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Abstract: In this paper, hyperspectral imaging technology, combined with chemometrics methods,
was used to detect the nitrogen content of soybean leaves, and to achieve the rapid, non-destructive
and in situ detection of the nitrogen content in soybean leaves. Soybean leaves under different
fertilization treatments were used as the research object, and the hyperspectral imaging data and
the corresponding nitrogen content data of soybean leaves at different growth stages were obtained.
Seven spectral preprocessing methods, such as Savitzky–Golay smoothing (SG), first derivative
(1-Der), and direct orthogonal signal correction (DOSC), were used to establish the quantitative
prediction models for soybean leaf nitrogen content, and the quantitative prediction models of
different spectral preprocessing methods for soybean leaf nitrogen content were analyzed and
compared. On this basis, successive projections algorithm (SPA), genetic algorithm (GA) and random
frog (RF) were employed to select the characteristic wavelengths and compress the spectral data.
The results showed the following: (1) The full-spectrum prediction model of soybean leaf nitrogen
content based on DOSC pretreatment was the best. (2) The PLS model of soybean leaf nitrogen
content based on the five characteristic wavelengths had the best prediction performance. (3) The
spatial distribution map of soybean leaf nitrogen content was generated in a pixel manner using the
extracted five characteristic wavelengths and the DOSC-RF-PLS model. The nitrogen content level
of soybean leaves can be quantified in a simple way; this provides a foundation for rapid in situ
non-destructive detection and the spatial distribution difference detection of soybean leaf nitrogen.
(4) The overall results illustrated that hyperspectral imaging technology was a powerful tool for the
spatial prediction of the nitrogen content in soybean leaves, which provided a new method for the
spatial distribution of the soybean nutrient status and the dynamic monitoring of the growth status.

Keywords: hyperspectral imaging technology; nutritional quality; the soybean leaves; nitrogen
content; random frog (RF); partial least squares algorithm (PLS)

1. Introduction

Soybean (Glycine max (L.) Merrill) is an important source of plant protein and vegetable
oi for human beings. It has a wide range of uses worldwide, such as for food, vegetable
oil, and feed [1]. There is a huge gap between China’s soybean supply and consumption
demand. Therefore, it is an important measure to solve the contradiction between the
supply and demand of soybean in China and ensure the safety of the soybean industry and
national grain and oil security by improving the yield and quality of soybean in China and
increasing the proportion of soybean cultivation [2].

Nitrogen is an important part of protein, nucleic acid, phospholipid, chlorophyll and
some hormones in soybean plants, and it is also one of the important factors limiting
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soybean growth and high yield. The rapid and effective monitoring of the nitrogen content
during soybean growth is an important prerequisite and foundation for guiding soybean
fertilization and achieving high quality and high yield of soybean. Chemical methods, such
as Kjeldahl nitrogen determination, indophenol blue colorimetric, and Dumas combustion,
are commonly used for nitrogen detection. These methods have problems of long detection
cycle, complex operation, and destructiveness, which make the continuous determination
of nitrogen in time and space impossible [3].

Hyperspectral imaging technology is an organic combination of spatial imaging tech-
nology and spectral technology. The image information and spectral information of the
research object could be obtained at the same time using hyperspectral imaging technology.
So, it is an effective tool to study the internal information content and spatial distribution
of the research object [4,5]. The hyperspectral imaging technology has been successfully ap-
plied in remote sensing, food, agriculture, microbiology and pharmaceutical fields [6,7]. In
addition, the detection of crop nitrogen content based on hyperspectral imaging technology
has achieved good results in wheat, corn, rapeseed, citrus and other crops. Hyperspectral
imaging technology was applied to measure the nitrogen content in wheat leaves, and the
regional spatial distribution map of the nitrogen content in wheat leaves at flagging and
flowering stages was generated [8]. Goel et al. analyzed the hyperspectral images of maize
canopy under nitrogen stress and weed stress, and found that the spectral reflectance at
498 nm and 671 nm could effectively reflect the difference in nitrogen levels in maize [9]. By
using the spectrum–graph unity feature of hyperspectral imaging technology, differences in
nitrogen content within the same leaf or among different leaves can be analyzed intuitively
and effectively [10,11]. However, to the best of our knowledge, few studies have been
conducted to study the distribution of the nitrogen content in soybean leaves based on
hyperspectral imaging technology; the relationship between the spectral reflectance of
soybean leaves and the leaf nitrogen content is not clear, and it remains to be demonstrated
whether the use of hyperspectral imaging technology can realize the effective detection
and continuous monitoring of the nitrogen content of soybean leaves.

