Optimizing Cabbage Cultivation in Paddy-Converted Fields Using Discarded Coir Substrates and Controlled Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Application of Coir Substrates
2.3. Irrigation Application
2.4. Mearsurement of Growth, Yield, and Water Use Efficiency
2.5. Mearsurement of Photosynthetic Characteristics and Pigments
2.6. Evaluation of Proline Content
2.7. Evaluation of Malondialdehyde Content
2.8. Glucosinolate Analysis
2.9. Statistical Analysis
3. Results
3.1. Temperature, Rainfall, and Reference Evapotranspiration (ETo)
3.2. Growth Parameters, Yield, and Water Use Efficiency
3.3. Photosynthetic Characteristics and Pigment Contents
3.4. The Proline and MDA Contents
3.5. Glucosinolate Contents
4. Discussion
4.1. Effects of Cultivation Methods and Irrigation Levels on Growth Parameters, Yield, and Water Use Efficiency
4.2. Effects of Cultivation Method and Irrigation Levels on Photosynthetic Characteristics and Pigment Contents
4.3. Effects of Cultivation Methods and Irrigation Levels on Proline and MDA Contents
4.4. Effects of Cultivation Methods and Irrigation Levels on Glucosinolate Contents
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, O.; Park, H.; Baek, M.; Kim, W.; Lee, G.; Lee, C.; Bombay, M.; Ancheta, M.B.; Lee, J. Review of rice in Korea: Current status, future prospects, and comparisons with rice in other countries. J. Crop Sci. Biotechnol. 2021, 24, 1–11. [Google Scholar] [CrossRef]
- Focus on South Korea. Available online: https://www.world-grain.com/articles/18301-focus-on-south-korea (accessed on 28 March 2023).
- Wang, X.; Park, J.; Lee, Y.J.; Lee, G.Y.; Park, J. Enhancement of the Growth and Quality of Soybeans Using Wasted Coir Substrates on Multi-purpose Utilization Land. J. Bio-Environ. Control 2023, 32, 466–474. [Google Scholar] [CrossRef]
- Kim, K. An analysis of the economic effects of the pilot project for multiple-purpose utilization of paddy fields focusing on income and welfare changes. J. Korean Soc. Rural Plan. 2022, 28, 71–85. [Google Scholar]
- Zhou, W.; Lv, T.; Chen, Y.; Westby, A.P.; Ren, W. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review. Sci. World J. 2014, 2014, 856352. [Google Scholar] [CrossRef]
- Ren, X.; Wang, S.; Yang, P.; Tao, Y.; Chen, H. Performance evaluation of different combined drainage forms on flooding and waterlogging removal. Water 2021, 13, 2968. [Google Scholar] [CrossRef]
- Herzon, I.; Helenius, J. Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv. 2008, 141, 1171–1183. [Google Scholar] [CrossRef]
- Ayars, J.E.; Evans, R.G. Subsurface drainage—What’s next? Irrig. Drain. 2015, 64, 378–392. [Google Scholar] [CrossRef]
- Elzoghby, M.M.; Jia, Z.; Luo, W. Experimental study on the hydraulic performance of nonwoven geotextile as subsurface drain filter in a silty loam area. Ain. Shams Eng. J. 2021, 12, 3461–3469. [Google Scholar] [CrossRef]
- Tan, P.; Wang, S.; Fu, T.; Liu, J.; Han, L. Development history, present situation, and the prospect of subsurface drainage technology in China. Chin. J. Eco-Agric. 2021, 29, 633–639. [Google Scholar]
- Kim, K.; Jeong, W.; Bhattarai, R.; Jeong, H. Designing a Subsurface Drainage System: A Trade-Off Between Environmental Sustainability and Agricultural Productivity. J. Korean Soc. Agric. Eng. 2022, 64, 53–61. [Google Scholar]
- Yannopoulos, S.I.; Grismer, M.E.; Bali, K.M.; Angelakis, A.N. Evolution of the materials and methods used for subsurface drainage of agricultural lands from antiquity to the present. Water 2020, 12, 1767. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, A.; Bhardwaj, A.K.; Kumar, A.; Yadav, R.K.; Sharma, P.C. Reclamation of salt-affected soils in India: Progress, emerging challenges, and future strategies. Land Degrad. Dev. 2022, 33, 2169–2180. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, J.; Kim, T.; Cha, S.; Kim, H.; Park, Y.; Park, C. Evaluation of Quality Performance of Low-cost, High-Efficient Culvert for Generalization of Reclaimed Lands in Prepared for Meteorological Disasters. J. Agric. Life Sci. 2021, 55, 103–114. [Google Scholar] [CrossRef]
- Ghane, E. Choice of pipe material influences drain spacing and system cost in subsurface drainage design. Appl. Eng. Agric. 2022, 38, 685–695. [Google Scholar] [CrossRef]
- Growing Crops in Paddy Fields with Low-Cost Water Management Technology. Available online: https://www.rda.go.kr/board/board.do?mode=view&prgId=day_farmprmninfoEntry&dataNo=100000754387 (accessed on 22 April 2019).
