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Abstract: Thrips constitute the primary pest responsible for reducing mango yield and quality every
year in Asia. Therefore, the efficient monitoring of thrips damage across mango orchards on a large
scale to aid farmers in devising rational pesticide application strategies poses a significant challenge
within the current mango industry. This study designs a mango thrips damage inversion prediction
method based on the maximum likelihood classifier (MLC). Initially, drone multispectral remote
sensing technology is utilized to acquire multispectral data from mango orchards, which are then
combined with ground hyperspectral information to identify sensitive bands indicative of mango
leaf damage caused by thrips. Subsequently, correlation analysis is conducted on various vegetation
indices, leading to the selection of the Greenness Normalized Difference Vegetation Index (GNDVI),
which exhibits a strong correlation coefficient of 0.82, as the spectral characteristic parameter for
the inversion prediction model. The construction of a remote sensing prediction model for thrips
damage distribution in mango orchards is then undertaken based on the MLC. Acknowledging the
bias-variance trade-off inherent in the MLC when processing spectral data and its potential limitations
in feature extraction and robustness, this study proposes a modification wherein neighboring pixels
are weighted differently to enhance the model’s feature extraction capabilities. Experimental results
show that the novel MLC maintains stable estimation levels across various numbers of domain
pixels, achieving an inversion accuracy of 91.23%. Through the reconstruction of the pixel matrix, the
damage distribution of thrips in mango orchards can be swiftly and comprehensively visualized over
extensive areas.

Keywords: thrips; spectrum; remote sensing; vegetation index; maximum likelihood classifier

1. Introduction

Mango is popular among consumers due to its unique flavor and taste. Mango
planting areas are widely distributed in tropical and subtropical regions, with Asia’s
mango production accounting for 72.9% of the world’s production [1]. However, due
to the climate’s high temperature and humidity, pests and disease outbreaks in mango
orchards are frequent, becoming a difficult and painful aspect of mango plant protection
operations [2]. Thrips is the most important insect pest in Asian mango, which mainly
inserts its mouthparts into the mango leaf or fruit flesh to suck the sap, destroying the
internal tissues and chlorophyll cells, thus affecting the gathering of water and nutrients
required for photosynthesis [3]. Rapid monitoring of thrips damage in mango orchards
over a wide area, along with effective evaluation of control measures, is essential to support
the formulation of the “Double Reduction” policy for mango quality improvement and
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efficiency. This will also better assist farmers in formulating application programs to
improve management practices, as well as to improve mango yield and quality.

Researchers have conducted numerous studies employing hyperspectral imaging for
ground-based spectral observations aimed at characterizing the spectral response of fruit
trees under pest and disease damage [4–6]. For instance, Carlos et al. employed hyper-
spectrometry to evaluate the progression of early anthracnose in mango fruits, achieving
an accuracy exceeding 91% through the integration of a prediction algorithm. This non-
destructive early detection approach holds promise for enhancing mango quality, increasing
commercial value, and mitigating farmers’ losses [7]. Despite ground-based spectral obser-
vation offering high pixel resolution, the data collection process is intricate and inefficient,
often lacking non-destructive detection capabilities, thus falling short of meeting the de-
mands for rapid and large-scale detection. Particularly for seasonal thrips outbreaks in
mangoes, precise and rapid assessment of thrips damage conditions at critical stages, such
as tip and blossom, could enable the formulation of targeted application protocols to mini-
mize the risk of thrips resistance due to inappropriate medication usage. Although satellite
remote sensing technology has been extensively utilized for large-scale crop pest and dis-
ease monitoring, limitations in spatial resolution and relatively long revisit times constrain
its potential for continuous dynamic and accurate monitoring of agricultural conditions in
the field. In recent years, the application of unmanned aerial vehicles (drones) equipped
with spectral cameras for observing damage characteristics of fruit trees through ground
experiments and spectroradiometers has emerged as a burgeoning trend in pest and disease
monitoring. Numerous studies have reported the adoption of drone-based spectral remote
sensing methods for monitoring pest and disease agro-industrial conditions in forestry and
field environments. For instance, Luo Qingqing et al. utilized drone hyperspectral remote
sensing data to effectively predict various damage levels of small girdling insect pests
across 60 different pest classes in Sevier’s apples by establishing relevant index models and
regression equations [8]. Zheng Beijun et al., extracted characteristic wavelengths, indices,
and spectral parameters from canopy spectra closely related to damage degrees from the
poisonous moth on bristlecone bamboo using Fisher’s discriminant method. The study
demonstrated the feasibility of drone spectral remote sensing for large-area detection of
the poisonous moth [9]. Ma Yunqiang employed drone spectral images combined with
deep learning technology to accurately map the distribution of the cutter moth, providing
crucial data support for local decision-making authorities in Yunnan to manage and control
cutter moth infestations, thereby contributing significantly to ecological protection and
forestry resource management in the region [10]. Furthermore, Roope et al. utilized a
multispectral drone to collect canopy spectral information of European spruce infested
with beetles in Lahti, Finland, employing a machine learning algorithm to automatically
identify beetle-induced damage levels. Their study illustrated the potential of remote
sensing spectral images for single-tree analysis and corrected spectral imagery in detecting
the health status of urban greening forests [11]. Lastly, Marston et al. applied a simple
linear regression method to determine contingency responses induced by soybean aphids
based on drone hyperspectral reflectance data, highlighting the efficacy of such methods in
pest monitoring [12].

