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Abstract: Water scarcity is a global problem. Deficit irrigation (DI) reduces evapotranspiration,
improving water efficiency in agriculture. Reference evapotranspiration ET0 is an important factor in
determining DI. ET0 forecasting predicts field water consumption and enables proactive irrigation
decisions, offering guidance for water resource management. However, implementation of ET0 fore-
casting faces challenges due to complex calculations and extensive meteorological data requirements.
This project aims to develop a machine learning system for ET0 forecasting. The project involves
studying ET0 methods and identifying required meteorological parameters. Historical meteoro-
logical data and weather forecasts were obtained from meteorological websites and analyzed for
accuracy after preprocessing. A machine learning-based model was created to forecast reference crop
evapotranspiration. The model’s input parameters were selected through path analysis before it was
optimized using Bayesian optimization to reduce overfitting and improve accuracy. Three forecasting
models were developed: one based on historical meteorological data, one based on weather forecasts,
and one that corrects the weather forecasts. All three models achieved good accuracy, with root
mean square errors ranging from 0.52 to 0.81 mm/day. Among them, the model based on weather
forecast had the highest accuracy; the RMSE six days before the forecast period was between 0.52
and 0.75 mm/day, and the RMSE on the seventh day of the forecast period was 1.12 mm/day. In
summary, this project has established a mathematical model of ET0 prediction based on machine
learning, which can achieve more accurate predictions for within a few days.

Keywords: water resources; deficit irrigation; machine learning; agricultural irrigation forecasting;
water resource management

1. Introduction

In 2020, China’s agricultural water consumption was 361.24 billion cubic meters,
accounting for 62% of the country’s total water use. The water-saving irrigation area is
37,795.99 thousand hectares, accounting for about 50% of the total irrigation area, and
the effective utilization coefficient of farmland irrigation water is only 0.565 [1]. The
development of agriculture largely depends on the rational use of water resources, but there
are widespread problems of low water efficiency and serious water waste in agriculture at
present. Much of the water is consumed by plants through transpiration, and crops use
only 66% of the water used for irrigation [2]. This is a huge waste, and the application of
defect irrigation can solve this problem, but there is a lack of an available scientifically and
mathematically based guiding model. It is the goal of this article to address this lack.

With the further development of modern economy and society, the strategic position of
water resources is becoming increasingly important, which also makes the development of
water-saving agriculture become urgent, and water-saving science urgently needs reliable
and convenient methods to promote.
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As a kind of water-saving science, deficit irrigation (DI) is designed to stabilize yields
and obtain maximum crop water productivity, not maximum yield [3]. As the most
important factor of DI, it is very important to consider how the value of reference evap-
otranspiration (ET 0) can be obtained effectively and accurately. Traditional methods of
measuring evapotranspiration rely on precision instruments like lysimeters. However,
these methods have high equipment requirements and lack predictive capabilities. They
cannot forecast future evapotranspiration. The Food and Agriculture Organization of the
United Nations (FAO) provides a method to calculate evapotranspiration of reference crops
using meteorological information. The evapotranspiration of reference crops is multiplied
by the crop coefficient to obtain the evapotranspiration of specific crops [4].

With the maturity of computer technology, scholars at home and abroad have begun to
use machine learning to forecast evapotranspiration in reference crops. Reference crop evap-
otranspiration forecasting is the key to realizing irrigation forecasting. The ET0 forecasting
model is trained by using past meteorological data as input. For example, Yin et al. [5].
Used the Mixed Bidirectional Long and Short Memory Network (Bi-LSTM) model to con-
duct ET0 short-term forecasting. E Lucas et al. [6] used integrated convolutional neural
networks for ET0 prediction.

In this paper, a prediction model capable of predicting for the next seven days was
constructed by using machine learning and meteorological data, additionally combining the
crop coefficient method, soil water stress coefficient, and farmland water balance equation.
This approach calculates the ET0 and forecasts irrigation needs for the next seven days.

2. Materials and Methods
2.1. Experimental Data Source

The experimental data in this paper were divided into historical meteorological data
and weather forecast data.