- Schultz, B.; Zimmer, D.; Vlotman, W.F. Drainage under increasing and changing requirements. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2007, 56, S3–S22. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Kim, M.; Lee, S.; Kim, Y.; Kim, H.; Shekailo, J. Towards smart farming solutions in the US and South Korea: A comparison of the current status. Geogr. Sustain. 2021, 2, 312–327. [Google Scholar]
- Na, H.; Park, J.; Kim, D.; Roh, M.; Shin, Y.; Kim, E.; Ju, S.; Bok, G.; Eoh, G.; Ryu, D.; et al. Upcycling Pathway Reassessment of Hydroponic Byproducts for the Establishment of a Smart Farm Ecosystem. Hortic. Sci. Technol. 2023, 2, 312–327. [Google Scholar]
- The Efficiency of Facility Horticulture Byproduct Disposal Needs to be Improved. Available online: http://www.wonyesanup.co.kr/news/articleView.html?idxno=54406 (accessed on 22 February 2023).
- Mariotti, B.; Martini, S.; Raddi, S.; Tani, A.; Jacobs, D.F.; Oliet, J.A.; Maltoni, A. Coconut coir as a sustainable nursery growing media for seedling production of the ecologically diverse Quercus species. Forests 2020, 11, 522. [Google Scholar] [CrossRef]
- Boyaci, S.; Abaci Bayar, A.A.; Başak, H. Evaluation of harvest waste in soilless agriculture tomato cultivation. Infrastrukt. I Ekol. Teren. Wiej. 2022, 17, 29–42. [Google Scholar]
- Atzori, G.; Pane, C.; Zaccardelli, M.; Cacini, S.; Massa, D. The role of peat-free organic substrates in the sustainable management of soilless cultivations. Agronomy 2021, 11, 1236. [Google Scholar] [CrossRef]
- Sakai, S.-I.; Yoshida, H.; Hirai, Y.; Asari, M.; Takigami, H.; Takahashi, S.; Tomoda, K.; Peeler, M.V.; Wejchert, J.; Schmid-Unterseh, T. International comparative study of 3R and waste management policy developments. J. Mater. Cycles Waste Manag. 2011, 13, 86–102. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, p. 111. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). World Reference Base for Soil Resources 2014; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Elliott, E.T.; Heil, J.W.; Kelly, E.F.; Monger, H.C. Soil structural and other physical properties. Stand. Soil Methods Long-Term Ecol. Res. 1999, 30, 74–85. [Google Scholar]
- Burt, R. Soil Survey Laboratory Methods Manual; USDA: Washington, DC, USA, 1992.
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Ábrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. Plant Stress Toler. Methods Protoc. 2010, 639, 317–331. [Google Scholar]
- Jambunathan, N. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Plant Stress Toler. Methods Protoc. 2010, 639, 291–298. [Google Scholar]
- Yang, K. Development of Molecular Markers for Low Progoitrin Cabbage Breeding; University of Science and Technology: Daejeon, Republic of Korea, 2015. [Google Scholar]
- ISO 9167-1:1992; Rapeseed—Determination of Glucosinolates Content—Part 1. Method Using High-Performance Liquid Chromatography. International Organization for Standardization (ISO): Geneva, Sweitzerland, 1992.
