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Abstract: Conducting precise evaluations and predictions of the environmental conditions for plant
growth in green spaces is crucial for ensuring their health and sustainability. Yet, assessing the health
of urban greenery and the plant growth environment represents a significant and complex challenge
within the fields of urban planning and environmental management. This complexity arises from two
main challenges: the limitations in acquiring high-density, high-precision data, and the difficulties
traditional methods face in capturing and modeling the complex nonlinear relationships between
environmental factors and plant growth. In light of the superior spatial interpolation capabilities of
CEDGAN (conditional encoder–decoder generative adversarial neural network), notwithstanding
its comparative lack of robustness across different subjects, and the excellent ability of FCNN (fully
connected neural network) to fit multiple nonlinear equation models, we have developed two models
based on these network structures. One model performs high-precision spatial attribute interpolation
for urban green spaces, and the other predicts and evaluates the environmental conditions for plant
growth within these areas. Our research has demonstrated that, following training with various
samples, the CEDGAN network exhibits satisfactory performance in interpolating soil pH values, with
an average pixel error below 0.03. This accuracy in predicting both spatial distribution and feature
aspects improves with the increase in sample size and the number of controlled sampling points,
offering an advanced method for high-precision spatial attribute interpolation in the planning and
routine management of urban green spaces. Similarly, FCNN has shown commendable performance
in predicting and evaluating plant growth environments, with prediction errors generally less than
0.1. Comparing different network structures, models with fewer hidden layers and nodes yielded
superior training outcomes.

Keywords: neural networks; urban green space; predictive interpolation; complex nonlinear modeling

1. Introduction

Urban green spaces are an essential component of urban ecosystems. Urban green
spaces not only offer aesthetic and comfortable recreational facilities but also render multi-
faceted ecological functions such as climate regulation, air purification, soil conservation,
and enhancement of biodiversity [1–4]. Accurate assessment and prediction of the envi-
ronmental conditions for plant growth in green spaces is crucial for ensuring their health
and sustainability. The environment significantly influences plant health in these areas [5].
Furthermore, since plants are the primary constituents of green spaces, they play a major
role in determining the overall health and sustainability of these areas [6]. The attributes
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and metrics of urban green spaces exhibit their quality and benefits, which has significantly
influenced the planning, designing, and management of green spaces and urban areas [7].
The scientific monitoring and assessment of urban green space attributes has emerged as an
integral aspect of urban ecological construction and sustainable development [8]. However,
the environmental assessment of the health and plant growth of urban green spaces is an
important but complex task in the field of urban planning and environmental management.

First, the inherent robust spatial heterogeneity of urban green spaces implies that
attributes of green spaces can vary considerably across different locales in similar or
proximate environmental conditions [8]. Constraints such as work volume and obtaining
high-density and high-precision data on urban green spaces in practical scenarios become
challenging [9]. We are often limited to represent the overall status of a region based on
sparse sampling points.

This process requires high-precision interpolation and prediction of the gaps between
these points to acquire comprehensive and continuous spatial distribution maps for the
attributes of green spaces. This typically includes spatial interpolation using geospatial in-
formation technology and data acquisition through remote sensing techniques. Traditional
interpolation methods, such as Kriging, inverse distance weighting, and spline interpo-
lation, are based on statistical or mathematical models to estimate values at unknown
points. These methods generally assume that soil indicators follow a certain determin-
istic or stochastic spatial distribution, and calculate interpolation weights based on the
distance or similarity between sampling points [10]. Although these methods are simple
and user-friendly, they have limitations, such as requiring data to meet the presuppositions
of the interpolation method—ordinary Kriging, for instance, requires data variations to be
normally distributed. They depend on the number and distribution of sampling points;
when sampling points are sparse or uneven, the interpolation results are prone to bias or
distortion. They cannot reflect the complex spatial variations in the soil indicators and only
generate smooth or linear interpolation surfaces [11,12]. In recent years, with the advance-
ment of remote sensing technology, particularly the widespread use of high-resolution
and hyperspectral remote sensing data, the role of remote sensing in urban green space
assessment has become increasingly significant [13–15]. Remote sensing allows researchers
to quickly gather extensive data on urban green spaces, including vegetation cover, types
of vegetation, and health status [16–18]. Using drones or satellite remote sensing data
to analyze vegetation has become a common method [19–21]. Remote sensing provides
wide-ranging, high-resolution, multi-temporal vegetation information for urban green
spaces [17,22,23], offering effective data support for the monitoring and evaluation of urban
green spaces. Additionally, combining remote sensing image processing techniques, such
as image classification and vegetation index calculations [24,25], can further enhance the
efficiency of data use and the accuracy of assessments.

Remote sensing observations serve as an efficient data collection method that can
cover vast areas. However, the complexity of data processing and analysis, as well as
the high level of expertise required, often limit its further application. For example, the
Normalized Difference Vegetation Index (NDVI) is a widely used indicator of vegetation
vigor that reflects the photosynthetic activity and biomass of vegetation. NDVI is calculated
from the reflectance in the near-infrared and red light bands, with values ranging from −1
to 1. Generally, higher NDVI values indicate better vegetation growth. NDVI is known for
its simplicity in calculation, direct reflection of conditions, and wide applicability [26].