2.1.1. Sources of Historical Meteorological Data

MERRA-2 is a dataset of atmospheric reanalysis data provided by NASA. It combines
historical observation data and numerical prediction to generate complete and stable
historical weather data. The dataset includes temperature, relative humidity, wind speed,
and net radiation data. Because these factors are strongly related to the weather, they have
also been used in the establishment of various weather forecast models [7].

The nc4 file containing historical meteorological data for Haidian District In Beijing
(116.25, 40.0) was downloaded from the official MERRA website (https://gmao.gsfc.nasa.
gov/reanalysis/MERRA-2, accessed on 3 June 2023). The data covered a 10-year period
from 1 December 2012 to 30 November 2022, with hourly intervals. The specific variables
available in the dataset were temperature, specific humidity, wind speed, net short-wave
radiation, and net long-wave radiation.

The parameters and units of hourly meteorological data are shown in Table 1.

Table 1. Historical meteorological data parameters and units.

Historical Meteorological Data Units of Measure

Date UTC
Air temperature K

Specific humidity g/kg
Average wind speed at 10 m m/s

Average net short-wave radiation W/m2

Average net long-wave radiation W/m2

2.1.2. Sources of Meteorological Forecast Data

Choi Wan (https://api.caiyunapp.com/, accessed on 3 June 2023) has been a strategic
partner of the China Meteorological Administration for many years, providing authoritative
cloud weather forecast data since September 2014. To automatically crawl daily data, a

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://api.caiyunapp.com/


Agronomy 2024, 14, 939 3 of 14

Python crawler was developed. The target area for data acquisition was Haidian District,
Beijing (116.25, 40.0). The data required were from 21 October 2021 to 25 November
2021. Additionally, a total of 2870 daily forecast datasets were needed for the period of 23
December to 31 December 2022. The daily forecast data included maximum temperature,
minimum temperature, maximum relative humidity, minimum relative humidity, 10 m
wind speed, average solar radiation, maximum solar radiation, minimum solar radiation,
and precipitation.

The weather forecast data and units obtained are detailed in Table 2.

Table 2. Meteorological forecast data parameters and units.

Historical Meteorological Data Units of Measure

Date UTC+ 8:00
Air temperature ◦C

Relative humidity %
Average wind speed at 10 m m/s

Solar radiation W/m2

2.2. Prediction Methods of ET0

FAO’s PM Formula

Since the PM formula comprehensively considers the influence of various weather
factors on ET0, and other alternative methods have their own limitations, such as the
Hargreaves–Samani method [8] based on temperature calculation and the Priestley–Taylor
method [9] based on radiation calculation, FAO defines the PM formula as the standard
formula for calculating ET0. This paper also includes calculations according to the PM
formula. This method defines a reference crop as a well-irrigated grassland with a height
of 0.12 m, which is fully mulched, like a large, well-grown grassland. The reference crop is
an imaginary crop with a surface resistance of 70 and a reflectance of 0.23. The PM formula
considers both the physical evapotranspiration process of plants and meteorological pa-
rameters, making it effective at combining these variables. ET0 represents the atmospheric
evaporation capacity at a specific location over a certain period, and is not affected by
actual crops or soil. Instead, it is calculated solely based on meteorological factors.

The PM formula for calculating ET0 is as follows:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the reference crop evapotranspiration calculated by day step, mm/day; ∆
is the slope of saturated water vapor pressure curve at temperature T, kPa/◦C; Rn is the
net radiation of crop surface, MJ/(m2·day); G is soil heat flux, MJ/(m2·day); γ is the
hygrometer constant, kPa/◦C; T is the average daily temperature at 2 m altitude, ◦C; u2
is the daily average wind speed at a height of 2 m, m/s; es is the daily average saturated
vapor pressure, kPa; ea is the daily average actual vapor pressure, kPa. The calculation
formulas of these parameters are also provided in the FAO document. The meteorological
factors can be solved according to the following formula, to calculate the reference crop
evapotranspiration ET0:

1. Average daily temperature at 2 m altitude Tmean:

Tmean =
Tmax + Tmin

2
(2)

where Tmean is the daily average temperature at a height of 2 m, ◦C; Tmax is the daily
maximum temperature at 2 m altitude, ◦C; Tmin is the daily minimum temperature
at 2 m altitude, ◦C. To standardize, the Tmean definition is the average daily highest
temperature Tmax and minimum temperature Tmin, not average temperature per hour;
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2. Daily mean saturated vapor pressure es:

es =
e0(Tmax) + e0(Tmin)

2
(3)

e0(T) = 0.6108 × exp
(

17.27T
T + 237.3

)
(4)

where es is the daily average saturated vapor pressure, kPa; e0(T) is the water vapor
pressure at the air temperature T, kPa; Tmax is the daily maximum temperature, ◦C;
Tmin is the daily minimum temperature in ◦C;

3. Daily mean actual vapor pressure ea:

ea =
e0(Tmax)

RHmin
100 + e0(Tmin)

RHmax
100

2
(5)

where ea is the daily average actual water vapor pressure, kPa; RHmax is the daily
maximum relative humidity, %; RHmin is the daily minimum relative humidity, %;

4. Slope of saturated vapor pressure curve ∆ at temperature T:

∆ =
4098 × 0.6108 × exp

(
17.27T

T+237.3

)
(T + 237.3)2 =

4098 × e0(T)

(T + 237.3)2 (6)

where ∆ is the slope of saturated water vapor pressure curve at temperature T (kPa/◦C);

5. Hygrometer constant γ:
γ = 0.665 × 10−3P (7)

P = 101.3
(

293 − 0.0065z
293

)5.26
(8)

where γ is the hygrometer constant, kPa/◦C; P is the atmospheric pressure, kPa; z is
the altitude, m;

6. Daily average wind speed u2:

u2 = uh
4.87

ln(67.82h − 5.42)
(9)

where u2 is the daily average wind speed at a height of 2 m, m/s; uh is the average
wind speed at h m, m/s; h is the height of the measured wind speed, m;

7. Net radiation from crop surface Rn:

Rn = Rns − Rnl (10)

where Rn is the net radiation of crop surface, MJ/(m2·day); Rns is net shortwave
radiation, MJ/(m2·day); Rnl is the net long-wave radiation, MJ/(m2·day).

2.3. Path Analysis

Path analysis refers to a statistical method that uses the path coefficient to analyze the
correlation between variables. Path analysis provides a reliable basis for statistical decision
making. Since it was first proposed by American scholar Sewall Wright [10], it has been
widely used in many fields [11,12].

This study used path analysis to calculate the direct and indirect coefficients of each
dependent variable in relation to the independent variable. This allowed the analysis of
how each dependent variable determined the independent variable and contributed to its
regression equation’s R2. Based on the results, we selected the combination of dependent
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variables that had the greatest impact on the independent variables to develop a more
effective machine learning model with a simpler input.

The path analysis calculation process was as follows. Python was used in this study to
write a program to achieve the calculation process.

1. Correlation analysis

The Pearson coefficient between the pairwise independent variables was calculated,
and the calculation formula is shown in Equation (11). The Pearson coefficient between the
independent variable and the dependent variable was calculated, as shown in Equation (12):

ri,j =
Σn

i=1
(
Xi − Xi

)(
Xj − X j

)√
Σn

i=1

(
Xi − Xi

)2
√

Σn
j=1

(
Xj − X j

)2
(11)

ri,y =
Σn

i=1
(
Xi − X

)(
Yi − Y

)√
Σn

i=1

(
Xi − X

)2
√

Σn
i=1

(
Yi − Y

)2
(12)