Therefore, in this study, the relationship between the spectra of soybean leaves and
nitrogen content under different fertilization treatments was analyzed, the effects of spectral
pre-processing and characteristic wavelength selection methods on the prediction model of
the nitrogen content of soybean leaves were investigated, and the optimal detection model
for the detection of the nitrogen content of soybean leaves was optimized. On this basis,
the spatial distribution map of soybean leaf nitrogen content was generated to provide
a new method for the spatial prediction of the soybean nutrient status and the dynamic
monitoring of the growth status, which, in turn, provided a basis for the application of
fertilizer decisions during soybean growth.

2. Materials and Methods
2.1. Experimental Materials

The experiment was conducted from March to August 2017 in the experimental base
of the National Engineering Research Centre of Intelligent Equipment for Agriculture,
Xiaotangshan Town, Changping District, Beijing, China (116◦44′ E, 40◦18′ N). This area
has a warm-temperate continental semi-humid and semi-arid monsoon climate, with an
average annual temperature of 11.8 ◦C, an average annual frost-free period of 203 days, an
average annual sunshine hour of 2816 h, and an average annual precipitation of 584 mm. In
order to eliminate the influence of uncontrollable factors, such as rainfall, high temperature,
disease, etc., the soybean varieties of Zhonghuang 13 and Qihuang 35 were planted in
a greenhouse. Three-factor quadratic orthogonal regression was used to quantitatively
fertilize the soybean to obtain the nitrogen gradient in order to obtain soybean leaf samples
with a certain concentration of the nitrogen gradient. Urea was applied as nitrogen fertilizer
in the experiment, and the range of nitrogen application was 0~70 kg/hm2. The specific
fertilization scheme is shown in Table 1. Each soybean variety was set up with 15 fertilizer
treatments and one control treatment (no fertilization). There was a total of 32 treatments
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for the two varieties, and 4 replicates were set up under each treatment. The fully expanded
soybean leaves at the top were collected as experimental samples during the soybean
seedling stage (14 May 2017), flowering stage (7 June 2017), podding stage (28 June 2017)
and seed-filling stage (20 July 2017). The collected soybean leaves were subjected to
hyperspectral imaging data collection and leaf-nitrogen-content detection. Two samples
were collected under each treatment in each sampling period, and a total of 256 samples
were collected in 4 sampling periods.

Table 1. Design table of quadratic orthogonal regression experiment for soybean fertilization.

Processing
Number z1 (N) z2 (P) z3 (K) N

(kg/hm2) P (kg/hm2)
K

(kg/hm2)

1 1 1 1 63.80 100.25 127.59

2 1 1 −1 63.80 100.25 12.41

3 1 −1 1 63.80 9.75 127.59

4 1 −1 −1 63.80 9.75 12.41

5 −1 1 1 6.20 100.25 127.59

6 −1 1 −1 6.20 100.25 12.41

7 −1 −1 1 6.20 9.75 127.59

8 −1 −1 −1 6.20 9.75 12.41

9 1.21541 0 0 70.00 55.00 70.00

10 −1.21541 0 0 0.00 55.00 70.00

11 0 1.21541 0 35.00 110.00 70.00

12 0 −1.21541 0 35.00 0.00 70.00

13 0 0 1.21541 35.00 55.00 150.00

14 0 0 −1.21541 35.00 55.00 0.00

15 0 0 0 35.00 55.00 70.00
Note: z1 is the nitrogen factor level, z2 is the phosphorus factor level, z3 is the potassium factor level.

2.2. Hyperspectral Imaging Data Acquisition

The visible near-infrared hyperspectral imaging system (ImSpector V10E, SPECIM
company, Oulu, Finland) was used to collect the hyperspectral imaging data of soybean
leaves. The system is composed of a light source, hyperspectral camera, CCD detector,
imaging lens, closed light box, electronically controlled displacement platform and com-
puter (as shown in Figure 1). The light sources used in the study were two 150 W halogen
lamps (2900-ER, Illumination, New York, NY, USA), which can provide continuous and
smooth light information between 380~2000 nm bands. The hyperspectral camera has a
spectral scanning range of 400~1000 nm, a spectral resolution of 2.8 nm, a spectral interval
of 0.65 nm, and a pixel size of 1344 (rows) × 1024 (columns). During the experiment, the
distance between the object and the camera was 60 cm, and the actual size of the object
represented by one pixel in the image was 0.16 nm.

Before collecting hyperspectral imaging data, the system was preheated for 30 min to
ensure its stability. The moving speed of the electronically controlled displacement platform
was set to be 1.15 mm/s, the exposure time was 10 ms, and the vertical distance between
the hyperspectral camera and the sample was 80 cm. In order to reduce the influence of
instrument sensitivity and light source change on hyperspectral imaging data, the standard
whiteboard (a rectangular white board composed of polytetrafluoroethylene material) and
dark current need to be corrected during each measurement. The calibration process was
carried out according to Formula (1) as follows:

R =
Iraw − Idark

Iwhite − Idark
, (1)
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In the formula, Iraw was the original hyperspectral imaging data of soybean leaves,
Iwhite was whiteboard data captured with the light turned on, Idark was current data obtained
through covering the lens without illumination, and R (raw spectra) was the corrected
hyperspectral imaging data of soybean leaves.