The utilization of vegetation indices for characterizing pigments, water, carbon, ni-
trogen, and other chemical components of fruit trees has emerged as a focal point in the
application of spectral remote sensing within agricultural contexts. Common indicators
for damage vegetation analysis encompass the normalized vegetation index (NVI), canopy
chlorophyll content index (CPI), summed greenness index (SGI), and color infrared com-
posite index (CIRCI), among others. Nonetheless, these indices fail to discriminate between
damage induced by pest and disease infestation in fruit trees and damage stemming from
other sources. Moreover, they might solely suffice for monitoring temporal alterations in
the distribution of pests and diseases within fruit trees known to be under damage [13].
Thrips, the focus of this study, provoke several longitudinal reddish-brown stripes near the
primary veins of affected mango tree leaves, resulting in rust spots, reduced pigmentation,
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and diminished water content. There exists a certain correlation between the chemical
content and spectral characteristics of leaves at varying damage levels. Consequently, in
orchards where thrips emerge as the predominant pest, leveraging drone spectral remote
sensing imagery in conjunction with diverse vegetation indices facilitates meticulous detec-
tion of mango tree canopies exhibiting yellowing rust spots or senescence characteristics.
Nevertheless, further refinement of key algorithms and models is imperative to ensure
reliable and user-friendly inversion predictions. Spectral remote sensing inversion predic-
tion algorithms broadly fall into two categories: empirical algorithms and model-based
quantitative inversion algorithms. Empirical algorithms primarily adopt the ratio method,
exemplified by the polynomial algorithm [14] and SeaWiFS algorithm [15]. Conversely,
with the evolution of bio-optical models, model-based quantitative inversion algorithms
have gained prominence for inverting the correlation between canopy features and spectral
radiance features indicative of pest and disease damage. These quantitative inversion
algorithms predominantly employ linear regression models, such as simple linear regres-
sion [16], Lasso regression [17], and partial least squares regression [18]. However, due
to the substantial redundancy in original spectra and the nonlinear relationship between
spectra and vegetation canopy, linear models inadequately capture the intricate relation-
ship between remote sensing observation indicators and canopy covariates, leading to
information loss and distortion, thereby constraining practicality. Nonlinear quantitative
inversion models chiefly involve the utilization of machine learning classifiers to categorize
and analyze pixel vectors. Commonly employed models include the maximum likelihood
classifier (MLC) [19], support vector machine (SVM) [20], neural network [21], and logistic
regression [22], among others, which obviate the necessity for feature extraction to derive
classification outcomes. Among these machine learning algorithms, the MLC, grounded in
Bayesian theory and augmented with prior knowledge fusion for classification, emerges as
straightforward and user-friendly. Moreover, its density distribution function effectively
elucidates classification outcomes, rendering it more suitable for classifying multispec-
tral data with fewer bands [23]. Given that this study is based on DJI P4 multispectral
drone data capturing spectral features of mango canopy with limited bands, the MLC
will primarily underpin the spectral remote sensing inversion prediction of mango thrips
damage levels.

