans Nzoia County, Kenya, the KH600-23A
maize variety outperformed H614 by 7.1% under
the optimal nitrogen application strategy of
100 kg/ha in mid-February.

[11]

Zhao et al. APSIM-Wheat

A strong positive correlation (R2: 0.90–0.97) was
found between the predicted and observed
wheat growth durations in the middle and lower
reaches of the Yangtze River Plain, indicating the
high predictive accuracy of the model.

[12]

Wang et al. APSIM (maize)

The APSIM model assessment of drought risk in
Liaoning showed that spring maize in the
Chaoyang and Fuxin districts faces the highest
drought risk.

[13]

Morel et al. APSIM (annual crops)

In Sweden’s high latitude areas, a temperature
increase of 1 ◦C maximizes barley and oats
yields, while a 2–3 ◦C increase optimizes silage
maize production.

[14]

Vogeler et al. APSIM (runoff)

The study highlighted the significant impact of
rainfall intensity and surface conductivity on
water and nitrogen runoff loss in poorly drained
clay soils.

[15]

Kumar et al. APSIM
(wheat phenology)

High accuracy in simulating winter wheat
phenological stages in Nordic regions was
achieved with an r2 of 0.97 and RMSE of
3.98–4.15 on the BBCH scale.

[16]

On the other hand, machine learning, as a pivotal technology in AI, when applied
across the entire agricultural value chain, can enhance the production efficiency of the entire
chain [17]. Machine learning techniques have shown promising performance in numerous
applications in smart agriculture and have become one of the primary technical means
for future research in smart agriculture-related issues [18,19]. The distinction between ML
and crop models in forecasting crop yields lies in its more data-driven nature. Machine
learning can handle non-linear relationships and exhibits adaptability, generalization, and
feature learning and selection capabilities, thereby enhancing the prediction accuracy and
flexibility [20]. Machine learning models, by training on historical data, automatically learn
and extract relationships between features, constructing a mathematical function or model
that maps input features to the target variable, namely the crop yield [21,22]. This can be
achieved through supervised learning algorithms, where the model is trained based on
known input features and their corresponding target variables, allowing for a more flexible
modeling of complex relationships and thus more accurate crop yield predictions [23].
Machine learning methods range from basic regression models to sophisticated deep
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learning (DL) algorithms [24]. We have listed some applications of machine learning in
crop yield prediction (Table 2).

Table 2. Summary of recent studies on crop yield prediction using machine learning models.

Study ML Model Key Findings Reference

Yamparla et al.
Various (Gradient
Boosting, Linear
Regression, etc.)

Random forest achieved 95% accuracy in predicting crop
yields in India, standing out among various machine
learning techniques based on extensive historical and
environmental data.

[25]

Burdett and Wellen Random Forest,
Decision Tree

In southwestern Ontario, Random Forest and Decision Tree
models showed superior yield prediction for corn and
soybean, analyzing soil attributes across 17 fields.

[26]

Paudel et al. Machine Learning-based
Method

A machine learning method for regional crop yield
prediction in Europe was introduced, outperforming
traditional models with lower errors, especially effectively
close to the harvesting time.

[27]

Chergui Deep Neural Network,
Random Forest

Enhanced wheat yield predictions in two Algerian
provinces through data augmentation, with a Deep Neural
Network leading in one (RMSE of 4 kg/ha) and Random
Forest in another (RMSE of 5 kg/ha).

[28]

Recently, Neural Network-based crop yield prediction models have also demonstrated exceptional accuracy [29–34].

Srivastava et al. Convolutional Neural
Network (CNN)

A CNN model for winter wheat yield prediction in
Germany reduced the RMSE and MAE significantly,
showing high accuracy over other machine learning models
in a 20-year dataset.

[35]

Khaki et al.
Residual Neural
Network (CNN and
RNN)

A Residual Neural Network was employed for corn and
soybean yield prediction in the U.S., revealing critical
insights into temporal variations through environmental
and operational data.

[36]

Gavahi et al. Deep Yield (ConvLSTM
with 3DCNN)

The Deep Yield model, using ConvLSTM and 3DCNN and
trained on historical soybean data and MODIS imagery,
outshone traditional models in predictive accuracy across
the U.S.

[37]

Using machine learning methods with heuristic self-learning features can enhance
the understanding and prediction of critical stages in crop growth, such as flowering,
fruition, maturation, and harvesting [38]. The accuracy of machine learning algorithms
largely depends on a substantial amount of training data, while crop models can generate
extensive dynamic data on crop growth conditions, such as daily changes in crop biomass,
photosynthetic rates, and water use efficiency. Moreover, based on the integrated model
proposed by Balakrishnan and Govindarajan Muthukumarasamy [39], as well as the
approach suggested by Zou et al. [40] and Paudel et al. [41], which combines crop simulation
with machine learning models for crop yield prediction, these reference cases indicate that
integrated models can better simulate crop yield predictions. Therefore, this study conducts
simulated predictions of dryland wheat yields based on a comprehensive framework of crop
modeling (APSIM) and machine learning (ML). The research aims to effectively utilize a
substantial amount of process data generated by APSIM simulations, along with the existing
soil, meteorological, and management data, as part of the features for machine learning
inputs. This approach aims to improve the accuracy of simulating and predicting wheat
yields in Gansu Province, providing a theoretical foundation for the precise forecasting of
dryland wheat yields and supporting agricultural intelligent production.
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2. Materials and Methods

The methodology of this experiment involved collecting daily weather features, soil
characteristics, environmental factors, and daily output data from APSIM simulations
at the experimental fields. These data were utilized as input features for the machine
learning (ML) model. The simulation process of daily wheat yield using the APSIM
output served as the basis, where the actual yearly yields were incorporated to reconstruct
the daily wheat yield data more closely resembling the real yield on a daily basis. This
reconstructed data served as the target variable for training the machine learning prediction
model (“Section 3.1”). Finally, the model’s performance was evaluated by contrasting the
predicted yield data with the actual yield data, taking into account wheat’s phenological
stages from heading to full maturity. The conceptual framework of this research experiment
is depicted in Figure 1.
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Figure 1. Conceptual framework of this research experiment. It comprises two major modules: APSIM
and ML. Here, Mi represents different ML prediction models, Wi denotes the varying weights assigned
to different ML prediction models, and SUM(Wi*Mi) signifies the ensemble prediction model.

2.1. Overview of the Research Area

The experimental site is located in the southern–central part of Gansu Province, at an
altitude of 2000 m (Figure 2). The climate falls within the temperate semi-arid zone. The
area receives an annual average solar radiation of 592.9 (kJ/m2), with 2476.6 h of sunshine
annually and an average temperature of 6.4°C. Additionally, the accumulated temperature
≥ 0 ◦C averages 2933.5 ◦C annually, and the accumulated temperature ≥ 10 ◦C averages
2239.1 ◦C annually, with a frost-free period of 140 days. The soil type in the experimental
area is classified as loess soil, characterized by a bulk density of 1.19 (g/cm3), a pH
value of 8.36, organic matter content of 12.01 (g/kg), total nitrogen content of 0.76 (g/kg),
and total phosphorus content of 1.77 (g/kg). The region is predominantly flat with no
irrigation facilities. The average annual rainfall is 391.1 mm (1984–2021), but it is low,
erratic, and exhibits significant inter-annual variability with a coefficient of variation of
18.5%, frequently experiencing droughts. Moreover, more than 50% of the precipitation
occurs during the crop fallow period (late summer and autumn). The annual evaporation
reaches 1531 mm, and the precipitation guaranteed by 80% probability is 365 mm. This
area typifies semi-arid rain-fed agriculture in China, following a one-crop-per-year system.
Spring wheat is extensively cultivated in this loess hilly–gully region.
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The selected indicator crop for the experiment was the local spring wheat variety
“Ganchun 32”. The sowing rate was 18,750 (kg/ha), with a seed spacing of 0.20 m. Each
treatment uniformly applied fertilizers and field management practices based on local
experience, incorporating 42,000 (kg/ha) of calcium superphosphate and 22,000 (kg/ha) of
urea as the basal fertilizer. Prior to sowing, these two types of fertilizers were uniformly
spread and incorporated into the soil by plowing to a depth of 0.20–0.30 m. Manual
harvesting was conducted at the maturity stage of the spring wheat. The experiment was
arranged in a randomized complete block design with three replications.

2.2. Soil, Meteorological, Crop Management, and Yield Data Inputs to the APSIM and ML Models
2.2.1. Soil Data

The soil data used in the simulation were obtained by the precise measurements of
soil samples collected from the experimental field and analyzed in the laboratory. Thir-
teen soil characteristics were considered across nine different soil profile depths. These
properties encompass soil bulk density, pH levels, organic matter content, total nitrogen,
total phosphorus, sand content, clay content, air-dried moisture content, wilting coefficient,
field capacity, saturation capacity, available water content, lower limit of available water,
and soil hydraulic conductivity. The soil data in Table 1 represent the average of multiple
measurements taken from 2015 to 2021 (Table 3).
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Table 3. Soil property parameters in the experimental area.