Figure 1. Hyperspectral imaging system on leaf scale.

2.3. Determination and Data Division of Nitrogen Content in Soybean Leaves

After the hyperspectral imaging data of soybean leaves were collected, the leaf samples
were immediately placed in an oven at 105 ◦C for 30 min, and then dried to constant weight
at 80 ◦C. The dried samples were crushed and passed through the stainless steel mesh.
After screening, 0.25 g of the sample was weighed and boiled with concentrated sulfuric
acid, and then the nitrogen content of soybean leaves was determined by AA3 continuous
flow analyzer combined with a standard curve.

The abnormal values of soybean nutrient chemical value data were eliminated by
3 times the standard deviation. At the same time, the abnormal spectral samples of the
extracted leaf spectral curves were eliminated by the Monte Carlo algorithm. A total of
11 abnormal samples were eliminated, and 245 soybean samples including leaf nitrogen
content and hyperspectral imaging data were finally obtained. The Kennard–Stone (K-S)
classification algorithm was used to divide the soybean leaf samples into a calibration
set and a prediction set according to the ratio of 3:1 (as shown in Table 2). There were
184 samples in the calibration set, and the range of the nitrogen content in the calibration
set was between 8.275~44.724 mg/g. Due to the fact that the modeling set sample contains
a large range and has a good representativeness, it is beneficial to establish a stable soybean
leaf-nitrogen-content prediction model.

Table 2. Statistics of N value of soybean leaves in the calibration and prediction sets.

Sample Sets Number Range (mg/g) Mean (mg/g) SD (mg/g) CV (100%)

Calibration
set 184 8.275~44.724 28.052 9.219 32.864

Prediction set 61 11.367~43.429 31.324 9.823 31.359
Note: SD presented the standard deviation, and CV presented the coefficient of variation.

2.4. Spectral Preprocessing

When the data were obtained by the hyperspectral image acquisition system, the noise
signals (such as high frequency random noise, baseline drift, sample heterogeneity, etc.)
were often collected synchronously. In order to improve the stability and prediction accu-
racy of the nitrogen content model of soybean leaves, it is necessary to preprocess the raw
spectra [12]. Spectral data were pretreated to remove spectral noise and other disturbances
using Savitzky–Golay smoothing (SG), multiple scattering correction (MSC), standard
normal variate (SNV), de-trending processing, first differential (1-Der), second differential
(2-Der), and direct orthogonal signal correction (DOSC). Thereby, the correlation between
spectral reflectance and the nitrogen content of soybean leaves was enhanced. A relatively
good spectral preprocessing method was determined by evaluating the performance of the
partial least squares regression (PLSR) model.
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2.5. Selection Method of Characteristic Wavelengths

In total, 707 variables (380–1000 nm with the spectral interval of 0.65 nm) were included
in the full wavelength spectra obtained. They contained a lot of redundant information
and multi-collinearity data, which are hard to deal with in the modeling process [13]. In
order to reduce the input variables and simplify the complexity of the model, the successive
projections algorithm (SPA) [14], genetic algorithm (GA) [15] and random frog algorithm
(RF) [16] were used to select the characteristic wavelength. The PLS models of leaf nitrogen
content based on different characteristic wavelengths were built and compared to determine
the characteristic wavelengths and their combinations, which are closely related to the
nitrogen content of soybean leaves.

2.6. Model Construction and Evaluation

The partial least squares (PLS) analysis is a widely used calibration method in the field
of spectral analysis because it can deal with the problem of frequency band overlap and
data collinear [17]. In the process of PLS modeling, the maximum covariance or a linear
relationship between reference values (in this case, the nitrogen content of the soybean leaf)
Y and spectral data X were computed, and a smaller amount of new variables in the X space
was extracted to best describe the Y space and reduce the dimensionality. In this study,
the partial least squares method was used to establish the mapping relationship between
leaf hyperspectral-imaging data and soybean leaf nitrogen content. The performance of
built PLS models was assessed by the determination coefficient of the calibration set (Rc

2)
and prediction set (Rp

2), the root mean square error of the calibration set (RMSEC) and
prediction set (RMSEP), and the relative deviation of the prediction set (RPD). A better
model should be with higher values of Rc

2, Rp
2 and RPD, and lower values of RMSEC

and RMSEP [18]. Generally, when the RPD value was less than 1.5, it indicated that the
performance of the built model was poor and could not be used for predictive analysis.
When the RPD value was between 1.5 and 2.0, it meant that the prediction effect of the
established prediction model was general, and the sample could be roughly estimated.
When the RPD value was larger than 2.0, it showed that the model had good predictive
ability. The specific expressions of Rc