In this study, we leverage drone-based spectral remote sensing data along with field
survey sampling methods to establish machine learning models for predicting and ana-
lyzing the damage caused by thrips in various regions of mango orchards. The aim is to
provide preliminary data support for the intelligent and precise operation of modernized
new pesticide application machinery. To enhance the adaptability of the prediction models
to anomalous spectral pixels, we propose a novel MLC model to infer the extent of thrips
damage across the entire experimental area. Through the methodology presented in this
paper, a new dynamic monitoring approach is provided for investigating the harmful
characteristics and occurrence patterns of mango thrips. Additionally, it offers a rapid re-
search method for evaluating the effectiveness of thrips control pesticides, thereby holding
significant importance for effective orchard management among mango cultivators.

2. Materials and Methods
2.1. Experimental Site

The experimental site is located within a mountainous mango orchard in Sanya City,
Yazhou District, Hainan Province, China, specifically at Sangongli Village (109◦18′9578′′ E,
18◦42′2322′′ N), as indicated by the green dashed box in Figure 1c. The orchard primarily
cultivates Guifei mango, with trees aged 7–8 years, averaging a height of 2.7–2.9 m and
a canopy diameter of 3.2 m. The spacing between trees is 4.5 m, with rows spaced 5 m
apart. Mango trees exhibit robust growth, with fully developed leaves distributed in an
umbrella-like manner across the canopy, with almost no leaves within the canopy interior.
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Figure 2. Data collection equipment. (a) Multispectral remote sensing drone (DJI P4M); (b) spectral 
calibration whiteboard; (c) SPAD 502 Plus chlorophyll concentration meter. 

Figure 1. Experimental site. (a) Hainan Province geographical location; (b) Sanya City geographical
coordinates; (c) mango orchard in Sangongli Village.

2.2. Drone Remote Sensing System and Data Acquisition

A DJI P4 multispectral drone (Shenzhen Dajiang Innovation Technology Co., Ltd,
Shenzhen City, China, https://www.dji.com/cn, accessed on 5 April 2024) in Figure 2a,
was utilized for collecting multispectral images (Figure 1c). The resolution of the DJI P4
multispectral sensor is 1600 × 1300 pixels, encompassing six spectral bands, with the
specific bands (central wavelength, wavelength width) being blue band (B, 450 ± 16 nm),
green band (G, 560 ± 16 nm), red band (R, 630 ± 16 nm), red-edge band (RE, 730 ± 16 nm),
and near-infrared band (NIR, 840 ± 16 nm).
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The images were captured during the mango flowering period from 12 to 22 September
2023, under clear weather conditions with a wind speed of 3 levels. The flight route of
the drone was preset and automatically controlled by a DJI GS Pro station (Shenzhen
Dajiang Innovation Technology Co., Ltd., Shenzhen City, China) around 11 a.m., with a

https://www.dji.com/cn
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forward overlap rate of 80% and a side overlap rate of 70%. Before each image capture,
three standard reference whiteboards were preset, and the reflectance of the calibration
whiteboard (Figure 2b) was synchronously measured to calibrate the radiance of the drone
images (multispectral and hyperspectral).

To ensure the diversity and representativeness of sampling points, 20 trees were ran-
domly selected within the experimental area, as depicted in Figure 1c. Five sampling points
were then randomly designated on each tree. Utilizing a SPAD 502 Plus chlorophyll con-
centration meter (Konica Minolta Holdings, Inc., Tokyo, Japan) equipped with five-point
sensors, the chlorophyll concentration values of the leaves at each sampling point were
measured sequentially. The average of the five chlorophyll readings was calculated to rep-
resent the chlorophyll value for each sampling point. Simultaneously, high-precision GPS
was employed to record the positions of different sampling points, facilitating subsequent
inversion processes.

2.3. Classification of Mango Thrips Damage Levels

Thrips primarily damage fruit trees by inserting their mouthparts into mango leaves
or fruit tissues to feed on sap. Affected leaves exhibit several longitudinal reddish-brown
streaks near the main vein, forming rust spots. The incidence of rust spots varies with the
severity of infestation, as illustrated in Figure 3. Following the grading criteria for mango
thrips damage outlined in the “Standards for Disaster Assessment of Forestry Pests”, the
severity of rust spots is categorized, recorded, and photographed. The grading of different
rust spot rates is shown in Table 1. Subsequently, the collected data are utilized as sample
and validation datasets for constructing the information inversion model and assessing
its accuracy.
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Figure 3. Leaf samples of different levels of thrips damage: (a) severe; (b) moderate; (c) mild;
(d) healthy.

Table 1. Sample.