Parameter
Soil Depth (mm)

0–50 50–100 100–300 300–500 500–800 800–1100 1100–1400 1400–1700 1700–2000

Bulk density
(g/cm3) 1.29 1.23 1.33 1.20 1.14 1.14 1.25 1.12 1.11

pH (1:5 water) 8.320 8.370 8.330 8.300 8.320 8.370 8.420 8.430 8.400
Air-dried
moisture

(mm/mm)
0.01 0.01 0.05 0.07 0.09 0.10 0.11 0.12 0.13

Wilting
coefficient
(mm/mm)

0.09 0.09 0.09 0.09 0.09 0.11 0.11 0.12 0.13

Field capacity
(mm/mm) 0.27 0.27 0.27 0.27 0.26 0.27 0.26 0.26 0.26

Saturated
moisture

(mm/mm)
0.46 0.49 0.45 0.50 0.52 0.52 0.48 0.53 0.53

Lower
available
moisture

(mm/mm)

0.09 0.09 0.09 0.09 0.10 0.12 0.13 0.18 0.22

Soil water
conductivity

(mm/h)
0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

2.2.2. Meteorological Data

The meteorological data were acquired from the Gansu Provincial Meteorological
Bureau’s website (cma.gov.cn, accessed on 10 March 2023). Daily weather data from
Anjiaopo Village, Fengxiang Town, Anding District, Dingxi City (spanning from 1984 to
2021) includeed parameters such as day length (day), solar radiation (radn), maximum
temperature (maxt), minimum temperature (mint), precipitation (rain), and vapor pressure
(vp). These data were utilized for the APSIM simulation model and training the ML
prediction model.

2.2.3. Crop Management Data

The planting density and fertilization methods were standardized based on the field
management experience at the experimental site, and detailed records were maintained.
Planting and harvesting dates were determined based on the local field management
experience, taking into account the annual climate variations in Dingxi City, Gansu Province,
and were recorded accordingly.

2.2.4. Crop Yield Data

The crop yield data used consisted of two parts: yield data from 1984 to 2014 were
obtained from the Statistical Yearbook of Gansu Province published by the Gansu Provincial
Bureau of Statistics (gansu.gov.cn, accessed on 10 March 2023), while yield data from 2015
to 2021 were collected through actual measurements in the experimental fields.

2.3. APSIM Model-Simulated Data Inputs to the ML Models

To operate the APSIM in the typical agricultural area of the loess hilly region, we
employed field data from Anjiapo Village, Fengxiang Town, Anding District, Dingxi City,
Gansu Province for the APSIM’s utilization. This was conducted to optimize the model
parameters, update and refine the model’s localized standard parameter database, and
enhance the model’s adaptation to the local conditions for wheat yield formation. Following
parameter optimization, we integrated field trial data from 1984 to 2021, meteorological
records, and statistical yearbook information to compare and analyze the error between the

cma.gov.cn
gansu.gov.cn
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actual and simulated yield values before and after algorithmic improvements, validating
the APSIM-Wheat model. During the experimental period from 1984 to 2021, the predicted
results of the APSIM model based on meteorological data, soil data, field management
practices, and other data were highly correlated with the actual yield data (“Section 3.1”).
The daily output data generated from this APSIM experiment were used as input for
training the ML model.

The APSIM’s daily output data served as input for the ML model. The initial step in
integrating the datasets required for training and testing the model involved extracting all
simulated output data from the APSIM. Subsequently, these acquired APSIM-simulated
output data were prepared to be merged into the initial dataset to form a new compre-
hensive dataset. Following the process outlined in “Section 2.4.5”, 28 distinct variables
from the APSIM’s output (refer to Table 4 for details) were chosen as input features for the
ML model.

Table 4. APSIM model-simulated variables considered as input features in the ML models.

Acronym Description

day_of_year Day of year (day)
Yield Crop yield (kg/ha)

Biomass Crop biomass (kg/ha)
root_depth Depth of roots (mm)

flowering_date Day number of flowering (doy)
maturity_date Day number of maturity (doy)

Lai Leaf area index (m2/m2)
Ep Plant water uptake (mm)
Es Evaporation from soil (mm)

N_demanded N demand of plant (g/m2)
grain_n_demand N demand of grain (g/m2)

grain_wt Weight of grain (g/m2)
Grain1GrainTotalN GrainTotal Grain1 nitrogen (g/m2)

sw_stress_photo Soil water stress for photosynthesis (0–1)
sw_stress_expan Soil water stress for leaf expansion (0–1)

water_table Water table depth (mm)
Runoff Runoff (mm)

dlt_n_min_tot Humic N mineralization (kg/ha)
Nitrification Nitrogen moved by nitrification (kg/ha)
dlt_n_min Het N mineralization (kg/ha)

Sws Soil water (mm/mm)
sw_supply Soil water supply (mm)

sw_demand Demand for soil water (mm)
sw_deficit Soil water deficit (mm)

vpd_est Estimated vapor pressure deficit (kPa)
esw_layr Extractable soil water (mm)
dlt_dm Actual above-ground dry matter production (g/m2)

dlt_dm_pot_rue Potential above-ground dry matter production via
photosynthesis (g/m2)

2.4. Data Preprocessing

Before training machine learning predictive models using the dataset, it is crucial
to ensure the data’s effectiveness for machine learning model training [42,43]. This in-
volves some preprocessing steps on the dataset and the output data from the APSIM. The
preprocessing steps include aggregating data from all sources to construct a new dataset
as input for the ML model. Subsequently, this new dataset undergoes unit conversion,
handling missing values, the removal of anomalies, and addressing data gaps. For features
lacking data, new feature variables might be constructed to enhance interpretability and
overall model performance. Following this, normalization processes are applied to ensure
consistent scales and ranges across features. Finally, feature selection is performed based
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on their importance, selecting multiple crucial features as the ultimate input for the ML
predictive model.

2.4.1. Aggregation of All Data Sources and Unit Conversions

The dataset comprises 35 variables, including output variables from the APSIM model,
wheat crop yield data collected over 39 years from both historical yearbooks of the Gansu
Provincial Bureau of Statistics (gansu.gov.cn, accessed on 10 March 2023) and actual mea-
surements, meteorological data from 1984 to 2021 obtained from the Gansu Provincial
Meteorological Bureau (cma.gov.cn, accessed on 10 March 2023), soil property data from
experimental fields, and on-field crop management practices. All data units for wheat
seeding quantity, actual yield, fertilization amount, etc., were standardized to (kg/ha). The
units of thirteen soil characteristics at nine different depths of the soil were converted to
values under soil depth in millimeters. These variables, encompassing the target variable,
served as the input data for both the ML prediction model and model testing. Factors
influencing crop growth include changes in growth environment, human management, and
crop genotype variation [44]. Changes in growth environment and human management
have specific, detailed parameter data, whereas crop genotype variation is influenced by
multiple factors, including advancements in biological and cultivation techniques over the
years and the genetic evolution of crops due to environmental adaptation, leading to an
increasing yield trend. To address the absence of publicly available genotype datasets, this
experiment constructed new feature variables to interpret the changes in crop genotype,
elaborated in detail in “Section 2.4.3”.

2.4.2. Imputation of Missing Values and Removal of Outliers

Handling outliers and filling missing values are crucial steps in preparing data for
machine learning modeling [45]. There are several methods to address missing values [46].
In this experiment, missing data refer to soil data and planting management data that were
not recorded before 2015. Based on the soil characteristic values recorded from 2015 to
2021 at six depth levels ranging from 500 mm to 2000 mm, which remained unchanged,
we used the mode of the measurements to interpolate the missing soil data. For soil
characteristics at depths ranging from 0 mm to 300 mm, we interpolated the data using
the average values recorded from 2015 to 2021. As the planting in the experimental fields
was uniformly managed, missing planting management data were completed based on
standard management practices. Outliers refer to data points that deviate significantly
from normal values due to measurement instrument errors or recording mistakes during
soil measurement. These outliers were deleted, and the mode of the measurements from
the same group was used to fill in the gaps.

2.4.3. Construction of Features

By observing the historical wheat production data and fitting a curve against the years,
we clearly see a consistent upward trend in wheat production over time, as depicted in
Figure 3, and Figure 4 illustrates the regression residuals of wheat production over time.
To quantitatively describe the trend of wheat yield over time, we introduced a new feature
trend value called “Annual Growth Rate” Yeari(year), representing the positive impact of
genetic improvement on yield. Subsequently, we introduced another new feature trend
value, called “Annual Trend Prediction” ŷ, to describe the changing trend of wheat yield
over time. It is worth emphasizing that constructing new features only involves datasets
that do not include the test year. Our goal was to use the model to predict the data in
the test set. Specifically, we set the trend value for each year in the test set as the model’s
predicted yield for that year, which can be represented by the following formula:

ŷ = b0Yeari(year) + b1 (1)

gansu.gov.cn
cma.gov.cn
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Through this method, we successfully introduced predicted production values as new
features into the model to better explain the changing trend of wheat production over time.