However, using NDVI alone to assess the vegetation vigor of urban green spaces
presents several issues and challenges, such as influences from atmospheric conditions,
soil, and bodies of water, as well as the inability to distinguish between different types of
vegetation [27,28]. Due to the diversity of vegetation types in urban green spaces, different
types exhibit varying responses to NDVI at different times [29,30]. Consequently, the NDVI
values and ranges used to determine whether vegetation is thriving also vary.

Research studies have initiated the integration of deep learning models into spatial
data interpolation problems due to recent breakthroughs in deep learning across various
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domains. Deep learning models are distinguished by their robust capability for high-
dimensional, nonlinear function fitting and adaptive learning. This can autonomously
extract features and patterns from vast data, enabling the modeling and prediction of
complex data sets [31]. The Li has introduced a spatial interpolation method for soil
temperature based on Long Short-Term Memory (LSTM) networks [32], harnessing LSTM’s
memory units and forget gates to grasp the dynamic temporal and spatial variations of
soil temperature [33]. The attentive graph neural network (GNN) has been employed
for the unsupervised spatial interpolation of air quality [34]. This approach adopts an
encoder–decoder paradigm, where the encoder and decoder learn independently through
distinct processes. The encoder learns a set of functions that generate spatial embedding
by aggregating features from surrounding areas. The decoder, on the other hand, utilizes
gated recurrent units and fully connected layers to estimate air quality index at the target
location [35].

The local connectivity and shared weight of the CNN [36] architecture, relative to
traditional methods, allow the model to focus on features close to each other as well as
features far apart. This coincides with the goal of numerous spatial interpolation analyses,
which allow the model to consider the effects of both neighboring and far-away samples on
interpolation [37]. For example, a study has proposed a digital soil mapping (DSM) method
based on convolutional neural networks (CNNs). This study has predicted soil carbon
content at several depths across the country after training the CNN model accordingly
using Chile as the study area. The CNN model has reduced the error by 30% as compared
to CNN prediction results with conventional techniques [38].

These methods have emphasized the effectiveness and superiority of deep learning
models for spatial data interpolation. But conventional singular deep learning techniques
have been deficient in precision. For instance, they typically rely on supervised learning,
necessitating vast labeled data for model training [39,40]. In practical applications, the
labeled data are often scarce and costly [41]. Traditional deep learning models, primarily
pixel-based or point-based, require spatial data to be transformed into pixel or point format,
leading to information loss and increased computational overhead [42].

A study by Zhu [43] integrated convolutional neural networks, encoders, decoders,
and conditional generative adversarial networks to create the conditional encoder–decoder
generative adversarial neural network (CEDGAN) for spatial interpolation, addressing
the issues mentioned above. Traditional CGANs primarily focus on feature labels, and the
auxiliary information input into the model typically lacks spatial coupling information.
This is mainly to generate fake images of specific categories that are indistinguishable by
discriminators. However, spatial interpolation requires accurate spatial prediction and
estimation, not merely generating data that discriminators cannot recognize [44]. The
CEDGAN model combines the encoder–decoder structure with traditional adversarial
learning principles. Compared to conventional CGANs, it can learn deep features of spatial
data from the training set and their complex interactions with local structural patterns,
producing interpolation results that closely resemble real data.

This model, when employed for DEM data interpolation and prediction, exhibited
superior performance, by achieving interpolation precision surpassing traditional methods
even under low data requirements. The CEDGAN network learns underlying spatial struc-
tural features of data, which can be extrapolated to other domains with varied distributions.
However, when applied to data vastly different from the training set, its significantly
deteriorates prediction efficacy.

Secondly, the inherent complexity of urban environments poses additional challenges
to assessing the health of urban green spaces and the quality of their plant growth envi-
ronments. Compared to natural environments, urban green spaces are influenced by a
greater number of—and more complex—factors [45–47]. When addressing the complex
system of urban green spaces, traditional evaluation and prediction methods exhibit some
clear limitations. These include a limited capacity to process complexity, with traditional
approaches struggling to capture and model the intricate nonlinear relationships between
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environmental factors and their impact on plant growth [48]. The capacity for dynamic
prediction is also lacking; traditional methods typically focus on static analysis and strug-
gle to predict the real-time effects of environmental changes on plant growth [49]. Fully
connected neural networks (FCNNs), as an advanced deep learning technology, offer a
novel methodology for the evaluation and prediction of the urban green space plant growth
environment. The core advantage of FCNNs lies in their exceptional feature learning
capability, which allows them to automatically discover and utilize complex, nonlinear
relationships within environmental data without the need for pre-assumed forms of data
interaction [50–52]. This capability is particularly suited for addressing the multivariate,
high-dimensional challenges inherent in urban green space environmental evaluations,
including, but not limited to, the combined effects of soil quality, climate change, and
human interventions.