2. Path coefficient

The relationship between the correlation coefficient and path coefficient is shown
in Equation (13):

ri,y = pi,y +
n

∑
i ̸=j

ri,j pj,y (13)

where ri,y is the Pearson coefficient between the independent variable Xi and the dependent
variable Y; pi,y is the direct path coefficient of the independent variable Xi to the dependent
variable Y, indicating the direct effect of Xi on Y; ri, j pj,y for independent variables Xi
through independent variable Xj and the indirect path coefficient of dependent variable
Y have indirect effects on Y. The path coefficient can be solved using Equation (13) to list
n-element equations in one order, as shown in Equation (14):

r1,y = p1,y + r1,1 p1,y + · · ·+ r1,n pn,y
r2,y = p2,y + r2,1 p1,y + · · ·+ r2,n pn,y

...
rn,y = pn,y + rn,1 p1,y + · · ·+ rn,n pn,y

(14)

3. Decision coefficient

The path coefficient defines the concept of coefficient of determination. However, the
coefficient of determination of the dependent variable by multiple independent variables
cannot determine the independent variable that has the greatest influence on the dependent
variable. Therefore, Yuan et al. [13] proposed the concept of decision coefficient index based
on the decision coefficient, reflecting the comprehensive determining effect of dependent
variable Xi on independent variable Y through the network of other dependent variables.
Since the decision coefficient index was proposed, most of the literature using the path
analysis method has used it for decision analysis [14].

The calculation process of the decision coefficient is as follows:

1. Ri is the direct determinant of the independent variable Xi with respect to the depen-
dent variable Y, as shown in Equation (15):

R 2
i = p 2

i,y (15)

2. Ri,j is the indirect determinant of the independent variable Xi with respect to the
dependent variable Y, as shown in Equation (16):

R2
i,j = 2ri,j pi,y pj,y (16)
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3. R is the coefficient of determination of all independent variables over dependent
variables, as shown in Equation (17):

R2 =
n

∑
i=1

pi,yri,y (17)

4. R(i) is the decision coefficient of the independent variable Xi over the dependent
variable Y, as shown in Equation (18):

R2
(i) = R2

i + ∑
i ̸=j

R2
i,j = p2

i,y + ∑
i ̸=j

2ri,j pi,y pj,y (18)

2.4. Introduction to the Model

Meteorological data are tabular data, which are large in quantity and highly coupled. It
is difficult to build predictive models through mathematics, and the advantages of machine
learning techniques are just right for this scenario [15]. The author selected four suitable
machine learning models, Random Forest, XGBoost and LightGBM, for data processing
and compared the performance to select the most suitable model.

2.4.1. Random Forest

Random forest is a machine learning algorithm proposed by Breiman [16]. It integrates
multiple decision trees through ensemble learning. Decision trees, first proposed by Morgan
and Sonquist [17], consist of nodes and directed edges, with internal nodes representing
features or attributes, and leaf nodes representing values. In regression tasks, the decision
tree divides the feature space and recursively assigns test data to specific units, ultimately
providing output values [18]. A random forest is constructed using sample perturbation
and feature selection randomness, allowing each decision tree to use different datasets and
select the best features for node splitting.

2.4.2. MLP

A multilayer perceptron (MLP) is a simple artificial neural network with a forward
structure, which simulates and simplifies a structure like that of biological neurons. The ba-
sic structure of an MLP consists of an input layer, output layer, and several fully connected
hidden layers. During training, input values are linearly transformed using weights and
biases for each layer (except the input layer) then undergo nonlinear changes through an
activation function before moving to the next layer [19].

2.4.3. XGBoost

A gradient boosting decision tree (GBDT) is an ensemble model based on the idea of
boosting, while XGBoost (eXtreme Gradient Boosting) is a newer algorithm proposed by
Chen and Guestrin [20] that builds upon GBDT. XGBoost follows the core principles of
GBDT but improves upon them in several aspects:

1. Flexibility: XGBoost supports not only the CART algorithm used by GBDT but also
linear classifiers and allows for custom loss functions, providing increased flexibility;

2. Improved Accuracy: XGBoost utilizes the second-order Taylor expansion to optimize
the loss function, enhancing calculation accuracy;

3. Regularization: by incorporating regularization terms, XGBoost simplifies the model
and avoids overfitting by removing constant terms;

4. Parallel Computation: XGBoost employs a block storage structure, enabling parallel
computation for improved performance;

5. Column Sampling: inspired by random forests, XGBoost supports column sampling
to reduce overfitting and computational overhead.