2.4.4. Normalization of the Feature Data

Some feature data in the dataset exhibit relatively large numerical values, which, when
used to train predictive ML models, particularly weighted ensemble models, may cause the
models to exhibit a bias towards these larger-value features [43]. To address the potential
issue of the model focusing more on features with larger values and less on other features,
we scaled all values of the input data for the features ‘carbon_tot’, ‘biomass’, and ‘nit_tot’
using the min–max scaling method to normalize them between 0 and 1. This ensures that
all features have similar value ranges while preserving the distribution characteristics of
the input variables [47]. Min–max scaling is implemented using the following formula:

Xnorm = (X − Xmin)/Xmax − Xmin (2)
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Scaling all feature values to a similar range ensures a more balanced impact of each
feature on the model.

2.4.5. Feature Selection

The machine learning predictive model comprises a vast array of input features,
totaling up to 1206, including APSIM output variables, weather data, soil information,
engineered features, and management practices. Due to the dataset’s enormity and the
risk of overfitting with high-dimensional training data, we only applied feature selection
measures to the training dataset to ensure the performance and generalization ability
of the machine learning model. Initially, we relied on domain experts’ knowledge to
conduct feature selection based on their professional insights. Subsequently, we employed
permutation feature selection methods to further refine the features.

Expert Knowledge-Based Feature Selection

We first evaluated the correlation between each feature outputted by the APSIM
and wheat yield. Then, combining the domain experts’ advice, we excluded features
that, although statistically correlated, were unlikely to practically the impact yield. We
excluded features between the end of harvesting and the beginning of planting for the
next year to reduce the number of weather-related features. Additionally, we excluded
cumulative planting progress data from the first few weeks before planting as they did not
provide substantive information for the model. Furthermore, we paid special attention to
the temporal features of non-zero yield variables, as they directly relate to critical stages
of the crop growth cycle. Therefore, utilizing professional knowledge, we ultimately
retained 100 characteristic variables, encompassing various dimensions including biomass
accumulation, leaf area development, soil moisture supply, nitrogen absorption, etc. These
variables reflect wheat’s response to environmental conditions, changes in physiological
state, and sensitivity to management measures. Ultimately, based on expert knowledge,
the feature selection process reduced the number of features from 1206 to 100 (Table 5).

Table 5. The 100 features selected based on expert knowledge.

day_of_year grain_n_demand grain_size radn sws trend grain_size GrowthN leaf_no n_demand_head
yield sw_stress_photo grain_wt maxt dul dnit grain_protein GrowthP LeafDetachingN n_supply_soil

biomass sw_stress_expan Grain1GrainTotalN mint sat cover_green Grain1DetachingN GrowthWt LeafDetachingP n_uptake
root_depth water_table sw_supply rain swcon dlt_lai Grain1DetachingP HeadGreenWt LeafDetachingWt p_conc_stover

flowering_date runoff sw_demand day_length nit_tot dlt_n_fixed Grain1DetachingWt HeadGrowthN LeafTotalP p_demand
maturity_date dlt_n_min_tot sw_deficit vp ll15_dep dlt_Pai green_biomass HeadGrowthP LeafTotalpconc p_uptake

lai nitrification vpd_est air_dry ll_dep dm_plant_min green_biomass_n HeadGrowthWt n_conc_crit Pai
ep dlt_n_min esw_layr bd LL15 effective_rue green_biomass_p lai_sum n_conc_crit_grain SenescedN
es grain_n dlt_dm carbon_tot PH grain_p green_biomass_wt leaf_area n_conc_grain sowing_date

n_demanded grain_protein dlt_dm_pot_rue esw fertiliser grain_wt GreenWt TTAfteremergence n_demand_grain Stage

Permutation Feature Selection and Random Forests

When dealing with the input features of varying measurement scales or category
counts, the default variable importance in random forests based on impurity might show
bias [39]. Permutation feature importance assessment involves shuffling individual features
and observing changes in model performance to gauge their contribution to the model’s
predictions [48]. Combining permutation-based feature selection with random forest
methods, this approach accurately evaluates feature importance by shuffling feature values
in the test set for each feature. This method ensures a more stable determination of feature
importance sequence, particularly in complex data [49–51]. This comprehensive approach
offers a more accurate assessment of feature importance, especially demonstrating better
stability and consistency when handling complex data.

In our experiment combining permutation feature selection and random forests, we
trained a random forest model with 100 sub-trees. Through tenfold cross-validation, we
adjusted the number of trees and ultimately selected the top 28 ranked features as inputs
for the machine learning model. This effectively filtered out a set of features signifi-
cantly impacting the model’s performance, laying a reliable foundation for subsequent
predictive modeling. This method enabled us to precisely identify which features con-



Agronomy 2024, 14, 777 11 of 30

tribute most to the model’s predictions, thereby enhancing the model’s performance and
generalization ability.

2.5. Adjustment of Hyperparameters

The appropriate hyperparameters can significantly enhance a model’s performance,
and different combinations might yield varying results for the same data. In the process of
constructing high-performance machine learning models using training data, we adopted
a strategy that combined 20 iterations of Bayesian search with 10-fold cross-validation
to optimize hyperparameter tuning [52]. Bayesian search was used to guide the search
for hyperparameters, while cross-validation was used to evaluate the performance of
hyperparameters. This combination method effectively navigated the hyperparameter
space to determine the optimal configuration [53–55].

2.6. Predictive Models
2.6.1. Agricultural Production Simulator (APSIM)

The APSIM (Agricultural Production Systems sIMulator) is a globally renowned
agricultural production system simulator developed by the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) of Australia. It is designed for assessing and
optimizing the production and environmental outcomes of agricultural systems [56]. The
APSIM simulator utilizes mathematical models and physical descriptions of agricultural
production systems to simulate the behavior of agroecosystems. This includes simulating
processes such as field management, soil carbon–nitrogen balance, soil water balance,
crop yield, phenology, and photosynthesis [57,58]. In this study, we employed the Wheat
module from the APSIM version 7.10 for experimental sites in the southern–central region
of Gansu, China. Specifically, the Wheat module of APSIM is dedicated to simulate
wheat growth and yield formation [59]. Additionally, we utilized the Soil module to
simulate dynamic changes in soil moisture and nutrients [60], the Weather module for
providing meteorological data as input for simulations [12], and the Management module
to describe and manage agricultural practices and measures [61]. These modules operate
synchronously on a daily time step.

2.6.2. Eight Machine Learning Algorithms

To ensure the construction of a high-performance ensemble model, we utilized the
APSIM alongside a range of diverse and reliable base learners, including multiple linear re-
gression [62], LASSO regression [63,64], decision tree regression (DTR) [65], random forest
(RF) [49,66,67], XGBoost [68], LightGBM [69], gradient boosting regression (GBR) [70,71],
and extremely randomized trees regression (ERT) [72,73]. We optimized these eight ma-
chine learning algorithms through weighted ensemble techniques [74]. Emphasizing the
diversity among these base learners and their individual strong performances, we in-
telligently combined them after thorough training into multiple high-performance and
robust machine learning models [74]. Ultimately, by comparing the performance of single
models to the ensemble model, we selected the ensemble model that exhibited the best
predictive performances.

2.6.3. Weighted Average Ensemble Model

The weighted average ensemble method, commonly used to enhance the model
performance, was employed in this study. It involves combining the predictions from the
eight base learners by weighted averaging to obtain the final prediction. Each base learner
carries an equal weight, resulting in a final prediction that corresponds to the mean of all
model predictions [75]. However, to ensure the performance of the ensemble model, it is
typically crucial to select base learners with high diversity, ensuring differences among the
models [76,77].
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2.6.4. Optimized Weighted Ensemble Model

The optimized weighted ensemble model, as opposed to a simple weighted average
ensemble, considers the performance of base models on the training set to dynamically
adjust the allocation of model weights. This approach allows higher-performance learners
to have greater weights, thereby enhancing the overall model accuracy [74,78]. Studies
indicate that the optimized weighted ensemble model outperforms the simple weighted
average model in terms of model performance. This optimization is achieved by minimizing
the mean squared error (MSE), root-mean-square error (RMSE), and the coefficient of
determination (R-squared). Based on the comparison and analysis of the experimental
results with three different objective functions (“Section 4”), the weighted ensemble model
optimized by the MSE for predictions and superior model performance was selected. In
large-scale datasets, optimizing weights based on the MSE aids in adjusting the model
complexity by optimizing the square of the error, which helps to prevent overfitting to
some extent, thereby enhancing the model robustness and performance. This optimization
problem is addressed by adjusting model parameters using gradient descent algorithms to
minimize the MSE, which is equivalent to minimizing the loss function. The following is
the fundamental concept of gradient descent:

i. Set the model parameters (weights) to certain values.
ii. Compute the gradient of the loss function with respect to the parameters.
iii. Update the parameters in the direction opposite to the gradient to reduce the loss.
iv. Repeat the above steps until the loss reaches a satisfactory level or the maximum

number of iterations is reached.