2, Rp
2, RMSEC, RMSEP and RPD were as follows:

R2
C = 1 − ∑m

i=1(Ypi − Yi)
2

∑m
i=1

(
Yi − Y

)2 (2)

R2
P = 1 − ∑n

i=1(Ypi − Yi)
2

∑n
i=1

(
Yi − Y

)2 (3)

RMSEC =

√
∑m

i=1(Ypi − Yi)
2

m
(4)

RMSEP =

√
∑n

i=1(Ypi − Yi)
2

n
(5)

RPD =

√
∑n

i=1(Ypi−Y)
2

n−1√
∑n

i=1(Ypi−Yi)
2

n−1

(6)

In the expression, Yi was the measured value of the sample i, Ypi was the predicted
value of the sample i, Y was the average value of the measured value, m was the number
of samples in the calibration set, and n was the number of samples in the prediction set.
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3. Results
3.1. Hyperspectral Image Extraction of Soybean Leaves

Since background information was included in the obtained hyperspectral imaging
data of soybean leaves, a threshold segmentation algorithm has been used to separate the
soybean leaves from the background area. There was a significant difference between the
spectral reflectance of soybean leaves and the spectral reflectance of the background area (as
shown in Figure 2). In the wavelength range of 300~500 nm, the spectral curve of soybean
leaves was consistent with the change in the background spectral curve, and the difference
in the two spectral reflectance curves was not obvious. With the increase in wavelength,
the soybean leaves showed a typical green reflection peak near the wavelength range of
500~700 nm, which made the spectral curve of soybean leaves significantly different from
the background. Especially in the vicinity of the 550 nm wavelength, the spectral reflectance
curves of the soybean leaves and background were quite different. With the further increase
in wavelength, the spectral reflectance curve of soybean leaves increased rapidly when
the wavelength was greater than 700 nm; a typical near-infrared high-reflection platform
of green plants appeared. The reflection platform maximized the difference in spectral
reflectance between soybean leaves and the background. Therefore, the spectral values
at 550 nm and 750 nm were used for threshold segmentation in this study. During the
threshold segmentation, the segmentation threshold values at 550 nm and 750 nm were set
to be 0.1 and 0.3, respectively. The raw hyperspectral images of soybean leaves are shown
in Figure 3a. According to the set threshold value, the ENVI 5.3 software was used for
binarization and mask processing to generate the binarization image of soybean leaves (as
shown in Figure 3b) and the hyperspectral image of soybean leaf nitrogen content after
background removal (as shown in Figure 3c).

Figure 2. Contrast of spectral curve between soybean leaves and background.

Figure 3. Extracting hyperspectral images of soybean leaves: (a) raw hyperspectral images of soybean
leaves; (b) binary image of soybean leaves after background removal; (c) hyperspectral images of
soybean leaves after background removal.
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3.2. Analysis of Spectral Reflectance of Soybean Leaves

The average spectral value of all pixels in the soybean leaves after background separa-
tion was calculated, and the average spectral curves containing 707 bands were obtained
(as shown in Figure 4). The spectral reflectance in the visible band was relatively low, and
there was a typical plant chlorophyll reflection peak near 550 nm. This was because the
spectral characteristics of the leaves in the visible light range were mainly affected by the
pigments in the soybean leaves. The spectral absorption peaks of the pigments were mainly
concentrated near the blue and red light bands, and the spectral absorption peaks were near
the green light band. Therefore, the reflectance spectra of soybean leaves had two obvious
absorption valleys near 450 nm and 670 nm, and a reflection peak near 550 nm. With
the increase in wavelength, the spectral reflectance of soybean leaves increased sharply
after 690 nm; a typical near-infrared high-reflection platform was formed. The spectral
reflectance near the reflection platform was sensitive to the changes of vegetation nutrition,
growth and water content [19]. The spectral reflectance after near-infrared high reflection
was mainly affected by the internal structure of the leaves (such as leaf gap, cell thickness,
and stomatal aperture, etc.). The level of spectral reflectance after high near-infrared re-
flectance was closely related to the number of leaf cell layers, the shape of the leaf cells, and
the composition of the leaves.

Figure 4. Reflectance spectra of soybean canopy under different nitrogen content. The different
colored lines in the figure represent the different spectral curves of the soybean samples.