- Sharma, P.K.; Kumar, S.D. In Soil Physical Environment and Plant Growth: Evaluation and Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 107–123. [Google Scholar]
- Dix, B.A.; Hauschild, M.E.; Niether, W.; Wolf, B.; Gattinger, A. Regulating soil microclimate and greenhouse gas emissions with rye mulch in cabbage cultivation. Agric. Ecosyst. Environ. 2024, 367, 108951. [Google Scholar] [CrossRef]
- Krishnapillai, M.V.; Young-Uhk, S.; Friday, J.B.; Haase, D.L. Locally produced cocopeat growing media for container plant production. Tree Plant. Notes 2020, 63, 29–38. [Google Scholar]
- Buga, N.; Petek, M. Use of Biostimulants to Alleviate Anoxic Stress in Waterlogged Cabbage (Brassica oleracea var. capitata)—A Review. Agriculture 2023, 13, 2223. [Google Scholar] [CrossRef]
- Parra, M.; Abrisqueta, I.; Hortelano, D.; Alarcon, J.; Intrigliolo, D.S.; Rubio-Asensio, J.S. Open field soilless system using cocopeat substrate bags improves tree performance in a young Mediterranean persimmon orchard. Sci. Hortic. 2022, 291, 110614. [Google Scholar] [CrossRef]
- Kayak, N. The Effect on Morpho-Physiological and Biochemical Characteristics of Cauliflower and Cabbage Harvested at Different Times Under Flooding Stress Conditions. J. Crop Health 2024, 76, 145–159. [Google Scholar] [CrossRef]
- Fei-Baffoe, B.; Amo-Asare, J.; Sulemana, A.; Miezah, K. Levels of lead, copper, and zinc in cabbage (Brassica oleracea sp.) and lettuce (Lactuca sativa sp.) grown on soil amended with sewage sludge. J. Environ. Public Health 2021, 2021, 8386218. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J. The effects of cultivation on aeration, drainage, and other soil factors important in plant growth. J. Sci. Food Agric. 1962, 13, 386–391. [Google Scholar] [CrossRef]
- Kaur, G.; Zurweller, B.A.; Nelson, K.A.; Motavalli, P.P.; Dudenhoeffer, C.J. Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron. J. 2017, 109, 97–106. [Google Scholar] [CrossRef]
- Choi, W.; Chang, S.X.; Bhatti, J.S. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Ecology 2007, 88, 443–453. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Turner, N.C.; Li, F.-M. Irrigation during flowering improves subsoil water uptake and grain yield in rainfed soybean. Agronomy 2020, 10, 120. [Google Scholar] [CrossRef]
- Park, C.; Son, S.; Kim, H.; Ham, Y.; Kim, J.; Cha, D.; Chang, E.; Lee, G.; Kug, J.; Lee, W. Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Mon. Weather Rev. 2021, 149, 3085–3100. [Google Scholar] [CrossRef]
- Xin, X.; Su, T.; Li, P.; Wang, W.; Zhao, X.; Yu, Y.; Zhang, D.; Yu, S.; Zhang, F. A histone H4 gene prevents drought-induced bolting in Chinese cabbage by attenuating the expression of flowering genes. J. Exp. Bot. 2021, 72, 623–635. [Google Scholar] [CrossRef]
- Shinde, M.; Pawar, D.; Kale, K.; Dingre, S. Performance of cabbage at different irrigation levels under drip and microsprinkler irrigation systems. Irrig. Drain. 2021, 70, 581–592. [Google Scholar] [CrossRef]
- Bute, A.; Iosob, G.-A.; Antal-Tremurici, A.; Brezeanu, C.; Brezeanu, P.M.; Cristea, T.O.; Ambăruş, S. The most suitable irrigation methods in cabbage crops (Brassica oleracea L. var. capitata): A review. Sci. Papers. Ser. B Hortic. 2021, 65, 399–405. [Google Scholar]
- Chen, X.; Wang, L.; Cao, Q.; Sun, J.; Niu, Z.; Yang, L.; Jiang, W. Response of global agricultural productivity anomalies to drought stress in irrigated and rainfed agriculture. Sci. China Earth Sci. 2024, 67, 3579–3593. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Abd Rahman, M.K.I.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.A. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions. Agric. Water Manag. 2022, 267, 107614. [Google Scholar] [CrossRef]