The mathematical representation of gradient descent is as follows:

ŷj = ∑n
i=1Wi ŷij (3)

∑n
i=1Wi = 1 (4)

Wi = Wi − α
∂

∂Wi
MSE (5)

∂

∂Wi
MSE =

1
N ∑N

i=1
(
yj − ŷj

)2 (6)

Wi ≥ 0, ∀i = 1, . . . , 8 (7)

where Wi is the weight of the i model, ŷij is the prediction of the i model for the j sample
in the entire dataset (j = 1, . . . , k), α is the learning rate controlling the update step size,
MSE is the mean squared error, ∂

∂Wi
MSE is the partial derivative with respect to weight

Wi, yj is the actual observed value, ŷj is the prediction of the entire model, which is the
weighted sum of all model predictions. The optimal weights are determined by solving the
minimization problem of the entire model (Equations (3)–(6)) while satisfying the constraint
that the sum of all weights must be one (Equation (4)).

2.7. Evaluation Metrics

To assess the performance of the developed machine learning models, we utilized four
statistical evaluation metrics: the root-mean-square error (RMSE), the relative root-mean-
square error (RRMSE), the mean bias error (MBE), and the coefficient of determination (R-
squared) (Equations (8)–(11), respectively). These metrics represent the accuracy, robustness,
and explanatory power of the model predictions [79].

The root-mean-square error (RMSE) quantifies the disparity between the predicted
and actual values, where a lower value signifies a more accurate model fit:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (8)
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The relative root-mean-square error (RRMSE) quantifies the model’s prediction error rela-
tive to the variation in the target variable; a smaller RRMSE signifies a smaller prediction error
concerning the variability of the target variable, indicating a better predictive performance:

RRMSE =
RMSE

1
n ∑n

i=1 yi
(9)

The mean bias error (MBE) describes the average deviation in predictions. A negative
MBE implies the model underestimates the target variable, a positive value indicates
overestimation, and values close to zero signify smaller average deviations between the
predictions and observations:

MBE =
1
n ∑n

i=1(ŷi − yi) (10)

The coefficient of determination (R-squared) represents the model’s ability to explain
the variability in observed values. It ranges from 0 to 1, where values closer to 1 denote a
better model fit, while values near 0 signify a poorer model performance:

R2 = 1 − RSS(sun o f square residuals)
TSS(Total sum o f sqaures)

= 1 − ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−y)2

(11)

After computing and comparing these four statistical evaluation metrics, we identified
the model with the best overall performance. We conducted a detailed analysis of its results
to ensure interpretability [79].

2.8. Experimental Environment Configuration

The research was conducted using a Windows 11 platform with a Python 3.8.5 envi-
ronment, employing a suite of Python libraries for data processing, analysis, and machine
learning modeling. The hardware specifications included an Intel Core i7-9700K CPU @
3.60 GHz, 16 GB RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. Data processing and
analysis were facilitated by the pandas library, with sklearn.preprocessing.MinMaxScaler
utilized for data scaling and numpy for numerical computations, while the os module
was employed for operating system interactions. In terms of machine learning model-
ing, various models from Scikit-learn were utilized, including ensemble learning models
(RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor), linear models
(Lasso, LinearRegression), decision tree models (DecisionTreeRegressor), as well as regres-
sion models from gradient boosting frameworks (XGBRegressor, LGBMRegressor). Model
performance evaluation relied on Scikit-learn’s mean_squared_error and r2_score functions.
Graphical visualization was conducted using Microsoft Word 2021 and Matplotlib 3.3.5.
To ensure experiment reproducibility and stability, Python virtual environments were
employed to isolate dependencies for different projects, with package versions managed
via the pip tool.

3. Results
3.1. APSIM Model Performance Verification

Based on field experiment data from 1984 to 2021, we utilized the APSIM model to
predict wheat yields for 38 years. Analyzing the relationship between the predicted and
actual yields (Figure 5), the performance metrics for the APSIM model were as follows:
RMSE: 169.82 (kg/ha), RRMSE: 9.39%, MBE: −4.96 (kg/ha), and R-squared: 0.70. With the
RRMSE of the APSIM model within 10%, the process of creating daily wheat yield data
based on the APSIM simulation from the actual yearly wheat yields is scientifically robust.
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Figure 5. The relationship between the wheat yield predicted by the APSIM model and the actual
observed wheat yield from 1984 to 2021. The horizontal coordinate of the blue dots represents the
actual wheat yield, and the vertical coordinate represents the yield predicted by the APSIM model.
The red 45-degree dashed line represents the ideal situation where the predicted values are completely
consistent with the actual values.

3.2. Prediction of the Model Performance

This study employed an extensive dataset covering wheat production spanning from
1984 to 2021, comprising data from 38 years. Specifically, for a comprehensive assessment,
we used Python’s random.sample() function to randomly select 3 different years from
among 38 years, which resulted in 2012, 2016, and 2021, acting as the test dataset for
assessing the effectiveness of various models. Through an evaluation of the performance of
a single APSIM prediction model, twelve machine learning prediction models, and twelve
APSIM-based machine learning prediction models, we obtained a range of error metrics
and explained variances for the experimental results.

Table 6 demonstrates the test set prediction errors of the APSIM prediction model
across the three different years. Specifically, for the 2021 test set, the RRMSE and MBE were
10.69% and 107.41 (kg/ha), respectively. For the 2016 test set, the RRMSE and MBE were
9.93% and 106.30 (kg/ha), respectively. Lastly, for the 2012 test set, the RRMSE and MBE
were 11.71% and 108.71 (kg/ha), respectively.

Table 6. APSIM model’s test evaluation standard error values for the years of 2012, 2016, and 2021.

Year RMSE (kg/ha) RRMSE (%) MBE (kg/ha) R2

2012 134.11 10.69 107.41 0.9573
2016 133.63 9.93 106.30 0.9616
2021 135.67 11.71 108.71 0.9613

In the test results for 2012 shown in Table 7, for the ML predictive models, the RMSE
ranged from 130.06 to 261.94 (kg/ha), RRMSE ranged from 10.33% to 20.92%, the MBE
ranged from 33.58 to 242.10 (kg/ha), and the R2 ranged from 0.83 to 0.96. As for the
APSIM-ML predictive models, the RMSE ranged from 26.87 to 146.18 (kg/ha), the RRMSE
ranged from 2.12% to 11.69%, the MBE ranged from −0.53 to 116.65 (kg/ha), and the R2

ranged from 0.94 to 0.99. The ‘Increase in RRMSE (%)’ column in Tables 7–9 represents the
change in numerical values.
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Table 7. Test evaluation errors for the benchmark ML and APSIM-ML models in 2012.

ML Model RMSE
(kg/ha)

RRMSE
(%) MBE (kg/ha) R2 APSIM-ML Model RMSE

(kg/ha)
RRMSE

(%) MBE (kg/ha) R2 Increase in
RRMSE (%)

Random Forest 231.68 18.52 199.71 0.8744 APSIM-Random Forest 111.62 8.91 94.31 0.9737 −9.61

Lasso Regression 208.63 16.72 107.07 0.8952 APSIM-Lasso
Regression 146.09 11.69 116.65 0.9462 −5.03

Decision Tree 260.54 20.92 208.15 0.8376 APSIM-Decision Tree 144.71 11.58 113.63 0.9463 −9.34

Linear Regression 259.41 20.74 242.1 0.8375 APSIM-Linear
Regression 97.92 7.83 79.83 0.9742 −12.91

Gradient Boosting 234.04 18.76 200.57 0.8702 APSIM-Gradient
Boosting 94.62 7.59 74.22 0.9752 −11.17

Extra Trees 228.07 18.07 186.7 0.8767 APSIM-Extra Trees 130.89 10.47 110.43 0.9608 −7.60
XGBoost 229.76 18.36 196.47 0.8743 APSIM-XGBoost 99.80 7.96 78.26 0.9760 −10.4

LightGBM 229.18 18.24 191.82 0.8751 APSIM-LightGBM 105.05 8.39 78.68 0.9743 −9.85
Weighted Average

Ensemble 225.75 17.98 191.83 0.8785 Weighted Average
Ensemble 110.95 8.87 93.19 0.9713 −9.11

Minimized MSE
Optimized Weighted

Integrations
129.53 10.33 33.58 0.9608

Minimized MSE
Optimized Weighted

Integrations
26.78 2.12 −0.53 0.9978 −8.21

Minimized RMSE
Optimized Weighted

Integrations
133.24 10.56 36.74 0.9577

Minimized RMSE
Optimized Weighted

Integrations
47.66 3.56 4.25 0.9948 −7.00

Minimized R2

Optimized Weighted
Integrations

139.41 11.09 34.27 0.9541
Minimized R2

Optimized Weighted
Integrations

47.93 3.55 5.14 0.9947 −7.54
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Table 8. Test evaluation errors for the benchmark ML and APSIM-ML models in 2016.