The XGBoost algorithm continuously adds new CART trees, making it an additive
model composed of k base learning models [21]. During training, XGBoost predicts the



Agronomy 2024, 14, 939 7 of 14

value for sample i after the t-th iteration based on the previous predictions and the t-th
tree’s model using Equation (19):

ŷ(t)i = Σt
k=1 fk(xi) = ŷ(t−1)

i + ft(xi) (19)

In the training process, XGBoost pre-sorts features numerically and uses a greedy and
approximate algorithm to find optimal split points for leaf nodes. Once the best split point
for a feature is found, the data are divided into left and right child nodes.

2.4.4. LightGBM

LightGBM is also a GBDT-based algorithm, which was proposed by Microsoft Research
Asia (MSRA) [22]. LightGBM optimizes the framework based on XGBoost, which greatly
improves the running speed. The specific optimizations of LightGBM compared with
XGBoost are as follows:

1. To transform traversal samples into traversal histograms, the histogram algorithm
is employed. The process involves discretizing continuous eigenvalues into integers
and establishing a histogram. As the data are traversed, statistics are accumulated
in the histogram based on the discretized values. Once the traversal is complete, the
histogram contains the necessary statistics. Finally, the optimal segmentation point is
determined by traversing the histogram using its discrete values [23].

2. Single-side gradient sampling (GOSS) filters out many small-gradient data samples.
This allows focusing on the remaining high-gradient data when calculating informa-
tion gain. Compared with XGBoost traversing all eigenvalues, it saves a lot of time
and space overhead.

2.4.5. Bayesian Optimization

Bayesian optimization is a popular method for adjusting model parameters. Unlike
grid search and random search, Bayesian optimization leverages information from previous
parameter combinations to efficiently seek the optimal combination. It is considered more
reliable and efficient in the parameter adjustment process.

To implement Bayesian optimization in Python, we utilized the bayes_opt library and
its BayesianOptimization function [24]. The implementation steps included:

1. Writing a custom model evaluation function that defined the model, parameters, and
evaluation metrics targeted for Bayesian optimization;

2. Creating a Bayesian optimizer function that set the number of initial points and iterations;
3. Setting the parameter ranges to be optimized in the main function, calling the Bayesian

optimizer function, providing the custom model evaluation function, and initiating
the optimization process.

3. Results

To facilitate organization, this chapter is based on different data sources (historical
meteorological data, weather forecast data, and corrected forecast data) to carry out the
reference crop evapotranspiration forecast.

Each specific forecast result was subject to:

1. Path analysis: several inputs that have the greatest influence on ET0 were selected;
2. Model selection: the algorithm model described in Section 2.4 was used for calculation,

and the algorithm model with the best fitting effect was selected after comparing the
fitting effect of the results;

3. Bayesian optimization: finally, Bayesian optimization was used to improve data
performance;

4. Presentation of results.

Finally, the results of the three data sources are compared to select the best evapotran-
spiration forecast model.
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Due to the repeatability of the processing of the three data sources, to ensure the
simplicity of the results, the processing of historical meteorological data and weather
forecast data is briefly introduced, while the processing of the corrected forecast data is
fully ddescribed.

3.1. Forecast Reference Crop Evapotranspiration Based on Historical Meteorological Data

Aa direct method for predicting reference crop evapotranspiration based on historical
meteorological data was implemented. First, historical meteorological data were used to
calculate the reference crop evapotranspiration according to the FAO-PM formula men-
tioned in Section 2.2, and the result is then is used as the output of the machine learning
model. Historical meteorological data were used as input to train reference crop evapotran-
spiration forecast model based on historical meteorological data. Finally, weather forecast
data were used as input to test the forecast accuracy of the model.

The forecast results using MLP and BO-MLP on the historical meteorological data test
set are shown in Figure 1.