3.3. Correlation Analysis between Spectral Reflectance and Leaf Nitrogen Content of
Soybean Leaves

The correlation between soybean leaf spectral reflectance and leaf nitrogen content
was analyzed, as shown in Figure 5. The spectral reflectance of soybean leaves was
positively correlated with leaf nitrogen content in the spectral range of 450~494 nm and
755–1000 nm, while the spectral reflectance of soybean leaves was negatively correlated
with leaf nitrogen content in the spectral range of 495~754 nm. In the positive correlation
coefficient, the spectral reflectance of soybean leaves in the range of 798.8~1000 nm was
significantly positively correlated with leaf nitrogen content (p < 0.01), and the maximum
correlation coefficient was 0.2496 at 985 nm. In the negative correlation coefficient, the
spectral reflectance of soybean leaves in the range of 516~615 nm and 698~774 nm was
significantly negatively correlated with leaf nitrogen content (p < 0.01); the absolute value
of the negative correlation coefficient between the spectral reflectance and the nitrogen
content of soybean leaves was obtained at 540.5 nm, which was 0.4185. In addition, since
the absolute value of the negative correlation coefficient was greater than the positive
correlation coefficient, the negative correlation was mainly concentrated near the visible
and near-infrared platforms. Therefore, the correlation between soybean leaf spectral
reflectance and leaf nitrogen content in the visible band may be better than that in the
near-infrared band.
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Figure 5. Correlation curve between leaf spectra and leaf nitrogen content of the soybean. Note:
The red dashed line represents the extreme significant level (p < 0.01). The blue solid curve is the
correlation curve between leaf spectra and the leaf nitrogen content of the soybean.

3.4. Results of Full Spectral Models

The raw spectra and preprocessed spectra were used to build PLS model of soybean
leaf nitrogen content. Table 3 showed the prediction results of established PLS models.
Using the model evaluation index aforementioned, the established PLS prediction models
were analyzed and evaluated. The performances of the PLS model established by 1-Der,
2-Der, SNV, MSC and SG were worse than that of the PLS model based on raw spectra.
Among them, the PLS model established by the spectra of 2-Der preprocessed had the
worst performance, with Rp

2 of 0.9263, RMSEP of 2.8322 mg/g and RPD of 3.6945. While
PLS models established by De-trending and DOSC had better performance compared with
the raw spectra, and the performance of the PLS model established by DOSC was the best,
with Rp

2 of 0.9428, RMSEP of 2.4858 mg/g and RPD of 4.2092. The evaluation indexes Rp
2,

RMSEP and RPD of PLS model established by DOSC was 0.4987%, 0.5461% and 4.267%
higher than by those of the PLC model established by raw spectra. In general, all the
PLS models shown in Table 3 were ideal with Rp

2 above 0.9, and RPD above 2.0, which
indicated that the established PLS models could be used for the detection of the nitrogen
content in soybean leaves. Since the PLS models established by full spectra (containing
a large amount of redundant and uninformative information) were relatively complex
(containing 707 variables), the DOSC preprocessing method had the best effect. Hence, the
DOSC preprocessed spectra were used for further characteristic wavelength extraction to
simplify the model.

Table 3. Prediction results of the nitrogen content in soybean leaves with different pre-processing methods.

Preprocessing
Methods

LVs
Calibration Set Prediction Set

Rc
2 RMSEC (mg/g) Rp

2 RMSEP (mg/g) RPD

RAW 18 0.9187 2.5001 0.9377 2.5919 4.0370
SG 17 0.8916 2.8874 0.9373 2.5983 4.0269

MSC 17 0.9199 2.4814 0.9370 2.6130 4.0044
SNV 18 0.9210 2.4643 0.9365 2.6194 3.9945

De-trending 17 0.9239 2.4188 0.9411 2.5193 4.1532
1-Der 11 0.9201 2.4788 0.9349 2.6475 3.9521
2-Der 4 0.9040 2.7168 0.9263 2.8322 3.6945
DOSC 1 0.9233 2.4286 0.9428 2.4858 4.2092

Note: SG, MSC, SNV, de-trending, 1-Der, 2-Der, DOSC were the Savitzky–Golay smoothing preprocessing method,
multiple scattering correction preprocessing method, standard normal variate preprocessing method, de-trending
processing preprocessing method, first differential preprocessing method, second differential preprocessing
method, and direct orthogonal signal correction preprocessing method, respectively. LVs are the latent variables
in the PLS model.

3.5. Selection of Characteristic Wavelength of Soybean Leaf Nitrogen Content

Spectral data of 707 bands contained a large amount of redundant, collinear and
overlapping information, which deteriorated the performance of the multivariate calibra-
tion models. As discussed above, the PLS model with DOSC preprocessed spectra had
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the best performance. Therefore, the DOSC spectra were employed for the characteristic
wavelength selection of the nitrogen content in soybean leaves. In this study, SPA, GA and
RF were used to select characteristic wavelengths with the smallest collinearity and the
largest correlation for improving the modeling efficiency.