ML Model RMSE
(kg/ha)

RRMSE
(%)

MBE
(kg/ha) R2 APSIM-ML Model RMSE

(kg/ha)
RRMSE

(%) MBE (kg/ha) R2 Increase in
RRMSE (%)

Random Forest 142.76 10.63 115.76 0.9347 APSIM-Random Forest 79.15 5.89 58.93 0.9827 −4.74

Lasso Regression 296.16 21.79 154.49 0.8045 APSIM-Lasso
Regression 150.68 11.11 120.35 0.952 −10.68

Decision Tree 217.07 15.5 90.13 0.9013 APSIM-Decision Tree 147.05 10.91 −5.67 0.9549 −4.59

Linear Regression 83.93 6.57 54.02 0.9821 APSIM-Linear
Regression 92.07 6.88 67.51 0.9733 0.31

Gradient Boosting 123.88 9.65 90.49 0.9656 APSIM-Gradient
Boosting 66.69 4.94 24.95 0.9806 −4.71

Extra Trees 173.15 12.68 144.89 0.9405 APSIM-Extra Trees 98.92 7.28 73.77 0.96 −5.4
XGBoost 128.8 9.13 91.04 0.9657 APSIM-XGBoost 67.36 5.05 25.87 0.9805 −4.08

LightGBM 108.21 8.17 96.9 0.9744 APSIM-LightGBM 67.63 5.05 21.01 0.9804 −3.12
Weighted Average

Ensemble 118.61 9.92 −39.3 0.9725 Weighted Average
Ensemble 77.09 5.72 57.88 0.9774 −4.2

Minimized MSE
Optimized Weighted

Integrations
44.75 3.47 10.05 0.9952

Minimized MSE
Optimized Weighted

Integrations
50.58 3.83 6.71 0.9916 0.36

Minimized RMSE
Optimized Weighted

Integrations
45.19 3.47 10.00 0.9952

Minimized RMSE
Optimized Weighted

Integrations
47.22 3.52 4.37 0.9925 0.05

Minimized R2

Optimized Weighted
Integrations

45.02 3.41 10.33 0.9952
Minimized R2

Optimized Weighted
Integrations

47.44 3.56 5.09 0.9924 0.15
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Table 9. Test evaluation errors for the benchmark ML and APSIM-ML models in 2021.

ML Model RMSE
(kg/ha)

RRMSE
(%)

MBE
(kg/ha) R2 APSIM-ML Model RMSE

(kg/ha)
RRMSE

(%) MBE (kg/ha) R2 Increase in
RRMSE (%)

Random Forest 117.56 10.78 −49.81 0.9718 APSIM-Random Forest 123.73 10.75 97.20 0.9684 −0.03

Lasso Regression 166.21 15.35 −41.83 0.9314 APSIM-Lasso
Regression 106.89 9.21 78.55 0.9756 −6.14

Decision Tree 209.03 19.07 −21.97 0.8971 APSIM-Decision Tree 160.26 13.87 49.86 0.9453 −5.2

Linear Regression 93.09 8.51 −70.52 0.9846 APSIM-Linear
Regression 98.07 8.44 57.45 0.9792 −0.07

Gradient Boosting 114.01 10.39 −25.4 0.9744 APSIM-Gradient
Boosting 67.78 5.83 17.96 0.9902 −4.56

Extra Trees 119.38 10.92 −28.05 0.9661 APSIM-Extra Trees 146.34 12.64 116.25 0.9559 1.72
XGBoost 121.62 11.11 −44.84 0.9643 APSIM-XGBoost 60.62 5.25 21.45 0.9921 −5.86

LightGBM 85.56 7.87 −34.98 0.9822 APSIM-LightGBM 58.36 5.1 17.28 0.9921 −2.77
Weighted Average

Ensemble 107.90 9.89 −39.27 0.9701 Weighted Average
Ensemble 86.56 7.46 56.88 0.9833 −2.43

Minimized MSE
optimized weighted

integrations
70.07 6.53 −11.71 0.9883

Minimized MSE
Optimized Weighted

Integrations
43.3 3.74 −2.53 0.9957 −2.79

Minimized RMSE
Optimized Weighted

Integrations
75.61 7.07 −10.10 0.9852

Minimized RMSE
Optimized Weighted

Integrations
47.59 3.54 4.24 0.9953 −3.53

Minimized R2

Optimized Weighted
Integrations

70.94 6.53 −8.34 0.9869
Minimized R2

Optimized Weighted
Integrations

47.88 3.56 4.95 0.9950 −2.97
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The test results for 2016 displayed in Table 8 indicate that, for the ML predictive
models, the RMSE ranges from 44.75 to 296.16 (kg/ha), the RRMSE ranges from 3.47%
to 21.79%, the MBE ranges from −39.30 to 154.49 (kg/ha), and the R2 ranges from 0.80
to 0.99. Concerning the APSIM-ML predictive models, the RMSE ranges from 47.22 to
150.68 (kg/ha), the RRMSE ranges from 3.52% to 11.11%, the MBE ranges from −5.67 to
120.35 (kg/ha), and the R2 ranges from 0.95 to 0.99.

In the 2021 test results shown in Table 9, for the ML prediction models, the RMSE
ranges from 70.07 to 209.03 (kg/ha), the RRMSE spans from 6.53% to 19.07%, the MBE
varies from −8.34 to −70.52 (kg/ha), and the R2 ranges from 0.89 to 0.98. For the APSIM-
ML prediction models, the RMSE varies from 43.30 to 160.26 (kg/ha), the RRMSE spans
from 3.54% to 13.87%, the MBE ranges from −2.50 to 116.25 (kg/ha), and the R2 varies
from 0.94 to 0.99.

3.3. Comparison and Analysis of Model Performance in Different Years

By analyzing Table 7 and Figure 6 for the 2012 prediction data, we observe that combin-
ing APSIM output data as input features for the APSIM-ML predictive model significantly
improves the yield prediction performance compared to the 12 developed ML models and
the standalone APSIM model. The APSIM-ML model exhibited an average decrease in the
RRMSE by −8.98% and an average reduction in the RMSE by −111.97 (kg/ha) compared
to the ML models. Among these, the MLR predictive model demonstrated the highest
improvement in RRMSE precision by 12.91%. Post-MSE optimization, the APSIM-ML
predictive model displayed superior predictive performance with an 8.84% RRMSE en-
hancement compared to the APSIM predictive model and an 18.80% and 10.33% RRMSE
enhancement against the worst and best performing ML predictive models, respectively. In
the experimental results, individual ML predictive models exhibit the poorest wheat yield
prediction performance. However, the weighted ensemble of multiple ML models demon-
strates a higher predictive accuracy compared to the individual ML models, resulting in
RRMSE reductions ranging from 9.02% to 10.59%.
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Moreover, the optimized weighted ensemble model outperformed the weighted aver-
age ensemble predictive model. Regarding the predictive performance of the ML models,
the ranking from the lowest to the highest was DT < MLR < GBR < RF < XGBoost < Light-
GBM < ETR < Weighted average < Lasso < Minimized R2 < Minimized RMSE < Minimized
MSE. In contrast, for the APSIM-ML models, the predictive performance ranking was Lasso
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< DT < ETR < RF < Weighted average < LightGBM < XGBoost < MLR < GBR < Minimized
RMSE <Minimized R2 < Minimized MSE.

By analyzing the RRMSE test results for 2016 (Table 8 and Figure 7), it is evident that
incorporating the APSIM variables improved all constructed ML predictive models, except
for MLR. In comparison to the ML models, the APSIM-ML predictive model demonstrated
an average RRMSE enhancement of −3.38% and an average RMSE improvement of −44.64
(kg/ha). However, the RRMSE for the MLR predictive model decreased by 0.31% when
compared to APSIM-MLR. The APSIM-ML predictive model with the optimized weighted
ensemble model, minimizing the RMSE, displayed the best performance (RRMSE = 3.52%)
among the models in 2016. The RRMSE for the worst and best ML predictive models
compared to APSIM-ML increased by −5.50%, −18.27%, and 0.11%, respectively. Notably,
the ML optimized weighted ensemble predictive model outperformed the APSIM-ML
optimized ensemble predictive model in the 2016 dataset. In terms of the predictive
performance for the ML models: Lasso < DT < ETR < RF < Weighted average < GBR <
XGBoost < LightGBM < MLR < Minimized RMSE < Minimized MSE < Minimized R2; and
for the APSIM-ML models: Lasso < DT < ETR < MLR < RF < Weighted average < XGBoost
< LightGBM < GBR < Minimized MSE < Minimized R2 < Minimized RMSE.
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By analyzing the predictive outcomes for the various models in 2021 (Table 9 and
Figure 8), we observed that the APSIM-ML model exhibited an average RRMSE and RMSE
improvement of −2.88% and −25.30 (kg/ha), respectively, compared to the ML models.
However, the RRMSE for the ETR model increased by −1.72% when compared to APSIM-
ETR. The APSIM-ML predictive model with the optimized weighted ensemble, minimizing
RMSE, displayed the best performance (RRMSE = 3.54%) when compared to the APSIM
model. The worst and best ML predictive models had an RRMSE increase of −8.20%,
−15.53%, and −2.99%, respectively. For the ML models’ predictive performance ranking:

DT < Lasso < XGBoost < ETR < RF < GBR < Weighted average < MLR < LightGBM
< Minimized RMSE < Minimized R2 < Minimized MSE; and for the APSIM-ML models’
predictive performance: DT < ETR < RF < Lasso < MLR < Weighted average < GBR <
XGBoost < LightGBM < Minimized MSE < Minimized R2 < Minimized RMSE.
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3.4. Relationship between APSIM-ML Model Performance and Input Features

When analyzing the relationship between the variables and the RRMSE, it was ob-
served that the eight APSIM-ML predictive models exhibited similar relationships for each
test year. The average correlation heatmap and retrograde analysis of the three correlation
matrices between certain APSIM output variables, constructed genotype variables (trend),
weather features, soil variables, and the RRMSE of the various machine learning predictive
models are presented in Figures 9 and 10. In the heatmap, each cell contains a numerical
value representing the correlation coefficient between two variables. The correlation coef-
ficient ranges for the analysis are categorized as follows: −0.20 to 0.20 indicates a weak
correlation, 0.20 to 0.50 suggests a moderately positive correlation, 0.50 to 0.80 indicates
a strong positive correlation, −0.20 to −0.50 denotes a moderately negative correlation,
−0.50 to −0.80 indicates a strong negative correlation, 0.8 to 1 signifies a highly positive cor-
relation, −0.8 to −1 represents a highly negative correlation, 1 indicates a perfect positive
correlation, 0 implies no linear correlation, and −1 signifies a perfect negative correlation.