Agronomy 2024, 14, x FOR PEER REVIEW 8 of 14 
 

 

3. Results 
To facilitate organization, this chapter is based on different data sources (historical 

meteorological data, weather forecast data, and corrected forecast data) to carry out the 
reference crop evapotranspiration forecast. 

Each specific forecast result was subject to: 
1. Path analysis: several inputs that have the greatest influence on 𝐸𝑇  were selected; 
2. Model selection: the algorithm model described in Section 2.4 was used for calcula-

tion, and the algorithm model with the best fitting effect was selected after comparing 
the fitting effect of the results; 

3. Bayesian optimization: finally, Bayesian optimization was used to improve data per-
formance; 

4. Presentation of results. 
Finally, the results of the three data sources are compared to select the best evapo-

transpiration forecast model. 
Due to the repeatability of the processing of the three data sources, to ensure the 

simplicity of the results, the processing of historical meteorological data and weather fore-
cast data is briefly introduced, while the processing of the corrected forecast data is fully 
ddescribed. 

3.1. Forecast Reference Crop Evapotranspiration Based on Historical Meteorological Data 
Aa direct method for predicting reference crop evapotranspiration based on histori-

cal meteorological data was implemented. First, historical meteorological data were used 
to calculate the reference crop evapotranspiration according to the FAO-PM formula men-
tioned in Section 2.2, and the result is then is used as the output of the machine learning 
model. Historical meteorological data were used as input to train reference crop evapo-
transpiration forecast model based on historical meteorological data. Finally, weather 
forecast data were used as input to test the forecast accuracy of the model. 

The forecast results using MLP and BO-MLP on the historical meteorological data 
test set are shown in Figure 1. 

 
Figure 1. MLP and BO-MLP forecast results on the historical weather data test set. 

Because of the complete historical meteorological data, the prediction accuracy of 
MLP using the historical meteorological data test set is very high. Before tuning, RMSE, 𝑅 , and MAE were 0.12 mm/d, 0.9986, and 0.08, respectively. After tuning, the accuracy of 
the model was further improved, with RMSE as low as 0.07 mm/d, 𝑅  as high as 0.9996, 
and MAE of 0.04. 

The forecast results using the BO-MLP model with the weather forecast dataset are 
shown in Figure 2. 

Figure 1. MLP and BO-MLP forecast results on the historical weather data test set.

Because of the complete historical meteorological data, the prediction accuracy of MLP
using the historical meteorological data test set is very high. Before tuning, RMSE, R2, and
MAE were 0.12 mm/d, 0.9986, and 0.08, respectively. After tuning, the accuracy of the
model was further improved, with RMSE as low as 0.07 mm/d, R2 as high as 0.9996, and
MAE of 0.04.

The forecast results using the BO-MLP model with the weather forecast dataset are
shown in Figure 2.
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3.2. Forecast Reference Crop Evapotranspiration Based on Weather Forecast Data

In this section, the indirect method of forecasting reference crop evapotranspiration
based on weather forecast data is considered. Weather forecast data were taken as input
and historical meteorological data ET0 calculated by the PM formula were used as output
to train the reference crop evapotranspiration model. Finally, the weather forecast test set
was used to verify the model accuracy.

After path analysis and comparison of the above experiments, the BO-LGB model was
used to construct the ET0 forecast model based on weather forecasts using Combination 4 of
meteorological factors as input. The forecast results using the test set are shown in Figure 3.
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The RMSE values of the forecast results were calculated according to different forecast
periods, as shown in Figure 4.
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The BO-LGB4 model based on weather forecast data was used to forecast ET0. The R2

value using the test set was 0.996, the MAE was 0.47, and the RMSE was 0.74 mm/day.

3.3. Forecast Reference Crop Evapotranspiration Based on Corrected Forecast Data

This section assesses weather forecast data as input and corresponding meteorological
data in the historical meteorological data as output, using machine learning to complete
the correction of weather forecast.