Levels Sample Size Rust Spot Rate/%

severe 35 51~100
moderate 30 21~50

mild 20 11~20
healthy 15 0~10

2.4. Feature Wavelength Extraction

Affected by thrips, the spectral characteristics of the mango canopy change, and
as the severity of the pest damage increases, these spectral changes become more pro-
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nounced. Therefore, starting from the spectral characteristics of the canopy affected by
thrips at different degrees of damage, model inversion, classification, and accuracy ver-
ification are conducted through band combination operations combined with machine
learning algorithms.

The absorption and reflection characteristics of plants vary with the wavelength
of electromagnetic radiation and their characteristics. Plants exhibit different degrees
of changes in absorption and reflection characteristics at different wavelengths under
conditions such as pest and disease infections, known as spectral response to pests and
diseases. The spectral reflectance of mango leaves at various damage levels was collected
by using ATP9100 handheld hyperspectral spectrometer (spectral range: 300–1100 nm;
wavelength accuracy: ±0.5 nm; spectral resolution: 1.4 nm@756 nm; spectral sampling
interval: 0.4 nm. OPTOSKY photonics, Inc., Xiamen, China), as shown in Figure 4.
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Figure 4. ATP9100 handheld hyperspectral detection platform.

Ten mango leaf samples were collected under different levels of stress, with 10 samples
taken from each of the following three parts of the leaf: base, middle, and tip. Hyperspectral
data were acquired for each leaf sample at these three locations. The reflectance values of
the spectral data for the same stress level were averaged across different bands to obtain
the spectral curves as shown in Figure 5.
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Through comparative analysis from Figure 5, it was observed that in the B, G, and
R bands, characteristics where the reflectance decreases with the degree of damage are
evident. Conversely, in the NIR and RE bands, the differences in radiance values of mango
leaves under varying degrees of damage—light, moderate, and severe—are relatively
indistinct. To enhance the sample size of the dataset, this study used the B, G, R, RE,
and NIR bands as the feature bands for subsequent computation of various vegetation
indices, aiming to quantitatively predict the degree of mango thrips damage across the
entire remote sensing image.
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2.5. Vegetation Index Construction

This study selected commonly used vegetation indices, such as the Normalized Differ-
ence Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation
Index (SAVI), Leaf Chlorophyll Content Index (IC), Visible Vegetation Index (VDV), Red–
Green Ratio Index (RGR), Normalized Green–Red Difference Index (NGRD), Excessive
Greenness Index (EXG), Excessive Greenness and Redness Difference Index (EXGR), Veg-
etation Color Index (CIVE), Difference Vegetation Index (DV), Greenness Normalized
Difference Vegetation Index (GNDVI), Normalized Difference Greenness Index (INDG),
and Wide Dynamic Range Vegetation Index (WDRV), to establish the spectral character-
istics of mango leaf reflectance. The computational formulas and reference sources for
various vegetation indices are presented in Table 2. Through correlation coefficient analy-
sis, the relationship between each vegetation index and the measured rust incidence on
mango canopies was investigated, with highly correlated vegetation indices selected for
subsequent inversion prediction tasks.

Table 2. Mango thrips monitoring vegetation index.

Vegetation Index Formula Source

NDVI NDVI = NIR−R
NIR+R [10,24]

EVI EVI = 2.5
(

NIR−R
NIR+6R−7.5B+1

)
[24]

SAV SAV = (NIR−R)×1.5
NIR+R+0.5

[16]

IC IC = NIR−RE
NIR+RE

[13,25]

VDV VDV = 2G−R−B
2G+R+B

[8,26]

RGR RGR = R
G

[26]

NGRD NGRD = G−R
G+R

[8,10]

EXG EXG = 2G − R − B [27]

EXGR EXGR = G − 2.4R − B [27]

CIVE CIVE = 0.44R − 0.88G + 0.39B + 18.79 [11,27]

DV DV = NIR − R [12,27]

GNDVI GNDVI = NIR−G
NIR+G

[10,27]

NDG NDG = G−R
G+R

[27]

WDRV WDRV = 0.1NIR−RE
0.1NIR+RE

[26,27]

2.6. Prediction Model of Mango Thrips Leaf Damage Degree Based on the Novel MLC

The MLC is a typical supervised classification method widely applied in the field of
spectral remote sensing. Its fundamental approach involves utilizing spectral reflectance
values within regions of interest to classify entire spectral images based on similar re-
flectance values, assuming that the data follow a normal distribution [28]. Through analysis
using SPSS software (version 19.0), it was determined that the spectral image data involved
in this study conform to a normal distribution. Consequently, the MLC was selected as the
predictive model for assessing the degree of mango thrips leaf damage in this study.