3.4.1. Relationship of the Model Performance to Partial APSIM Output Variables and the
Constructed Feature

From the color distribution in Figure 9, we observed three different linear correlations
among the outputs of the APSIM-ML prediction models. These correlations were observed
with RandomForest, DecisionTree, and ExtraTrees, as well as with LASSO, LinearRegres-
sion, GradientBoosting, XGB, and LGBM models.

For the DecisionTree and ExtraTrees prediction models, the correlation coefficients
between the APSIM outputs and RRMSE range from 0.18 to −0.16. In the case of the
RandomForest prediction model, the correlation coefficients between the features and
RRMSE range from 0.33 to −0.38, with no correlation found with the simulated daily root
depth feature. The RandomForest model shows strong negative correlations between soil
moisture stress and photosynthesis, leaf expansion, and positive correlations with humic
acid nitrogen mineralization, above-ground dry matter production, soil water supply, and
particle nitrogen demand.
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In the LASSO, LinearRegression, GradientBoosting, XGB, and LGBM prediction mod-
els, the root_depth feature exhibits strong negative correlations with the RRMSE, with
correlation coefficients ranging from −0.60 to −0.63. Features like grain_protein and
lai show strong positive correlations with the RRMSE, with correlation coefficients rang-
ing from 0.33 to 0.37, while variables like biomass, grain_n, and grain_wt exhibit strong
negative correlations.

The constructed feature variable “trend” shows weak correlations with the RRMSE of
DecisionTree and ExtraTrees prediction models and strong negative correlations with the
other models.

3.4.2. Relationship of the Model Performance and Weather Features and the APSIM Output
of Soil Variable

Upon examining the color distribution of weather and soil features with respect to the
RRMSE across various machine learning prediction models in Figure 10, it is observed that
the relationships are similar to those in Figure 9.

In the DecisionTree and ExtraTrees prediction models, the weather and soil features
exhibit weak correlations with the model’s RRMSE, while they show stronger associations
with the accuracy of the RandomForest model. Among the weather features, only sunshine
duration (with a correlation coefficient of 0.27) shows a strong positive correlation with
the RRMSE of the RandomForest prediction model, while the maximum daily temperature
(with a correlation coefficient of −0.24) and radiation intensity (with a correlation coefficient
of −0.30) have a significant negative correlation with the model’s accuracy.

Among the APSIM output soil features, the RRMSE of the prediction models exhibits
a strong negative correlation with the total soil carbon (with a correlation coefficient of
−0.20), while showing strong positive correlations with other soil variables in the figure.
In the rows of LASSO, LinearRegression, GradientBoosting, XGB, and LGBM regression
models, the RRMSE exhibits strong negative correlations with weather features such as the
maximum and minimum daily temperatures and atmospheric pressure, with correlation
coefficients ranging from −0.26 to −0.31, and negative correlations with radiation intensity,
precipitation, and sunshine duration. In the soil features, the total soil carbon shows a
strong negative correlation with the model’s RRMSE, with correlation coefficients ranging
from −0.33 to −0.37, while the total soil nitrogen exhibits a strong positive correlation with
the RRMSE, with correlation coefficients ranging from 0.29 to −0.33.

4. Discussion

By comparing the performance of each model in these evaluation metrics in Fig-
ures 6–8, we found disparities among the predictive models. Specifically, the predictive
performance of the weighted average ensemble model aligns with that of the unoptimized
weighted ensemble predictive model, while the optimized weighted ensemble model out-
performs all unoptimized predictive models. Moreover, APSIM-based machine learning
models exhibit a significant advantage over traditional machine learning models in terms
of predictive accuracy and interpretability (R2) in specific contexts, likely due to their more
accurate modeling of agricultural ecosystems. In ranking the model performances from
high to low, we also noticed that, in different test years, some models exhibit an unsta-
ble performance. For instance, in the ML models of 2012, the LASSO model’s predictive
accuracy ranks just below the optimized ensemble model, while in 2016, the predictive
performance of LASSO is the lowest. This hints at potential differences in the models’
robustness in practical applications. However, the performance of the optimized weighted
ensemble model remains consistently high. Ultimately, considering predictive performance,
interpretability, and robustness, we believe that the optimized hybrid weighted ensemble
model based on APSIM demonstrates the best performance in predicting the wheat yield.
These models will offer reliable insights for decision-makers to optimize wheat cultivation
and yield forecasting strategies.
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Considering the experimental results, the optimized weighted ensemble model ex-
hibited superior performance in wheat yield prediction. Moreover, the predictive model
based on APSIM-ML notably outperformed both the ML and APSIM standalone models.
However, within the ensemble predictive models optimized using the mean squared error
(MSE), the root-mean-square error (RMSE), and the R2, performance variations were ob-
served in terms of the RMSE, MBE, and RRMSE for wheat yield prediction across different
scenarios. Consequently, to identify the most suitable predictive model, we conducted an
in-depth analysis of the robustness of the predictive models across different test years.

From Figure 11, it is evident that, in 2012, the weighted ensemble model optimized by
MSE outperforms the other two models in predicting the wheat yield, especially within
the APSIM-ML framework. In 2016, the performance of the model optimized by the
RMSE for the weighted ensemble model is slightly superior, but the predictive differences
among the three models are not substantial. The MSE-optimized weighted ensemble
model within APSIM-ML has an RMSE 2.36 (kg/ha) higher and an MBE −1.34 (kg/ha)
lower than the optimal model. In 2021, the interpretability of the models optimized by
MSE and R2 for the weighted ensemble is almost identical. The best-performing model
in ML is the R2-optimized weighted ensemble, whereas in APSIM-ML, the best is the
MSE-optimized weighted ensemble. Notably, the MSE-optimized weighted ensemble
maintains a stable level of accuracy across different test years, demonstrating robustness in
predicting the wheat yield. Figure 11 indicates that incorporating APSIM-simulated output
data significantly enhances the predictive accuracy of ML and APSIM models across test
years. Compared to ML, the MBE precision improved by 33.05 (kg/ha), 3.34 (kg/ha), and
9.18 (kg/ha), and compared to APSIM, the MBE precision improved by 106.88 (kg/ha),
99.59 (kg/ha), and 106.18 (kg/ha), respectively.

Agronomy 2024, 14, x FOR PEER REVIEW 23 of 30 
 

 

the APSIM-ML framework. In 2016, the performance of the model optimized by the RMSE 
for the weighted ensemble model is slightly superior, but the predictive differences among 
the three models are not substantial. The MSE-optimized weighted ensemble model 
within APSIM-ML has an RMSE 2.36 (kg/ha) higher and an MBE −1.34 (kg/ha) lower than 
the optimal model. In 2021, the interpretability of the models optimized by MSE and R2 
for the weighted ensemble is almost identical. The best-performing model in ML is the R2-
optimized weighted ensemble, whereas in APSIM-ML, the best is the MSE-optimized 
weighted ensemble. Notably, the MSE-optimized weighted ensemble maintains a stable 
level of accuracy across different test years, demonstrating robustness in predicting the 
wheat yield. Figure 11 indicates that incorporating APSIM-simulated output data signifi-
cantly enhances the predictive accuracy of ML and APSIM models across test years. Com-
pared to ML, the MBE precision improved by 33.05 (kg/ha), 3.34 (kg/ha), and 9.18 (kg/ha), 
and compared to APSIM, the MBE precision improved by 106.88 (kg/ha), 99.59 (kg/ha), 
and 106.18 (kg/ha), respectively. 

Therefore, we opted for the results derived from the MSE-optimized ensemble model 
within APSIM-ML as the basis for further analysis (Figure 12). Constructing more robust 
predictive models for various conditions, including additional meteorological data and 
incorporating remote sensing or satellite data, could be a potential avenue for future re-
search. Prior studies have also highlighted the effectiveness of weighted optimization with 
multiple models in providing the best predictions for crop yield, further affirming the 
efficacy of employing multiple models in agricultural forecasting. 