Furthermore, FCNNs are capable of integrating and analyzing a vast array of data
from different sources, such as satellite remote sensing data, ground monitoring station
data, and socio-economic data, providing a comprehensive evaluation framework [53,54].
This not only enhances the precision of evaluations but also significantly boosts the model’s
capacity to handle complex systems. Moreover, FCNNs support the input of real-time data,
enabling the model to dynamically predict changes in the plant growth environment. This
offers immediate, accurate decision support for urban green space management.

In light of the superior spatial interpolation capabilities of CEDGAN, notwithstanding
its relatively poor robustness, and given the FCNN’s exceptional ability to fit multiple
nonlinear equation models, this study proposes to retrain a predictive model based on the
CEDGAN network structure to explore its feasibility for the high-precision interpolation of
urban green space spatial attributes. Models trained using CEDGAN will be able to provide
more high-precision spatial distribution data for future models with the same resource
investment. Concurrently, leveraging the spatial attributes of green spaces, a model for
predicting the environmental conditions conducive to plant growth in urban green areas
will be trained using the FCNN network. Models trained on FCNNs will be able to offer
excellent methods for fitting multiple nonlinear relationships, which will help enhance the
accuracy of future models.

Specifically, in this study, we first utilize the excellent spatial interpolation capabilities
of CEDGAN to perform high-precision spatial interpolation on sparse data; then, we input
the high-precision remote sensing data corresponding to spatial locations and the interpo-
lated measurement data into the FCNN, which predicts results through its outstanding
ability to fit complex model relationships.

Plant growth is primarily determined by two factors: nutrients and energy. Soil
is the main source of nutrients for plants [55], while sunlight provides the energy for
photosynthesis [56]. These are the fundamental conditions for plant growth and are decisive
fac-tors for the plant growth environment. Changes in elevation contain information about
changes in surface slope and aspect, which in turn represent changes in soil water and
nutrient elements to some extent [57–59]. Information about plant height includes data
on plant types and also on the three-dimensional density distribution. These indicators
reflect to some extent the competitive relationships for resources among plants and also
determine plant growth to a certain extent [60]. Considering the limitations of workload
and equipment availability, this study has chosen to collect and measure only a subset of
green space attributes.

CEDGAN focuses on soil pH as its training target, while the FCNN employs the
Normalized Difference Vegetation Index (NDVI) values as reference outputs for the quality
of plant growth environments, incorporating soil parameters (moisture content, salinity,
pH, texture), elevation, plant height, and solar radiation energy as input features.
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2. Materials and Methods
2.1. Study Area

The study region of this research project is located in the West Lake District of
Hangzhou City, Zhejiang Province, China. The study region spans a considerable ex-
tent from north to south, which encompasses diverse terrains and environments. The
communities residing in this region were established over various periods, which renders
the collected data more diverse and representative. This enhances the generalizability and
representativeness of the model. We selected urban green spaces within the study area
for research based on factors such as time of community establishment, density, surround-
ing environment, and corresponding regulatory restrictions. The specific distribution of
the plots is illustrated in Figure 1. Sample site details can be seen in the example RGB
image (Figure 2).

Agronomy 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 

plant growth environments, incorporating soil parameters (moisture content, salinity, pH, 
texture), elevation, plant height, and solar radiation energy as input features. 

2. Materials and Methods 
2.1. Study Area 

The study region of this research project is located in the West Lake District of Hang-
zhou City, Zhejiang Province, China. The study region spans a considerable extent from 
north to south, which encompasses diverse terrains and environments. The communities 
residing in this region were established over various periods, which renders the collected 
data more diverse and representative. This enhances the generalizability and representa-
tiveness of the model. We selected urban green spaces within the study area for research 
based on factors such as time of community establishment, density, surrounding environ-
ment, and corresponding regulatory restrictions. The specific distribution of the plots is 
illustrated in Figure 1. Sample site details can be seen in the example RGB image (Figure 
2). 

 
Figure 1. Schematic diagram of the sample plot. (The gray area in the image is a further magnifica-
tion of the white map, and the colored plots within the gray map represent the sample plots used in 
this study). 

 
Figure 2. Aerial view of sampling plots. (This image is an actual aerial photograph of the sample 
plot). 

2.2. Data Gathering 
2.2.1. Sample Collection and Measurement Methods 

Figure 1. Schematic diagram of the sample plot. (The gray area in the image is a further magnification
of the white map, and the colored plots within the gray map represent the sample plots used in
this study).

Agronomy 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 

plant growth environments, incorporating soil parameters (moisture content, salinity, pH, 
texture), elevation, plant height, and solar radiation energy as input features. 

2. Materials and Methods 
2.1. Study Area 

The study region of this research project is located in the West Lake District of Hang-
zhou City, Zhejiang Province, China. The study region spans a considerable extent from 
north to south, which encompasses diverse terrains and environments. The communities 
residing in this region were established over various periods, which renders the collected 
data more diverse and representative. This enhances the generalizability and representa-
tiveness of the model. We selected urban green spaces within the study area for research 
based on factors such as time of community establishment, density, surrounding environ-
ment, and corresponding regulatory restrictions. The specific distribution of the plots is 
illustrated in Figure 1. Sample site details can be seen in the example RGB image (Figure 
2). 