After the comparison of the above experiments, the weather Combination 2 selected
via path analysis was finally used as the input, and the forecast factor correction model
was constructed using BO-LGB and BO-XGB models. The forecast results using the test set
were shown in Figure 5.
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Figure 5. Predictor correction results (a) BO-XGB model corrects Tmax results; (b) The BO-LGB
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(e) BO-LGB corrects U2 results; (f) BO-LGB corrects Rn results.

For the test set, the RMSE for the correction of the maximum temperature was 1.49 ◦C,
the RMSE for the correction of the minimum temperature was 1.03 ◦C, the RMSE for the
correction of the maximum relative humidity was 6.63%, the RMSE for the correction of the
minimum relative humidity was 5.38%, and the RMSE for the correction of the wind speed
was 0.39 m/s. The RMSE of the corrected net radiation was 1.22 MJ/(m2·day). Using the
corrected data and bringing it into the PM formula, the obtained prediction result of ET0 is
shown in Figure 6. R2 was 0.93, MAE was 0.44 mm/day, and RMSE was 0.76 mm/day.
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Using the corrected data, the BO-MLP model of Section 2.4.2 was brought in, and the
result of forecasting ET0 is shown in Figure 7. R2 was 0.93, MAE was 0.51 mm/day, and
RMSE was 0.81 mm/day.
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4. Discussion

First, the results of the three data sources were analyzed around parameters such
as RMSE.

4.1. ET0 Forecast Model Based on Historical Meteorological Data

In the evaluation of model performance, historical weather data and corrected weather
forecast data were used to compare the RMSE data size of the system. With the weather
forecast dataset, the forecast accuracy of BO-MLP was greatly reduced, the forecast effect
was not good, and the RMSE was 2.34 mm/d, which cannot meet practical application
requirements. The reason for this analysis may be that the forecast accuracy is low and there
is a prediction accuracy error, which makes the difference between the weather forecast
data and the historical meteorological data large. Therefore, the weather forecast data
cannot be used directly. So, it is necessary to correct the weather forecast data to obtain
better accuracy and serve as the test data for the forecast model.

4.2. ET0 Forecast Model Based on Weather Forecast

The BO-LGB4 model based on weather forecast data was used to forecast ET0. The
R2 value on the test set was 0.996, the MAE was 0.47, and the RMSE was 0.74 mm/day.
The forecast accuracy was high, which met the application requirements. At the same
time, the model was less affected by the forecast period. Except for the prediction period 7,
the forecast accuracy significantly decreased, and the RMSE in other forecast periods was
maintained between 0.520 and 0.748 mm/day.

4.3. ET0 Forecast Model Based on Corrected Weather Forecast

The BO-MLP model based on the corrected weather forecast data performed well
for ET0 prediction. R2 was 0.93, MAE was 0.51 mm/day, and RMSE was 0.81 mm/day.
All of these reached the required accuracy range, but compared with the BO-LGB4 model
based on weather forecast data, the level of optimization is not obvious. Since the weather
forecast data must be corrected first before input, which increases the time consumption
and computing power required, the authors believe that the use of corrected weather
forecast data does not show enough advantage and practical value after consuming more
computing power.

The authors think that the model based on weather forecast data has more applica-
tion value.

Because changes in the weather are the result of the interaction of various factors, it
is reasonable that the RMSE should increase with the increase of time. Moreover, due to
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the cumulative error in evapotranspiration forecasting, RMSE increases with time, but the
error within seven days is still within the acceptable range, so the model can be defined as
successfully established.

5. Conclusions

The purpose of this study is to propose a machine learning-based ET0 prediction
model to serve precision irrigation scenarios and promote the application of DI. This paper
attempts to compare the performance of historical meteorological data, weather forecasts,
and corrected weather forecast data after processing by deep learning models such as MLP
and random forest, and finally selects models and data sources that meet the accuracy
expectations, exploring the possibility of applying machine learning methods in the field of
precision agriculture. It provides a scientific basis for promoting agricultural water saving.
Ultimately, the study created a forecast model based on weather forecast data that can
predict irrigation demand over the next seven days with ideal accuracy.