Spectral reflectance values from sampling points with different levels of damage
were used as training samples, with reflectance values ranging between 0 and 1. The
determination of the probability density function of the normal distribution depends on the
mean and variance. In this study, the mean and variance of the spectral reflectance of the
training samples were used as the mean and variance of the probability density function
of the reflectance values corresponding to each level of damage. Assuming there are n
spectral bands in the imagery, the expression for the conditional density function of the i-th
damage level corresponding to a normal distribution class is:

P(x|yi) =
|e−1

i | 1
2

(2π)
n
2

exp
[
−1

2
(x − µi)

τei
−1(x − µi)

]
(1)
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where x represents the spectral reflectance values of pixels in the region of interest, and yi
denotes the categories of damage severity for pixels in the region of interest. ei represents
the variance of the n bands for the i-th damage level, and µi represents the mean vector.

The damage levels set in this study were divided into four categories. Therefore,
there are four corresponding probability density functions, allowing for the calculation
of the probability of each type. This is equivalent to calculating the probability that the
reflectance value x∗ of a random pixel point A belongs to the i-th category among the four
categories. According to Bayes’ theorem, the expression for the posterior probability of the
i-th category among the four categories can be obtained as follows:

PA(yi|x∗) =
P(x|yi)× P(yi)

P(x∗)
(2)

Here, P(yi) serves as the prior probability, denoting the proportion of rust rates
corresponding to a particular level of severity within the entire spectral image, with an
initial estimated value set to 1/4. Combining Equations (1) and (2) and simplifying through
logarithmic transformation yields the expression:

PA(yi|x∗) = −1
2

ln|2πnei| −
1
2
(x − µi)

τei
−1(x − µi) (3)

However, traditional maximum likelihood models exhibit varying degrees of deviation
from data points, primarily due to the bias-variance trade-off inherent in modeling. Insuffi-
cient model complexity, inadequate extraction of relevant features, or features that are not
entirely correlated with the original data can all impact the robustness and generalization
ability of the model. To address this issue, this study proposes weighting the neighboring
pixels of spectral images using different weights calculated by the maximum likelihood
method to enhance the model’s adaptability to uneven pixels. Following the approach
outlined in reference [29], MLC is equivalent to minimizing the weights of adjacent uneven
pixels, that is, minimizing the following objective function:

min
θ

{
− ln Lθ(et) = ∑T

t=1 ρθ(et)
}

(4)

where θ represents the adjacent pixels of A and T denotes the number of adjacent pixels.
We define the weight logic function of MLC as:

Lθ(et) =
exp

(
φδ − φe2

t
)

1 + exp
(

φδ − φe2
t
) (5)

φ and δ are scalars. Particularly, as δ approaches infinity, the weight Lθ tends to
1. It is evident that the weight logistic function of MLC is bounded within the interval
[0, 1], where the parameter φ regulates the degree of attenuation, and δ controls the
position of the boundary point. By adjusting φ and δ, uneven pixels can automatically be
assigned smaller weight values, thereby enhancing the robustness of the model. Finally,
by combining Equations (4) and (5) and performing a straightforward integration, the
objective function of the MLC with minimal weights for adjacent non-uniform pixels can
be obtained as follows:

ρθ(et) =
∫ et

0 ρ
′
θ(et)det =

∫ et
0 etLθ(et)det

= − 1
2φ ln

1+exp(φδ−φe2
t )

1+exp(φδ)

(6)

3. Results
3.1. Correlation Analysis of Different Vegetation Indices and Pest Infestation Levels

Various vegetation indices were subjected to Pearson correlation analysis with the
measured damage rust rates at 20 sampling points, and the results are shown in Table 3.
Vegetation indices demonstrating strong correlations (R2 > 0.6) and significance levels
p < 0.05 were selected as feature spectra for MLC analysis.
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Table 3. Correlation between vegetation index and damage level.