 
Figure 1. Schematic diagram of the sample plot. (The gray area in the image is a further magnifica-
tion of the white map, and the colored plots within the gray map represent the sample plots used in 
this study). 

 
Figure 2. Aerial view of sampling plots. (This image is an actual aerial photograph of the sample 
plot). 

2.2. Data Gathering 
2.2.1. Sample Collection and Measurement Methods 

Figure 2. Aerial view of sampling plots. (This image is an actual aerial photograph of the sample plot).

2.2. Data Gathering
2.2.1. Sample Collection and Measurement Methods

In this study, soil samples were collected with a soil sampler (brand: Siyang; product-
number: 001; origin: Zhejiang, China) having a diameter of 38 mm. The sampling depth
was set at 20 cm, maintaining an interval of 6–10 m between each sampling point. The
samples were preserved in transparent zip-lock bags for transportation and storage. The
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coordinate information of each soil sample was captured using an RTK terminal (CHCNAV
T5 PRO; manufacturer: Shanghai Huace Navigation Technology Ltd.; origin: Shanghai,
China), with a CGCS2000 coordinate system employed to save and display the location
information. The information of each soil sample is presented in Table 1 in the X, Y, Z
data format.

Table 1. Examples of sample point data retention.

Number Y X Z pH

1 3,357,796.483 505,670.308 12.293 7.90

The soil samples were air-dried naturally, crushed, and then sieved through a 2 mm
sieve to obtain the samples needed for further testing processes. Given the model’s intended
application in large-scale data computation in subsequent phases, necessitating a vast
amount of empirical data for training purposes, the study opted for readily measurable
indicators. These indicators include soil moisture content, salinity, pH, and texture. The
methodologies for these measurements reference the procedures outlined in the book by
Bao [61].

In this research, point cloud data were acquired using a DJI M300RTK drone (manu-
facturer: DJI Innovation; origin: Shenzhen, China) equipped with the L1 payload, while
multispectral data were gathered with a DJI Phantom 4 RTK (manufacturer: DJI Innovation;
origin: Shenzhen, China) in its multispectral version. Data collection was conducted at a
relative cruising altitude of 40 m (point cloud density > 354 points/m2; ground resolution
< 1.09 cm), with an image overlap rate of 75%, and with the flight path velocity set at
10 m/s. This is because traditional satellite remote sensing data typically provide lower
resolution data [62], which is far from sufficient for the precision required for the individual
urban green spaces in this study. In contrast, DJI drones equipped with L1 LiDAR and
multispectral cameras can provide data with higher resolution and accuracy. Additionally,
these drones are equipped with an RTK positioning system, which maintains the spatial
location error within a 5 cm range. The L1 LiDAR also features inertial navigation system
calibration, further enhancing the spatial accuracy of the data.

The samples and data used in the study were collected in July 2023. The overall flow
is shown in Figure 3.
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2.2.2. Data Preprocessing

The soil sample data were saved in CSV files (Table 1), facilitating their reading with
Python and subsequent processing in ArcGIS Pro 3.1.

For the training of the CEDGAN network, soil pH data were subjected to preprocessing
using the “Data” module in ArcGIS Pro, which facilitated the screening and elimination of
anomalously high or low readings, effectively removing outliers and inaccuracies. This was
followed by the application of the “Point to Raster” tool for the conversion of the processed
data into raster format, with a designated pixel size of 10 and the raster values determined
by calculating the average. The final stage involved exporting the rasterized data files from
ArcGIS Pro, adjusting the pixel size to 1 to align with the input size requirements of the
model, as detailed in Figure 4. The even distribution of the sampling points is impossible at
a fixed distance keeping in view the constraints of terrain and other conditions in real-world
settings. Additionally, the density and spacing of the sampling points may vary in actual
applications. The raster file will be cropped using a Python script according to different
sizes (square with sides of 32 and 64 pixels). The 100 or 50 pixels will be randomly sampled
as control points in each training sample before training the model. The training samples
required are shown in Figure 5.
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The dataset utilized for the training of the FCNN was processed through ArcGIS Pro
3.1, whereby raster data were extracted to the sample points and subsequently exported
in CSV format for training purposes. In this study, soil textures are classified into three
discrete categories: clayey, loamy, and sandy. To ensure computational balance during
the model training phase, soil texture data were subjected to one-hot encoding [63] via a
Python script. Furthermore, to align with the characteristics of the ReLU activation function



Agronomy 2024, 14, 938 8 of 21

used during the neural network training phase, NDVI values were normalized to a range
of 0 to 1 using min–max normalization through a Python script.
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Raw point cloud data were processed using DJI Terra software (V3.9.4) to obtain the
initial three-dimensional point cloud data for the plot. Subsequently, Cloud Compare
(V2.13) was employed to eliminate unnecessary points, resulting in the final point cloud
dataset for the plot. This data was then converted into an elevation raster dataset with a
pixel resolution of 1 m using ArcGIS Pro 3.1. Utilizing the aforementioned datasets, plant
height data and annual solar radiation raster data were calculated through ArcGIS Pro
3.1. In parallel, multispectral imagery data was processed with DJI Terra to derive the
Normalized Difference Vegetation Index (NDVI) values for the plot.