 
(a) 

129.53 133.24 139.41

44.75 45.19 45.02

70.07 75.61 70.94

33.58 36.74 34.27

10.05 10.00 10.33

-11.71 -10.1 -8.34-20
0

20
40
60
80

100
120
140
160

Minimize
MSE

optimize
weighted

integrations

Minimize
RMSE

optimize
weighted

integrations

Minimize
R2 optimize

weighted
integrations

Minimize
MSE

optimize
weighted

integrations

Minimize
RMSE

optimize
weighted

integrations

Minimize
R2 optimize

weighted
integrations

Minimize
MSE

optimize
weighted

integrations

Minimize
RMSE

optimize
weighted

integrations

Minimize
R2 optimize

weighted
integrations

2012 2016 2021

C
ro

p 
yi

el
d（

kg
/h

a）

ML Model

RMSE MBE

Figure 11. Cont.



Agronomy 2024, 14, 777 24 of 30Agronomy 2024, 14, x FOR PEER REVIEW 24 of 30 
 

 

 
(b) 

Figure 11. The 2012, 2016, and 2021 test data are based on histograms of the three weighted ensemble 
models, RMSE- and MBE-optimized for ML (a) and APSIM-ML (b) based on the MSE, RMSE, and 
R2. 

 
Figure 12. MBE comparison chart of the APSIM model, the weighted ensemble model based on ML-
minimized MSE optimization, and the APSIM-ML weighted ensemble model for minimizing MSE 
optimization for predicting wheat yield in 2012, 2016, and 2021. 

From Figures 9 and 10, it can be observed that there are three types of linear correla-
tions between the eight machine learning prediction models and the input features. The 
correlation between each prediction model and input features varies in strength, 

26.87

47.79 48.06 50.58
47.22 47.44

43.30 
47.59 47.88

-0.53

4.25 5.14 6.71 4.37 5.09

-2.53

4.24 4.95

-10

0

10

20

30

40

50

60

Minimize
MSE

optimize
weighted

integrations

Minimize
RMSE

optimize
weighted

integrations

Minimize
R2 optimize

weighted
integrations

Minimize
MSE

optimize
weighted

integrations

Minimize
RMSE

optimize
weighted

integrations

Minimize
R2 optimize

weighted
integrations

Minimize
MSE

optimize
weighted

integrations

Minimize
RMSE

optimize
weighted

integrations

Minimize
R2 optimize

weighted
integrations

2012 2016 2021

C
ro

p 
yi

el
d（

kg
/h

a）

APSIM-ML Model

RMSE MBE

107.41 106.3 108.71

33.58

10.05

-11.71

-0.53

6.71

-2.53
-20

0

20

40

60

80

100

120

2012 2016 2021

C
ro

p 
yi

el
d（

kg
/h

a）

APSIM MBE ML MBE APSIM-ML MBE

Figure 11. The 2012, 2016, and 2021 test data are based on histograms of the three weighted ensemble
models, RMSE- and MBE-optimized for ML (a) and APSIM-ML (b) based on the MSE, RMSE, and R2.

Therefore, we opted for the results derived from the MSE-optimized ensemble model
within APSIM-ML as the basis for further analysis (Figure 12). Constructing more robust
predictive models for various conditions, including additional meteorological data and
incorporating remote sensing or satellite data, could be a potential avenue for future
research. Prior studies have also highlighted the effectiveness of weighted optimization
with multiple models in providing the best predictions for crop yield, further affirming the
efficacy of employing multiple models in agricultural forecasting.

From Figures 9 and 10, it can be observed that there are three types of linear correla-
tions between the eight machine learning prediction models and the input features. The
correlation between each prediction model and input features varies in strength, indicating
both common and distinct sources of differences in predictive accuracy among different
models. Similarly, the sources of the prediction model errors are not limited to one or a
few fixed features, but rather result from the complex interactions among features. The
relationship between the APSIM-ML model performance and APSIM-simulated output
data, soil, and climate input features is clearly evident. These results highlight the critical
importance of root_depth for the crop model prediction accuracy, particularly under water
stress conditions, where deep-rooted crops may have higher water acquisition capabilities,
thereby improving prediction accuracy. Furthermore, the positive correlation between the
leaf area index and grain protein confirms the importance of these biological indicators
in assessing the crop production potential. The influence of weather features is more
complex, with correlations between climate parameters such as sunshine duration, the
maximum daily temperature, and radiation revealing the direct impact of climate change
on crop growth conditions. In particular, the negative correlation between the soil total
carbon and model performance enhancement underscores the potential role of soil man-
agement and organic matter improvement in enhancing crop model accuracy. Overall, the
significant correlations between the RRMSE and specific weather features and soil water,
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nitrogen, and carbon cycling characteristics provide important guidance for accurate crop
yield prediction.
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Figure 12. MBE comparison chart of the APSIM model, the weighted ensemble model based on
ML-minimized MSE optimization, and the APSIM-ML weighted ensemble model for minimizing
MSE optimization for predicting wheat yield in 2012, 2016, and 2021.

The weather and soil data have consistently remained crucial input features in crop
yield prediction models [80,81]. The weighted ensemble prediction model optimized by
minimizing the mean squared error (MSE) demonstrates significant sensitivity to weather
variations, including factors such as the daily maximum and minimum temperatures,
atmospheric pressure, and solar radiation (Figure 10). The accuracy of the predictive
models is significantly influenced by 13 soil parameters derived from nine different soil
profiles, including soil bulk density, pH value, organic matter content, soil moisture,
available water capacity, and soil hydraulic conductivity. This finding aligns with early
research by van Klompenburg et al. [22], who used machine learning to predict the crop
yield based on weather and soil information. Similarly, Dai et al. [82] emphasized the
importance of soil factors in accurately predicting crop yields in a study conducted in
2011. Recent studies, such as the work by Guo et al. [83] in 2021 and Jiang et al. [84] in
the same year, further explore how soil properties and meteorological conditions impact
crop yields. Results similar to those proposed by Zou et al. [40], which suggested capturing
additional variability in predicting county-level corn yields in China using data from
simulated crop model outputs combined with basic learners (RF), were obtained (R2 ≥ 0.9,
RMSE < 750 kg/ha, and MAE < 500 kg/ha). Both studies confirm the effectiveness of
advanced ensemble methods in improving the model prediction accuracy and reducing
errors. Unlike the study by Zou et al., we also incorporated crop genetics as input features
to construct machine learning (ML) prediction models. These models exhibited particular
sensitivity to the feature “trend” constructed from crop genetics and management data.
This observation suggests that the trend feature effectively represents the impact of crop
genetic evolution on wheat yield.

In addition, after an in-depth analysis using correlation heatmaps, we observed corre-
lations between weather, soil characteristics, APSIM-simulated output features, constructed
new features, and model errors. It became evident that there exists some level of correlation
between the different prediction models. Interestingly, we found that model errors do not
originate from a fixed set of features but result from interactions among various features.



Agronomy 2024, 14, 777 26 of 30

We further conducted an importance analysis on select input features of the optimal model,
presenting the average importance in Figure 13. According to the graph, features derived
from APSIM-simulated outputs, such as particle nitrogen uptake, particle weight, soil
nitrogen content, soil water content, and daily root depth, are the most crucial factors
influencing the prediction models. This underscores the significant value of the APSIM
simulations in understanding nitrogen and water dynamics between soil and crops for
predicting wheat yield.
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Finally, the results are presented in percentage form.

In this study, we introduced constructed features alongside APSIM-simulated output
data as input features for machine learning models, comparing them against experiments
using weather and soil information as machine learning input features. We focused on
evaluating the predictive ability of machine learning for wheat yield under different input
feature scenarios. Comparing and assessing the correlation between input features and
errors in basic models (APSIM and ML) and the coupled model (APSIM-ML), we noted that
the APSIM-simulated output features in the prediction models had a greater impact on the
results than just weather and soil data. Notably, the simulated output features were derived
based on weather and soil information using APSIM simulations. This indicates that, within
the modeling process, the interactions between different factors are quite complex and
cannot be straightforwardly attributed to specific weather or soil characteristics. Expanding
beyond the traditional individual APSIM and ML models, this research applied a coupled
model in the wheat cultivation of the loess hilly–gully region in the central–southern part
of Gansu Province. The results demonstrate that the ML model coupled with APSIM data
outperformed models without APSIM data. Considering the performance, interpretability,
and robustness of all predictive models in this comparative study, we conclude that the
MSE-optimized hybrid weighted ensemble model based on APSIM performs the best in
predicting wheat yield. These models provide reliable references for decision-makers to
optimize wheat planting and yield prediction strategies. Consequently, the integration
of crop modeling and machine learning stands as an effective approach to enhancing
agricultural forecasting accuracy.
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While this study has yielded significant findings, there are limitations to consider. For
instance, our models are constrained by the dataset; hence, future endeavors might involve
introducing a more extensive array of samples and features. Furthermore, exploring more
intricate model structures could enhance the predictive accuracy. Through comparisons of
various models across different testing years, our study suggests that the minimized MSE
optimized weighted ensemble model based on APSIM-ML serves as an effective method for
predicting dryland wheat yield, offering robust decision-making support for stakeholders.