Vegetation Index R2 p Vegetation Index R2 p

NDVI 0.61 0 * EXG 0.26 0.142
EVI 0.37 0.150 EXGR 0.57 0.019 *
SAV 0.71 0.006 * CIVE 0.63 0.040 *
IC 0.30 0.481 DV 0.41 0.524

VDV 0.57 0.002 * GNDVI 0.81 0.045 *
RGR 0.37 0 * NDG 0.74 0.876

NGRD 0.71 0 * WDRV 0.55 0.001 *
* Indicates that it passed the significance test at the 0.05 level.

As shown in Table 3, six vegetation indices, including NDVI, SAV, NGRD, CIVE,
GNDVI, and NDG, meet the criteria. To visually comprehend the correlation between
different vegetation indices and pest damage levels, linear regression analyses were con-
ducted between the six vegetation indices and the corresponding measured values of rust
infection rates at 20 sampling points, yielding the results depicted in Figure 6.

Agronomy 2024, 14, x FOR PEER REVIEW 10 of 15 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Fitting functions for different vegetation indices. (a) NDVI; (b) SAV; (c) NGRD; (d) CIVE; 
(e) GNDVI; (f) NDG. 

3.2. Analysis of Performance Testing Results of the Novel MLC 
According to the conclusions drawn in Section 3.1, we sampled the novel MLC 

method to process and analyze the GNDVI spectral images. Since GNDVI represents a 
fused band, with the number of bands 𝑛𝑛 = 1, the probability function for the severity cat-
egories of damage for a random pixel 𝐴𝐴 is: 

𝑃𝑃𝐴𝐴(𝑦𝑦𝑖𝑖|𝑥𝑥∗) = −
1
2

ln|2𝜋𝜋𝑒𝑒𝑖𝑖| −
1
2

(𝑥𝑥 − 𝜇𝜇𝑖𝑖)𝜏𝜏𝑒𝑒𝑖𝑖−1(𝑥𝑥 − 𝜇𝜇𝑖𝑖) (7) 

Figure 6. Fitting functions for different vegetation indices. (a) NDVI; (b) SAV; (c) NGRD; (d) CIVE;
(e) GNDVI; (f) NDG.



Agronomy 2024, 14, 795 10 of 14

Based on the analysis of the results in Figure 6, it is inferred that the feeding behavior
of mango thrips affects the transportation of water and nutrients in the sieve tubes and
conductive tissues of tender mango leaves. This interference leads to a deprivation of water
and nutrient supply to the upper part of the leaf above the feeding hole, consequently
impacting chlorophyll synthesis. As a result, the leaf exhibits decreased absorption in the
blue, red, and red-edge spectral bands while showing increased absorption in the green and
near-infrared spectral bands under severe thrips damage conditions. This phenomenon
correlates with smaller values of NDVI and NGRD and larger values of the remaining
four vegetation indices. Furthermore, correlation analysis indicates a strong correlation
coefficient of 0.82 for GNDVI, meeting the criterion for strong correlation. Consequently,
the GNDVI vegetation index will primarily serve as the modeling dataset for the maximum
likelihood model in subsequent stages.

3.2. Analysis of Performance Testing Results of the Novel MLC

According to the conclusions drawn in Section 3.1, we sampled the novel MLC method
to process and analyze the GNDVI spectral images. Since GNDVI represents a fused band,
with the number of bands n = 1, the probability function for the severity categories of
damage for a random pixel A is:

PA(yi|x∗) = −1
2

ln|2πei| −
1
2
(x − µi)

τei
−1(x − µi) (7)

Meanwhile, we recalibrated the weights of all neighboring pixels of random pixel A
within the GNDVI spectral image using Equation (6), yielding the results shown in Figure 7.
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Figure 7. The weight of the novel MLC.

As indicated by the results depicted in Figure 7, only six adjacent pixels exhibit
substantial weights, while the majority of adjacent pixels are predominantly constrained.
This observation underscores the effectiveness of our approach in mitigating the impact of
uneven neighboring pixels on the overall classification prediction.

We compared our proposed novel MLC with SVM [30], JSR [31], ASOMP [32], and the
MLC. Each model was run five times, and the average results from these five runs were
recorded, as presented in Table 4.

Table 4. Prediction accuracy results of different models.