Before inputting into the model, the image raster data were normalized to a range
of 0 to 1 using Z-score normalization. Since other data values are all greater than zero,
and in order to reduce the complexity and computational load of data preprocessing in
subsequent model usage, as well as to enhance the model’s applicability, other data were
only subjected to basic data cleaning without normalization.

2.3. Network Training
2.3.1. Introduction to the Network

The main structure of CEDGAN is depicted in Figure 6a. CEDGAN consists of a
generator G and a discriminator D, with the aim of learning the relationship between the
sampled spatial data and corresponding real spatial data to generate fake spatial data that
are as accurate as possible. D attempts to capture the correspondence between the spatial
data and sampled data, to determine whether the interpolated fake data can be considered
correct based on a limited number of samples.

In Figure 6b, the details of G and D are displayed. The generator G is designed as
a fully convolutional encoder structure, containing three two-dimensional convolutional
layers as encoders (convolutional layers 1, 2, and 3) and three two-dimensional transposed
convolutional layers as decoders (deconvolutional layers 1, 2, and 3). Each encoder layer
performs zero-padded convolution with given kernels and strides. Each decoder layer
achieves up-sampling of feature mappings via transposed convolutions with fractional
strides, with settings identical to the encoder layers. The discriminator D is a convolutional
neural network, akin to typical image classification models. The model employs the
concatenation operation to merge the sampled data and full-sized real data (or fake data) as
inputs. Each layer of D performs zero-padded convolution once with the settings identical
to those of the encoder layers in G. The output of D is a scalar, indicating whether the input
full-sized image is a correct interpolation.
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The primary architecture of the fully connected neural network (FCNN) is depicted
in Figure 6c, consisting of an input layer, several hidden layers, and an output layer. The
input layer is tasked with receiving raw data and forwarding it to the subsequent layer,
with the number of neurons in this layer determined by the quantity of input features. The
hidden layers serve as the intermediary stages within the FCNN, with their quantity being
flexible. The number of neurons within each hidden layer can be adjusted freely, with each
neuron interconnected with all neurons from both the preceding and succeeding layers.
The output layer, constituting the terminal stage of the FCNN, is responsible for delivering
the network’s predictive outcomes, with the number of neurons in this layer dependent on
the specific requirements of the task at hand. Each neuron is equipped with an activation
function, incorporating nonlinear elements into the network, thereby enabling the FCNN
to approximate complex nonlinear relationships.

2.3.2. Training Environment and Parameter Settings

The model was trained in a PyTorch [64] environment under an Anaconda [65] virtual
environment, with the versions of PyTorch and CUDA being 2.1.0 and 12.1, respectively. The
computational CPU used was Intel i9-13900k, and the GPU was NVIDIA RTX 4090. The
operating system was Win11 Pro, and Python scripts were written using PyCharm 2023.1.2.

The CEDGAN training parameters were set with reference to Zhu’s research study [43],
making appropriate modifications to suit the training set of this study. The network was
trained with the mini-batch stochastic gradient descent (SGD) method [66], with a batch
size of 64. The training dataset containing raster images was randomly batched, with
each batch containing 64 images (batches with fewer than 64 images were discarded).
We set the slope to 0.2 for the LeakyReLU [67] activation layer. Moreover, we utilized
the Adam optimizer [68], with β1 set to 0.5, β2 set to 0.999, and the learning rate α for
backpropagation set to 0.0002. To ensure consistency in training parameters across different
sessions, the random seed in the code related to this study was uniformly set to 999. The
PyTorch tensorboard module was used to record relevant losses during training, and this
module was employed to visualize the parameters of the training process.

In the configuration of the fully connected neural network (FCNN), the number of
nodes in the input layer is tailored to match the count of input features, set specifically
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at 9. The architecture includes three hidden layers, with the number of output nodes
adjustable based on the requirements of the application. The output layer is defined
with a singular node. Throughout the training phase, the random seed is fixed at 66
to ensure reproducibility. The rectified linear unit (ReLU) function is employed as the
activation function to introduce nonlinearity, facilitating the model’s ability to capture
complex relationships. Loss calculation is conducted using the mean squared error loss
(MSELoss) method. Optimization is achieved through the Adagrad optimizer, with the
learning rate and weight decay parameters set at 0.001 and 0.0001, respectively.

This study employed hold-out cross-validation. The training and test sets were ran-
domly divided in an 8:2 ratio using PyTorch’s DataLoader statement.

3. Results
3.1. Overview of Training Dataset

Following meticulous selection, the soil pH dataset employed in the CEDGAN training
encompasses a total of 1328 samples, each comprising both GPS coordinates and pH values.
A brief overview of this dataset is presented in Table 2. The total of 1432 grid training
samples were derived from the above samples. A total of 1163 samples have the dimension
of 32 pixels in edge length (Figure 6a), and 269 samples have the dimension of 64 pixels in
edge length (Figure 6b). Random rotation was employed during the import process of the
64-pixel edge length model training set due to the limited size of the larger training dataset.
This has expanded the number of features for training to approximate the quantity level of
smaller-sized samples.