When selecting the characteristic wavelengths of soybean leaf nitrogen content by SPA,
the maximum number of variables was set to 50, and the optimal numbers of characteristic
wavelengths were determined according to the minimum value of RMSECV. As is shown in
Figure 6, the RMSE value was 2.575, and the number of characteristic wavelengths selected by
SPA was the best, which was 26. These characteristic wavelengths were distributed near the
band of green light (550 nm), near-infrared platform (700 nm) and near-infrared (980 nm).

Figure 6. Selection process of characteristic wavelengths for nitrogen content in soybean leaves
based on SPA algorithm: (a) change in RMSECV value with an increase in modeling variables;
(b) distribution of characteristic wavelengths extracted by SPA cited. Note: The red box in subfigure
(a) represents the number of modelling variables selected by the SPA algorithm.

The parameters of the GA algorithm were set as follows: the initial population was 30,
the probability of chromosome crossover was 50%, the probability of chromosome mutation
was 1%, the maximum principal component score was 15, the window-smoothing width
was 3, the number of iterations was 200, and the fitness function was RMSECV. The specific
process of selecting characteristic wavelengths by GA was illustrated in Figure 7. According
to the variable selection principle similar to the SPA algorithm, namely the optimal numbers
of characteristic wavelengths were determined based on the minimum value of RMSECV.
The minimum RMSECV value appeared when the number of modeling variables was 7 (as
shown in Figure 7a). Therefore, the number of characteristic wavelengths selected by GA
algorithm was 7, and the corresponding frequency selection threshold was 5.5 (as shown in
Figure 7b).

When the RF algorithm was employed to extract the characteristic wavelengths, the
number of initial frogs and iterations was set to 5 and 1000, respectively, and the maximum
principal component score was 10. The principle of variable selection was similar to the
SPA algorithm. Figure 8a shows the change in RMSECV value along with the number of
modeling variables, which was computed by the RF algorithm. The minimum RMSECV
value appeared when the number of modeling variables was 5. The corresponding variable
selection probability was greater than 0.2 (as shown in Figure 8b).
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Figure 7. Selection process of characteristic wavelengths for nitrogen content in soybean leaves based
on GA algorithm: (a) change in RMSECV value with an increase in modeling variables; (b) selected
frequency of characteristic wavelengths based on GA algorithm. Note: The red plus sign in subfigure
(a) represents the RMSECV value corresponding to having one modelling variables, and the green
dot in subfigure (a) represents the number of modelling variables corresponding to the minimum
RMSECV value. The green line in subfigure (b) is the variable selection probability corresponding to
the minimum value of RMAECV in subfigure (a).

Figure 8. Selection process of characteristic wavelengths for nitrogen content in soybean leaves based
on RF algorithm: (a) change in RMSECV value with an increase in modeling variables; (b) selection
probability of characteristic wavelengths based on RF algorithm. Note: The green line in subfigure (b) is
the variable selection probability corresponding to the minimum value of RMAECV in subfigure (a).

The distribution of characteristic wavelengths related to the nitrogen content in soy-
bean leaves was selected by the SPA, GA and RF algorithms, as shown in Figure 9. The
characteristic wavelengths selected by the SPA algorithm were near the visible light, near-
infrared reflection platform and near-infrared band, while the characteristic wavelengths
selected by the RF and GA algorithms were mainly concentrated in the near-infrared band,
which indicated that the spectral information in the near-infrared band may contain more
information related to the nitrogen content of soybean leaves.



Agronomy 2024, 14, 806 11 of 15

Figure 9. Specific position distribution of characteristic wavelengths selected by SPA, GA, and RF
algorithms.

3.6. Results of Full Spectral Models

In order to compare the effectiveness of the SPA, GA, and RF algorithms, the prediction
models for the nitrogen content in soybean leaves were developed with PLS combined with
the characteristic wavelengths selected before. The results of the established PLS models
were presented in Table 4. The PLS models established by characteristic wavelengths
selected by SPA algorithms were slightly worse than the full spectra (DOSC preprocessed,
707 variables), with Rc

2 of 0.9184 and Rp
2 of 0.9413,RPD of 4.078, RMSEC of 2.5047 and

RMSEP of 2.5654. While the performance of the PLS models established by characteristic
wavelengths, which were selected by the GA and RF algorithms, were better than the per-
formance established by optimal full spectra (DOSC preprocessed, 707 variables). Among
them, the model established based on the five characteristic wavelengths selected by the RF
algorithm provided the best performance with higher Rc

2 (0.9261), Rp
2 (0.9466), and RPD

(4.3536), and lower RMSEC (2.4858) and RMSEP (2.4034). This was because the information
about redundant and collinear wavelengths that existed in the full spectra was eliminated
by the GA and RF algorithms, and the wavelengths, which were closely related to the nitro-
gen content in soybean leaves, remained. As discussed above, the evaluation indicators of
the model established by the characteristic wavelengths extracted by the RF algorithm were
the best, and the number of characteristic wavelengths contained 7 variables, which was
0.707% of the full wavelength variable. Therefore, the RF algorithm was the most suitable
method for selecting the characteristic wavelengths of soybean leaf nitrogen content.