5.1. ET0 Forecast Model Based on Historical Meteorological Data

Firstly, the path analysis between historical meteorological data and ET0 was carried
out, and the conclusion drawn that the maximum temperature, radiation, and relative
humidity have a great influence on ET0, so the forecast accuracy of these meteorological
parameters is related to the result accuracy of method 1. After model selection and Bayesian
optimization, the ET0 forecast model based on historical meteorological data was obtained
using MLP. The RMSE of the model on the historical meteorological data test set was
0.07 mm/day, and the RMSE on the weather forecast data set was 2.34 mm/day. The
RMSE on the corrected weather forecast data test set was 0.81 mm/day. Due to the error
of forecast accuracy in weather forecast and historical meteorological data, this method
cannot be used between them, and better accuracy could be obtained only after the weather
forecast was corrected.

The following are detailed descriptions of the three model processing steps:

5.2. ET0 Forecast Model Based on Weather Forecast

Firstly, path analysis was conducted on the weather forecast data and ET0, and several
meteorological factors with significant impact on ET0 were identified. These factors were
combined into six different input combinations of meteorological factors. After model
selection, it was determined that the model with J’, Tmax, Tmin, and RHmin as inputs had the
highest accuracy. This indicates that path analysis can effectively identify input factors with
a significant impact, thereby improving model accuracy and reducing overfitting. Through
the comparison of random forest, LightGBM, and XGBoost models, it was found that the
BO-LGB model had the highest accuracy, and the RMSE on the weather forecast test set
was 0.74 mm/day.

5.3. ET0 Forecast Model Based on Corrected Weather Forecast

Firstly, path analysis was conducted between weather forecast data and corresponding
historical meteorological data. This identified several meteorological factors that signifi-
cantly impact the historical data, which were then divided into three input combinations.
Combination 1 represents full factor correction, combination 2 involves multi-factor correc-
tion following path analysis selection, and combination 3 focuses on single-factor correction.
Results reveal that combinations 1 and 2 exhibited higher accuracy compared with combi-
nation 3, with combination 2 showing lower overfitting than combination 1. Consequently,
combination 2 was selected for weather forecasting factor correction. After comparing and
optimizing the random forest, LightGBM, and XGBoost models, the corrected maximum
temperature demonstrated an RMSE of 1.49 ◦C, the corrected minimum temperature had
an RMSE of 1.03 ◦C, and the corrected maximum relative humidity exhibited an RMSE
of 6.63%. The RMSE for minimum relative humidity correction was 5.38%, the RMSE
for wind speed correction was 0.39 m/s, and the RMSE for net radiation correction was
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1.22 MJ/(m2·day). Incorporating the corrected weather forecast data into the PM formula,
the RMSE for the ET0 forecast was 0.76 mm/day.

All three machine learning-based reference crop evapotranspiration prediction models
achieved good accuracy, with the model based on weather forecast and the model based
on corrected weather forecast demonstrating slightly higher accuracy, but with minimal
difference. Considering the time cost, the direct use of weather forecast data is more suitable
for practical applications. Analyzing the variation in model accuracy with the forecast
period for the weather forecast-based ET0 forecast model reveals a general decrease in
accuracy with longer forecast periods. However, the RMSE in the first six days showed
little difference, ranging from 0.52 to 0.75 mm/day, while the prediction accuracy for the
seventh day was slightly worse at 1.12 mm/day.

The limitation of this study is that the time span of the weather forecast data set was
limited, the amount of data was small, and the accuracy of the model needs to be improved.
Secondly, the time that can be predicted is relatively limited, and good accuracy can only
be achieved for up to seven days. Finally, the prediction model has not been verified by
experiments in actual scenarios.

Further attempts can be made to increase the time span, which should lead to stronger
forecast accuracy, and then attempts to forecast a longer time horizon in the future to verify
the accuracy. It is hoped that this experiment can be verified on a global scale to confirm
the feasibility of the theory. It is also possible to try more deep learning models to optimize
the speed of computation and improve the accuracy of computation.
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