Levels SVM JSR ASOMP MLC Ours

severe 62.45% 74.56% 68.56% 85.47% 90.17%
moderate 67.89% 77.14% 70.15% 88.69% 93.11%

mild 66.54% 69.41% 74.17% 88.21% 91.57%
healthy 69.01% 70.55% 79.00% 90.78% 90.05%
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From the results in Table 4, it is evident that SVM exhibits the poorest classification
predictive performance, while JSR and ASOMP show relatively better performance but
still fall short of the MLC method. In comparison with the original MLC approach, our
proposed novel MLC achieves the highest classification predictive accuracy, with an average
of 91.23%.

3.3. Analysis of Predicted Distribution Results of Thrips Levels

Finally, based on the classification prediction results obtained using our method, the
predicted rust incidence was mapped against matrix pixel values using Hyperspectral
Toolbox of MATLAB (version 2016b). The plot3D function was utilized to generate a 3D
map of thistle mite-induced rust incidence. Figure 8 illustrates the 3D inversion heat map
of spectral data acquired on 18 September 2023.
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From the entire process, it is evident that the novel MLC effectively suppresses uneven
pixels or outliers. As shown in Figure 8, areas with relatively severe pest damage in the
entire experimental area are mainly distributed in the upper right corner region (longitude
109.18140, latitude 18.4236). Through on-site investigations, it was found that this area
has abundant tender mango leaves, leading to the aggregation of thrips populations. The
three-dimensional inversion diagrams provide a clear and intuitive understanding of the
thrip damage situation in orchards, laying the foundation for the formulation of variable
prescription maps for pesticide application in the next step.

To precisely quantify the areas of damage at different levels of mango thrips damage,
data from sampling times on 18 September 2023 and 4 January 2024 were subjected to inver-
sion prediction using the method proposed in this study. The pixel values corresponding to
different damage levels within the three-dimensional heatmap were statistically analyzed,
yielding the results shown in Table 5.

Table 5. Statistical results of mango thrips damage.

Sampling
Time

Healthy Mild Moderate Severe

Area/m2 Proportion/% Area/m2 Proportion/% Area/m2 Proportion/% Area/m2 Proportion/%

2023.09.18 1042.6 28.4 1387.4 37.9 845.1 23.1 384.7 10.5
2024.01.04 405.7 10.8 1155.4 31.5 987.0 26.9 1111.7 30.8
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Based on the spatial distribution of thrips detection, it can be observed that the sam-
pling data on 18 September 2023 showed the highest proportion of mild-level infestation.
The sampling data on 4 January 2024 indicated predominantly moderate to severe levels
of thrips damage. Field investigations revealed that during the sampling period on 18
September 2023, mango shoots were in the early stage, with a certain amount of tender
leaves attracting thrips aggregation in the orchard. The sampling period on 4 January
2024 coincided with the flowering stage, which is considered a peak period for mango
thrips occurrence. Additionally, during this period, the average temperature in Sanya was
20 degrees Celsius, characterized by strong monsoon winds and relatively dry climate
conditions, leading to an outbreak of thrips in Yazhou District. The inversion results and
field survey statistics suggest that the proposed method in this study yielded anticipated
detection outcomes, thus demonstrating its suitability for large-scale and rapid monitoring
of thrip damage in mango orchards.

4. Discussion

This study presents a method for predicting the infestation of mango thrips, utiliz-
ing unmanned aerial vehicle (UAV) multispectral remote sensing technology and a novel
maximum likelihood classifier. Through correlation analysis between various vegetation
indices and the severity levels of sampled data, the Green Normalized Difference Vegeta-
tion Index (GNDVI), exhibiting a high correlation coefficient of 0.82, was selected as the
spectral feature parameter for the novel maximum likelihood classifier model. A remote
sensing prediction model for mango orchard thrips infestation distribution was constructed.
This model maintains a stable estimation level across various numbers of domain pixels,
with an average inversion accuracy of 91.23% across all sample types. Finally, through
pixel matrix reconstruction, the distribution of mango thrips damage can be rapidly and
comprehensively visualized over a large area.

5. Conclusions

The results of this study offer a novel dynamic monitoring approach for scholars and
farmers to investigate the characteristics and occurrence patterns of mango thrips damage.
Additionally, it provides a rapid research method for evaluating the efficacy of pesticides
targeting thrips control. These findings hold significant importance for effective orchard
management among mango growers. Possible future endeavors include increasing the
number of spectral bands, expanding the volume of sensitive feature data, and integrating
additional features to enhance the accuracy of prediction and inversion. Furthermore,
we believe that extending our study to the collaborative operation of multiple UAVs for
large-scale inversion of orchards would be of interest.
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