Table 2. Statistical indicators of training data.

Indicators Mean Median Std Max Min

pH 7.52 7.86 0.91 8.90 4.82

Water Content 0.175 0.180 0.045 0.38 0.02

Salinity Content 0.093 0.090 0.017 0.41 0.07

Elevation (m) 25.08 20.08 11.52 62.94 10.53

Plant Height (m) 3.57 1.80 4.40 23.10 0.00

Solar Radiation
(kWh/m2) 896.72 936.56 348.78 1540.53 42.87

Corrected NDVI 0.73 0.78 0.17 0.95 0.01

Upon completing a meticulous selection process, the dataset designated for FCNN
training comprises 1210 distinct groups. This dataset incorporates a myriad of critical
factors, such as the texture of the soil, its moisture and salt content, pH, the altitude at the
specific locations where the samples were collected, the stature of the vegetation present,
the total solar radiation received over the course of a year, and the values of the NDVI
following a process of re-standardization. For a detailed summary of this data, refer
to Table 2.

3.2. CEDGAN Training Results
3.2.1. Loss Metrics in CEDGAN Training

Figure 7 exhibits the overall MSE loss between the discriminator and real vs. generated
data which reveals a decreasing trend as the number of training iterations increased.
However, there are noticeable upward fluctuations at specific epochs. Conversely, the
generator’s loss has displayed an upward trend with epochs and shows considerable
fluctuations at particular epochs. As a whole, the loss varied significantly within the first
20% of the epochs and then gradually stabilized. The MSE loss between the generated and
real data was generally below 0.005. The average pixel pH value error was between the
two and was below 0.03. The three types of loss fluctuations generally corresponded with
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each other, comparing across four sets of training parameters, and usually occurred within
the same epoch. The larger-sized samples demonstrated a relatively larger training loss
compared with the model training parameters with variable sample size. Furthermore, the
amplitude of loss changed with the rise in training epochs and was less pronounced for
larger samples. It can be inferred from contrasting the original data curves that the loss
fluctuation range during training with smaller samples was more than with larger samples.
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Figure 7. Indicators of model training under different size samples (A,B represents 100 and 50 sample
points); (a,d) denotes the D loss of 32- and 64-pixel samples; (b,e) denotes the G loss of 32- and
64-pixel samples; (c,f) denotes the MSE loss of 32- and 64-pixels samples. Horizontal coordinates are
the number of training times; light-colored curves are the original data; dark-colored curves are the
curves after smoothing the original data by a factor of 0.8.

In the context of different sampling numbers, the loss during the training process
for 32-pixel edge length samples revealed significant discrepancies. The discriminator’s
loss in the condition of 50 sampling points experienced more pronounced fluctuations
initially, but the fluctuations were dramatically reduced later on, almost reaching zero
compared to the 100 sampling points. Simultaneously, when the discriminator’s loss
exhibited considerable fluctuations, the generator’s loss halted its rising trend and started
to fluctuate considerably. The MSE loss was initially stabilized and was adjacent to zero
but later on showed significant fluctuations when the generator’s loss varied considerably.
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The overall trend was similar to the scenario of 100 sampling points for 64-pixel edge
length samples in the condition of 50 sampling points. However, minor fluctuation was
more moderate in the 50 sampling points. Meanwhile, both the generator and MSE losses
were relatively higher.

3.2.2. Interpolation Performance of CEDGAN on Soil pH

Figure 8 indicates that in general, during the training process, the results of the
generator based on the control points gradually approached those of the real samples
as the epochs were enhanced. The initial generated images did not present any distinct
features, mostly appearing as randomly distributed points. Some connected points became
apparent by epoch 20. The small random patches with higher pixel value boundaries began
to emerge by epoch 40. Most of these points disappeared by epoch 120. More contiguous
and homogeneous patches were produced by epoch 380, and their shape closely resembled
the real data. The regularly distributed pixels with higher values started appearing within
these uniform patches by epoch 400. The continuous patches began to showcase complex
boundaries and value differential areas from epoch 600 onwards. The generated results
closely reflected the real samples by epoch 10,000.
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The original data were segmented with a sliding window approach to produce a new
dataset and input into the model trained until the last epoch. Figure 9 exhibits that models
trained with smaller samples and fewer sampling points were outperformed by those
trained with larger samples and more sampling points. The performance showed a trend
of improvement with increasing sample size and sampling number.

The generated results showed a minimal resemblance to the real samples, displaying
regular patches and some concentrated regions of higher pixel values for the 32-pixel edge
length samples trained under the condition of 50 sampling points. The model’s generated
results, in terms of large-scale structure and distribution, resembled the real samples
more closely with 100 sampling points. However, significant discrepancies persisted in
the details, with generated images primarily composed of nearly identical pixel values,
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appearing relatively smooth, and lacking representation for internal variations within real
data patches.
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Figure 9. Generation results of different training models for the same sample. The different columns
from left to right represent sample points, generated maps, and real samples, respectively; the
different rows from top to bottom represent models trained on 32-pixel 50 sample points, 32-pixel
100 sample points, 64-pixel 50 sample points, and 64-pixel 100 sample points, respectively.