Table 4. Prediction results of PLS models with different characteristic variable selection algorithms
for the nitrogen content of soybean leaves.

Models EW LVs
Calibration Set Prediction Set

Rc
2 RMSEC (mg/g) Rp

2 RMSEP (mg/g) RPD

DOSC-PLS 707 1 0.9233 2.4286 0.9428 2.4858 4.2092
SPA-PLS 26 1 0.9184 2.5047 0.9413 2.5654 4.0785
GA-PLS 7 2 0.9234 2.4278 0.9430 2.4835 4.2132
RF-PLS 5 5 0.9261 2.3834 0.9466 2.4034 4.3536

Note: DOSC-PLS was the PLS model established, combined with the spectra preprocessed by DOSC. SPA-PLS,
GA-PLS and RF-PLS were the PLS models established, combined with the characteristic wavelengths selected by
the SPA, GA, and RF algorithms. EW was the effective wavelength employed in the models.

Figure 10 showed the scatter plots of the measured nitrogen content and predicted
nitrogen content generated by the DOSC-RF-PLS model. The samples of the prediction
set were distributed near the 1:1 line. It indicated that the predicted value of the nitrogen
content in soybean leaves had a good correlation with the measured value, and the estab-
lished prediction model had good accuracy. The 5 characteristic wavelengths (827.262 nm,
828.844 nm, 969.166 nm, 969.959 nm and 970.752 nm) selected by the RF algorithm not only
simplified the complexity of the soybean leaf nitrogen content detection model, but also
reduced the modeling time. In addition, these selected characteristic wavelengths can also
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provide data and method support for the development of rapid detection equipment for
the nitrogen content in soybean leaves.

Figure 10. Prediction results of the nitrogen content of soybean leaves by the DOSC-RF-PLS model.

3.7. Visualization of Nitrogen Content Distribution in Soybean Leaves

Based on the discussion above, the DOSC-RF-PLS model was the optimal prediction
model for the nitrogen content of soybean leaves. Thus, the spatial distributions of the
nitrogen content in soybean leaves were generated in a pixel manner using the DOSC-
RF-PLS model. Firstly, the nitrogen content values corresponding to each pixel in the
hyperspectral image of the soybean leaves (after background removal) were calculated to
generate the grayscale distribution maps of the nitrogen content using the DOSC-RF-PLS
model. Afterwards, pseudo-color processing was performed on the generated grayscale
spatial distribution data of the nitrogen content in soybean leaves, and, finally, visual
distribution maps of the nitrogen content were obtained (as shown in Figure 11). Figure 11
is the distribution map of the estimated nitrogen content. The dark blue area around the
leaves in Figure 11 represents the background, and the different colors and their depths in
the leaves represent different nitrogen content values. The color band on the right side of
Figure 11 shows the distribution range of the nitrogen content corresponding to different
colors. The blue color represents a lower nitrogen content value. With an increase in the
nitrogen content value in soybean leaves, the color gradually changes and becomes yellow.
As the nitrogen content value increases, it eventually becomes red.

Figure 11. Distribution of the nitrogen content of soybean leaves.

The distribution of the nitrogen content in the soybean leaves is clearly shown in
Figure 11. Different colors on the same leaf represent different biochemical components
contained in soybean leaves; this is mainly reflected in the fact that some areas on one
leaf are bluer (bluer areas represent lower nitrogen content), while some areas on the leaf
are yellower (yellower areas represent higher nitrogen content). This indicates that the
distribution of the nitrogen content in the leaves is uneven. This is because the difference
in the nitrogen content in the same leaf was mainly caused by the difference in leaf nutrient
composition. In addition, due to the different physiological structures of different parts of
the leaves, there were some differences in the spatial distribution of the leaf nitrogen content.
The spatial differences of the components shown by hyperspectral imaging technology were
also reflected in the soluble solids and sugar content of crops such as potatoes and sweet
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potatoes [20–22]. This showed that hyperspectral imaging technology was an effective
tool for the detection of the nitrogen content in soybean leaves and its spatial distribution
analysis, and that the tool provided decision-making basis for the effective monitoring and
fertilization management of soybean nutrition.