5. Conclusions

In this study, we significantly improved wheat yield predictions by employing a di-
verse set of machine learning models combined with crop simulation software (APSIM
7.10). Through comparative analyses, the minimized MSE optimized weighted ensemble
model demonstrated outstanding performance across multiple evaluation metrics. It out-
performed single models and other ensemble methods, exhibiting more robust and reliable
predictions across different test years. The constructed yield trend features and factors such
as the flow of water and nitrogen between the soil and crops have a significant impact on
the performance of the prediction model. However, when assessing the correlation between
the input features and errors across the various machine learning models, we noticed that
error sources differed among models, highlighting the complex interplay between input
features during modeling. Future research could explore the integration of remote sensing
and satellite data, employing APSIM in tandem with deep learning techniques to enhance
the wheat yield prediction accuracy and delve deeper into analyzing the factors influencing
crop yields.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L. and Z.N.; software, Z.L.; valida-
tion, Z.L.; formal analysis, Z.L.; investigation, Z.L.; writing—original draft, Z.L.; writing—review and
editing, Z.L. and Z.N.; visualization, Z.L.; project administration, Z.L., Z.N. and G.L.; resources, Z.N.
and G.L.; supervision, Z.N.; funding acquisition, Z.N. and G.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
32160416), Gansu Province Education Department Industrial Support Plan Project (No. 2022CYZC-
41), Gansu Agricultural University Youth Mentor Support Fund (No. GAU-QDFC-2022-19), and
Gansu Province Top Leading Talent Program (No. GSBJLJ-2023-09).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Asseng, S.; Zhu, Y.; Basso, B.; Wilson, T.; Cammarano, D. Simulation Modeling: Applications in Cropping Systems. In

Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 102–112, ISBN
9780080931395. [CrossRef]

2. Ahmed, M.; Akram, M.N.; Asim, M.; Aslam, M.; Hassan, F.-U.; Higgins, S.; Stöckle, C.O.; Hoogenboom, G. Calibration and
validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application.
Comput. Electron. Agric. 2016, 123, 384–401. [CrossRef]

3. Shahhosseini, M.; Martinez-Feria, R.A.; Hu, G.; Archontoulis, S.V. Maize yield and nitrate loss prediction with machine learning
algorithms. Environ. Res. Lett. 2019, 14, 124026. [CrossRef]

4. Yu, D.; Zha, Y.; Shi, L.; Ye, H.; Zhang, Y. Improving sugarcane growth simulations by integrating multi-source observations into a
crop model. Eur. J. Agron. 2022, 132, 126410. [CrossRef]

5. Yang, W.; Guo, T.; Luo, J.; Zhang, R.; Zhao, J.; Warburton, M.L.; Xiao, Y.; Yan, J. Target-oriented prioritization: Targeted selection
strategy by integrating organismal and molecular traits through predictive analytics in breeding. Genome Biol. 2022, 23, 80.
[CrossRef] [PubMed]

https://doi.org/10.1016/B978-0-444-52512-3.00233-3
https://doi.org/10.1016/j.compag.2016.03.015
https://doi.org/10.1088/1748-9326/ab5268
https://doi.org/10.1016/j.eja.2021.126410
https://doi.org/10.1186/s13059-022-02650-w
https://www.ncbi.nlm.nih.gov/pubmed/35292095


Agronomy 2024, 14, 777 28 of 30

6. Wu, H.; Yue, Q.; Guo, P.; Xu, X.; Huang, X. Improving the AquaCrop model to achieve direct simulation of evapotranspiration
under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules. Agric. Water Manag. 2022,
266, 107599. [CrossRef]

7. Husson, O.; Tano, B.F.; Saito, K. Designing low-input upland rice-based cropping systems with conservation agriculture for
climate change adaptation: A six-year experiment in M’bé, Bouaké, Côte d’Ivoire. Field Crops Res. 2022, 277, 108418. [CrossRef]

8. Basso, B.; Liu, L. Seasonal Crop Yield Forecast: Methods, Applications, and Accuracies. In Advances in Agronomy; Sparks, D.L.,
Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 154, pp. 201–255. [CrossRef]

9. Feng, P.; Wang, B.; Liu, D.L.; Waters, C.; Xiao, D.; Shi, L.; Yu, Q. Dynamic Wheat Yield Forecasts Are Improved by a Hybrid
Approach Using a Biophysical Model and Machine Learning Technique. Agric. For. Meteorol. 2020, 285–286, 107922. [CrossRef]

10. Islam, S.S.; Arafat, A.C.; Hasan, A.K.; Khomphet, T.; Karim, R. Estimating the optimum dose of nitrogen fertilizer with climatic
conditions on improving Boro rice (Oryza sativa) yield using DSSAT-Rice crop model. Res. Crops 2022, 23, 253–260. [CrossRef]

11. Kipkulei, H.K.; Bellingrath-Kimura, S.D.; Lana, M.A.; Ghazaryan, G.; Baatz, R.; Boitt, M.K.; Chisanga, C.B.; Rotich, B.; Sieber, S.
Assessment of Maize Yield Response to Agricultural Management Strategies Using the DSSAT–CERES-Maize Model in Trans
Nzoia County in Kenya. Int. J. Plant Prod. 2022, 16, 557–577. [CrossRef]

12. Zhao, P.; Zhou, Y.; Li, F.; Ling, X.; Deng, N.; Peng, S.; Man, J. The Adaptability of APSIM-Wheat Model in the Middle and Lower
Reaches of the Yangtze River Plain of China: A Case Study of Winter Wheat in Hubei Province. Agronomy 2020, 10, 981. [CrossRef]

13. Wang, Y.; Lv, J.; Wang, Y.; Sun, H.; Hannaford, J.; Su, Z.; Barker, L.J.; Qu, Y. Drought Risk Assessment of Spring Maize Based on
APSIM Crop Model in Liaoning Province, China. Int. J. Disaster Risk Reduct. 2020, 45, 101483. [CrossRef]

14. Morel, J.; Kumar, U.; Ahmed, M.; Bergkvist, G.; Lana, M.; Halling, M.; Parsons, D. Quantification of the Impact of Temperature,
CO2, and Rainfall Changes on Swedish Annual Crops Production Using the APSIM Model. Front. Sustain. Food Syst. 2021,
5, 665025. [CrossRef]

15. Vogeler, I.; Cichota, R.; Langer, S.; Thomas, S.; Ekanayake, D.; Werner, A. Simulating Water and Nitrogen Runoff with APSIM. Soil
Tillage Res. 2023, 227, 105593. [CrossRef]

16. Kumar, U.; Hansen, E.M.; Thomsen, I.K.; Vogeler, I. Performance of APSIM to Simulate the Dynamics of Winter Wheat Growth,
Phenology, and Nitrogen Uptake from Early Growth Stages to Maturity in Northern Europe. Plants 2023, 12, 986. [CrossRef]
[PubMed]

17. Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review.
IEEE Access 2021, 9, 4843–4873. [CrossRef]

18. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674.
[CrossRef] [PubMed]

19. Zhang, C.; Park, D.S.; Yoon, S.; Zhang, S. Editorial: Machine learning and artificial intelligence for smart agriculture. Front. Plant
Sci. 2022, 13, 1121468. [CrossRef]

20. Cao, J.; Wang, H.; Li, J.; Tian, Q.; Niyogi, D. Improving the Forecasting of Winter Wheat Yields in Northern China with Machine
Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction. Remote Sens. 2022, 14, 1707. [CrossRef]

21. González Sánchez, A.; Frausto Solís, J.; Ojeda Bustamante, W. Predictive ability of machine learning methods for massive crop
yield prediction. Span. J. Agric. Res. 2014, 12, 313. [CrossRef]

22. Klompenburg, T.V.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput.
Electron. Agric. 2020, 177, 105709. [CrossRef]

23. Morales, A.; Villalobos, F.J. Using machine learning for crop yield prediction in the past or the future. Front. Plant Sci. 2023,
14, 1128388. [CrossRef]

24. Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation
in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [CrossRef]

25. Yamparla, R.; Shaik, H.S.; Guntaka, N.S.P.; Marri, P.; Nallamothu, S. Crop yield prediction using Random Forest Algorithm. In
Proceedings of the 2022 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India,
22–24 June 2022; pp. 1538–1543. [CrossRef]

26. Burdett, H.; Wellen, C. Statistical and machine learning methods for crop yield prediction in the context of precision agriculture.
Precis. Agric. 2022, 23, 1553–1574. [CrossRef]

27. Paudel, D.; Boogaard, H.; de Wit, A.; van der Velde, M.; Claverie, M.; Nisini, L.; Janssen, S.; Osinga, S.; Athanasiadis, I.N. Machine
learning for regional crop yield forecasting in Europe. Field Crops Res. 2022, 276, 108377. [CrossRef]

28. Chergui, N. Durum wheat yield forecasting using machine learning. Artif. Intell. Agric. 2022, 6, 156–166. [CrossRef]
29. Adisa, O.M.; Botai, J.O.; Adeola, A.M.; Hassen, A.; Botai, C.M.; Darkey, D.; Tesfamariam, E. Application of Artificial Neural

Network for Predicting Maize Production in South Africa. Sustainability 2019, 11, 1145. [CrossRef]
30. Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric.

2019, 163, 104859. [CrossRef]
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