The generated results for 64-pixel edge length samples trained under the condition
of 50 sampling points surpassed those trained with 32-pixel edge samples. The shape
and distribution closely resembled those of the real samples, and internal variations were
consistent with the real samples. However, predictions at rapidly changing angles and
boundaries were suboptimal, appearing overly smooth.

The best-performing model was trained with 64-pixel edge length samples under
the condition of 100 sampling points. The distribution maps predicted by this model, in
terms of shape, distribution, magnitude, and variations, were very closely aligned with the
real samples.
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3.3. FCNN Training Results

Figure 10 reveals that, across all configurations, loss values generally decline as the
number of training iterations increases; however, the pace of this decline and the final
steady state exhibit distinct differences among configurations. This is manifested by a
slower reduction speed in loss values and reduced stability as the number of hidden layers
increases, although the loss gradually decreases after the first training session concludes.
Similarly, with an increase in the number of nodes per layer, the reduction speed of loss
values decelerates, and stability lessens, with an initial increase in loss at the early stages
of training. These trends are more pronounced in the training set losses. The model’s
tendency towards overfitting gradually intensifies with more hidden layers, as indicated
by the training set loss falling below the validation set loss at earlier epochs.
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When there is only one hidden layer, increasing the number of nodes initially reduces
then increases the initial loss, hitting its lowest when the node count is 18. However, at 18
and 27 nodes, the training set loss experiences significant fluctuations, with a relatively
apparent trend of overfitting at 18 nodes. With two hidden layers, the initial loss also
minimizes at 18 nodes. However, as the number of nodes increases with two hidden
layers, the reduction speed of the validation set loss slows, and the fluctuation becomes
more pronounced; the training set loss shows nearly completely random variation. With
three hidden layers, increasing the number of nodes shows a pattern of initial decrease,
followed by an increase and then a decrease in initial loss, with the lowest at 18 nodes.
The fluctuation degree of training loss also increases with the number of nodes, showing a
pattern of decrease, then increase, and then decrease again.

4. Discussion

Urban planning and environmental management face increasing challenges as urban
expansion leads to continuous changes in green spaces [69], and the workload also in-
creases accordingly. Therefore, a method that can quickly assess the quality of urban
green spaces is needed. Moreover, due to the growing demand for urban green spaces in
envi-ronmental protection and other areas [70–72], a method that provides more accurate,
precise, and economical data collection is necessary. However, due to the complexity of
urban environments, this task presents significant challenges [45–47]. This study combines
neural networks and drone remote sensing technologies, planning to provide a relatively
accurate, precise, and economical monitoring system for urban green space quality.

One of the principal objectives of this research study was to interpolate spatial at-
tributes of urban green spaces using CEDGAN. This study has emphasized on interpolation
of soil pH values within green spaces.

The majority of our samples displayed signs of convergence during training, gradually
optimizing as the epochs progressed. However, it is evident that larger-sized samples
showed more significant training loss, with relatively minimal variations in the loss magni-
tude. This could be attributed to more computational complexity faced by the model when
dealing with larger-sized data [73].

The larger datasets usually encapsulate more intricate details and variations, as vi-
sualized in Figure 5. This furnishes the GAN’s discriminator and generator with richer
training data and features. Conversely, smaller-sized samples exhibited more significant
fluctuations in training loss, possibly due to their provision of limited information. This can
lead to instability during the model’s prediction phase, resulting in higher volatility [74].

Significant fluctuations in the loss function at specific cycle counts warrant further
investigation. Such fluctuations might arise from mode collapse experienced during GAN
training—a well-known issue with GANs. The generator might find ways to deceive the
discriminator in certain iterations, leading to such fluctuations [75].

A notable observation from the data is the model’s tendency to shift its focus from
localized to global information, or vice versa. This might elucidate the substantial shifts
in both the generator’s and discriminator’s loss values in certain cycles. The global trend
of generator loss seems contrary to other metrics, potentially resulting from the discrim-
inator’s continual optimization and increasing discernment, subsequently elevating the
generator’s loss [76–78]. This observation is positive, indicating continuous optimization
during training.

The limited sample size might ease model convergence but could also precipitate
issues like premature convergence to local optima or gradient explosion [79]. Therefore, as
evident in the plots (Figure 7), low-sample-density raster data show drastic fluctuations
in training loss towards the latter stages. Conversely, higher sample densities supply
richer information, aiding the model in learning data distribution and structure more
accurately. However, this also escalates computational requirements and feature count,
slowing convergence and amplifying loss.
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The features learned by the generator gradually deepen with the growing number of
epochs, transitioning from rudimentary edge features to complex structures and textures.
This sequential learning process exemplifies how deep learning networks progressively
extract features, rather than simply memorizing the training samples.

The present study validated the model to assess its generalization capabilities with the
dataset obtained from sliding segmentation. It has been observed that different input sizes
might affect feature extraction. The smaller inputs might emphasize local features, leading
to pixel clusters (Figure 9). The larger inputs might focus on global features. Although
every model demonstrated some degree of interpolation capability, the performance was
optimal for the models trained with 64-pixel side length samples at 100 sample points. This
suggests that adequate context and sample volume are essential for precise predictions.