4. Discussion

In the detection of plant nutrient information, traditional crop nutrient diagnostic
methods have some shortcomings in the detection of nutrient information. For instance,
the appearance diagnosis method is subjective, easy to misdiagnose, and cannot realize
the effect of active prevention [23,24]. The chemical diagnosis method has poor timeliness,
complex operation, and high destructiveness [25,26]. The chlorophyll meter diagnosis
method has a small detection range, high environmental requirements, and cannot accu-
rately detect the nutrient status of a larger area [27]. Therefore, the traditional nutrient
diagnostic methods have great limitations and latency in practical applications, and cannot
adapt to the practical needs of precision agriculture for the rapid, real-time, nondestructive,
and large-area detection of crop nutrient information. In this paper, we proposed a method
for detecting the nitrogen content of soybean leaves based on hyperspectral imaging tech-
nology, with a high detection accuracy of Rp

2 of 0.9466. The nitrogen content of soybean
leaves can be detected in a rapid, real-time and non-destructive manner, which could
provide scientific guidance for the monitoring of nutrient dynamics and the reasonable
regulation of fertilizers in the process of soybean production.

In the aspect of model accuracy, Kang Kai et al. used multispectral techniques to
detect the nitrogen content of canopy leaves in soybean fields, and the coefficient of
determination R² of the established regression model ranged from 0.8 to 0.9 [28]. Wang
Lifeng et al. developed a 1st-SPA-PLS model for monitoring the nitrogen content of corn
leaves in the field using hyperspectral imaging technology, with an accuracy of Rp

2 of
0.749 [29]. Qin Zhanfei et al. estimated the total nitrogen content of rice leaves in the
yellow diversion irrigation area using hyperspectral imaging technology, and the modeling
accuracy R² was 0.673 [30]. The accuracy of the soybean leaf nitrogen content detection
model established in this study was slightly higher than that of the nitrogen content
detection models established in other studies. On the one hand, it is probable that the
greenhouse potting method was used for fertilizer control in this study, and the control
of the nitrogen fertilizer gradient is relatively accurate and stable. On the other hand, it
may be that indoor hyperspectral imaging data acquisition was stable compared with the
outdoor field measurement environment, with relatively small interfering factors and noise
signals; therefore, the stability and reliability of the established nitrogen content detection
model were higher. In addition, most of the research data collection for nitrogen content
detection focused on one or fewer fertility stages due to the great differences in the nutrient
composition of the crop at different growth stages; the experimental samples obtained at
one or more fertility stages had a small nitrogen gradient, whereas the nitrogen detection
in this study was carried out throughout the whole fertility stage of the soybean, and it
was possible to obtain samples of the soybean leaves with large nitrogen gradients, which
may be another important reason for the slightly higher accuracy of the nitrogen content
detection model established in this study than that of the others.

5. Conclusions

(1) The correlation between the spectral reflectance of soybean leaves and the leaf ni-
trogen content was analyzed. It was found that the correlation coefficient between
soybean leaf spectral reflectance and leaf nitrogen content in the range of 798.8~1000
nm reached a very significant positive correlation level (p < 0.01), and the spectral
reflectance of soybean leaves in the range of 516~615 nm and 698~774 nm was signifi-
cantly negatively correlated with the leaf nitrogen content (p < 0.01). Among them,
the maximum positive correlation coefficient was 0.2496 at 985 nm, and the maximum
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absolute value of the negative correlation coefficient of spectral reflectance was 0.4185
at 540.5 nm.

(2) The performances of seven spectral preprocessing methods on the prediction of the
nitrogen content in soybean leaves were compared. The PLS model combined with spectra
preprocessed by DOSC had the best performance among the full-spectra models, and its
Rc

2 was 0.9233, RMSEC was 2.4286, Rp
2 was 0.9428, RMSEP was 2.4858, and RPD was

4.2092. Therefore, the DOSC preprocessing method was selected as the best preprocessing
method for the detection of the nitrogen content in soybean leaves.

(3) SPA, GA and RF algorithms were employed to select the characteristic wavelengths,
which were closely related to the nitrogen content in soybean leaves. The five charac-
teristic wavelengths, including 827.262 nm, 828.844 nm, 969.166 nm, 969.959 nm and
970.752 nm selected by the RF algorithm had the best prediction effect for the predic-
tion of the nitrogen content in soybean leaves combined with the PLS model, and its
Rp

2, RMSEP and RPD were 0.9261, 2.4034 and 4.3536, respectively. The selection of
characteristic wavelengths not only compressed the spectral data, but also improved
the prediction effect of the model. This was helpful for the development of portable
detection equipment for the soybean leaf nitrogen content.

(4) The visual distribution map of the nitrogen content in soybean leaves was generated
using the DOSC-RF-PLS model, which was considered to be the optimal prediction
model for the nitrogen content in soybean leaves. The map provided the basis for
analyzing the spatial distribution difference of the nitrogen content in soybean leaves.
The overall results in this study showed that hyperspectral imaging technology was
an effective tool for soybean leaf nitrogen content detection and spatial distribution
analysis, and provided decision-making basis for the effective monitoring of soybean
nutrition and fertilization management.
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