Even the best-performing models showed some discrepancies in the details compared
to the real samples. This suggests that sample size and sample count are only among
several factors influencing prediction performance. This is also illustrated by the research
of Benkendorf et al. [80]. Other factors such as optimizer selection, learning rate strategy,
etc., might play a role. The sole reliance on increasing sample size and count might not
maximize performance [81]. Further research is recommended to identify optimal model
parameters and to enhance accuracy and generalizability.

Another objective of this study was to develop a predictive model for evaluating the
growth environments of urban greenery based on nine green space attributes, utilizing the
FCNN. Throughout the training phase, a gradual decline in loss values was observed as
the number of training iterations increased, indicative of the model’s capability to learn
and adapt to the data’s characteristics. The variance in the trend of decreasing loss values
and the ultimate stabilization state under different network architectures underscored the
significant impact of model structural parameters on training efficiency and performance.
These phenomena can be attributed, on the one hand, to a mismatch between model
complexity and the volume of training data, leading to overfitting [82]. On the other
hand, the initial increase in loss values may stem from the high variance caused by the
random initialization of model parameters at the outset [83]. This aligns with recent
studies, suggesting that the design and optimization of deep learning models are crucial
for enhancing predictive performance [84].

Increasing the number of hidden layers was observed to slow down the loss reduction
trend and decrease model stability, potentially reflecting overfitting issues due to increased
model complexity, as indicated in recent research. Overfitting significantly impairs the
model’s generalization ability on unseen data [85]. Furthermore, our findings suggest
that increasing the number of nodes per layer, particularly in configurations with more
hidden layers, intensifies the model’s tendency towards overfitting, further affirming that
excessively increasing model complexity can negatively impact training efficiency and
model generalizability.

Overfitting is a common problem in deep learning, especially when the model com-
plexity is high and the training samples are limited. He [86] pointed out that overfitting
can be effectively mitigated by increasing the amount of data, using data augmentation
techniques, or introducing regularization terms (such as L1/L2 regularization, dropout).
For the issue of loss value increase at the beginning of training, Glorot and Bengio [83] have
recommended using appropriate weight initialization strategies, like Xavier initialization,
to improve the stability of model training in its initial phase.

In this study, the depth of the hidden layers and the number of nodes per layer
significantly impacted model performance. The research conducted by Srivastava [87]
demonstrates how dropout, as a regularization technique, effectively reduces overfitting
and enhances the model’s generalization capability on unseen data. Hence, introducing
dropout could be an effective solution to address the increased fluctuations in loss values
with an increase in the number of nodes.

To tackle the issues of overfitting caused by the addition of hidden layers and the
slowed rate of loss value decrease, the adoption of more sophisticated regularization
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techniques, such as batch normalization [88], could be considered. This approach not only
accelerates the training process but also enhances the model’s stability and performance.

The high-precision spatial interpolation capabilities of CEDGAN make it particularly
effective in handling complex urban environmental data, directly enhancing the accuracy
of future urban planning and environmental monitoring models. Meanwhile, the strong
fitting ability of the FCNN enables it to effectively process and predict multi-dimensional
nonlinear relationships, which is significant for in-depth analysis of environmental data
and the development of more complex models in the future.

Moving forward, we plan to further refine and optimize these research findings to
better adapt to the actual management needs of urban green spaces. For example, we
are considering developing a comprehensive model that can simultaneously handle the
interpolation of multiple spatial attributes such as soil NPK values, moisture, and sunlight,
to provide more comprehensive data support. Additionally, we are exploring ways to
increase the model’s interpretability, so that managers can more intuitively understand the
basis of the model’s predictions.

Overall, this study highlights the potential of CEDGAN in interpolating urban green
space attributes and the FCNN in predicting and evaluating plant growth performance.
However, it also uncovers the challenges faced during their training processes. Future work
could delve into exploring alternative network architectures or employing additional data
augmentation techniques to enhance the models’ stability and predictive accuracy, and on
this basis, develop more models. Moving forward, we hope that these network structures
can be widely applied to more environmental science and urban development studies.

5. Conclusion

The following is concluded:

(1) CEDGAN can be effectively employed for the interpolation of spatial attributes in
urban green spaces. The per-pixel average error was found to be less than 0.03 for the
prediction of pH values;

(2) The efficacy of CEDGAN in urban green space interpolation was significantly influ-
enced by training sample size, with larger samples yielding better results;

(3) The effectiveness of CEDGAN in urban green space interpolation was substantially
affected by the number of sample points, with higher sample counts leading to
superior results;

(4) The CEDGAN network requires more samples with high information density to
enhance performance and accuracy for the interpolation of urban green spaces;

(5) The FCNN model exhibits strong performance in evaluating and predicting plant
growth environments, with general prediction errors less than 0.1;

(6) When comparing network structures with various parameters, those FCNN models
with fewer hidden layers and nodes demonstrate superior training outcomes.
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