- Qu, Z.-M.; Qi, X.-C.; Wang, J.; Chen, Q.; Li, C.-L. Effects of nitrogen application rate and topdressing times on yield and quality of Chinese cabbage and soil nitrogen dynamics. Environ. Pollut. Bioavailab. 2019, 31, 1–8. [Google Scholar] [CrossRef]
- Turner, N.C.; Kramer, P.J. Adaptation of Plants to Water and High Temperature Stress; John Wiley & Sons, Inc.: Chichester, UK, 1981. [Google Scholar]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Ze-Qiang, S.; Yao-Hu, K.; Jiang, S.-F. Effect of sprinkler and border irrigation on topsoil structure in winter wheat field. Pedosphere 2010, 20, 419–426. [Google Scholar]
- Biswas, T.; Bandyopadhyay, P.; Nandi, R.; Mukherjee, S.; Kundu, A.; Reddy, P.; Mandal, B.; Kumar, P. Impact of mulching and nutrients on soil water balance and actual evapotranspiration of irrigated winter cabbage (Brassica oleracea var. capitata L.). Agric. Water Manag. 2022, 263, 107456. [Google Scholar] [CrossRef]
- Basiri Jahromi, N.; Fulcher, A.; Walker, F.; Altland, J. Optimizing substrate available water and coir amendment rate in pine bark substrates. Water 2020, 12, 362. [Google Scholar] [CrossRef]
- Jana, P.; Boxi, S.S. Studies on pH, Conductivity, and Moisture Retention Capacity of Coir Pith for Its Application as the Plant Growing Medium. J. Nat. Fibers 2022, 19, 2861–2867. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Ahsan, M.; Shaheen, M.R.; Haider, M.W.; Radicetti, E.; Elansary, H.O.; Nafees, M. Leaf Mold and Cocopeat based Improvements in Morpho-Biochemical and Photosynthetic Attributes of Snapdragon (Antirrhinum majus L.). Pak. J. Agric. Sci. 2024, 61, 499–507. [Google Scholar]
- Zhang, Z.; Yang, R.; Sun, J.; Li, Y.; Geng, Y.; Pan, Y.; Zhang, Z. Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance. Agric. Water Manag. 2024, 291, 108639. [Google Scholar] [CrossRef]
- Sarkar, M.D.; Rahman, M.J.; Uddain, J.; Quamruzzaman, M.; Azad, M.O.K.; Rahman, M.H.; Islam, M.J.; Rahman, M.S.; Choi, K.-Y.; Naznin, M.T. Estimation of yield, photosynthetic rate, biochemical, and nutritional content of red leaf lettuce (Lactuca sativa L.) grown in organic substrates. Plants 2021, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
- Björn, L.O.; Papageorgiou, G.C.; Blankenship, R.E.; Govindjee. A viewpoint: Why chlorophyll a? Photosynth. Res. 2009, 99, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Erol, Ü.H. Pepper fruits at different ripening periods have potential phyto-biochemical and enzymatic responses to irrigation levels. J. Food Qual. 2024, 2024, 9082436. [Google Scholar] [CrossRef]
- Tuo, X.; Li, S.; Wu, Q.; Zou, Y. Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism. Sci. Hortic. 2015, 197, 130–134. [Google Scholar] [CrossRef]
- Traverso, N.; Menini, S.; Maineri, E.P.; Patriarca, S.; Odetti, P.; Cottalasso, D.; Marinari, U.M.; Pronzato, M.A. Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, B890–B895. [Google Scholar] [CrossRef]
- Rostami, F.; Salehi, R.; Torkashvand, A.M.; Moradi, P.; Jari, S.S. Study the effects of different culture media on germination, morphological, physiological and photosynthetic characteristics of tomato (Solanum lycopersicum L.). Seybold Rep. 2024, 19, 9–20. [Google Scholar]
- Machado, R.M.; Alves-Pereira, I.; Alves, I.; Ferreira, R.M.; Gruda, N.S. Reusing Coir-Based Substrates for Lettuce Growth: Nutrient Content and Phytonutrients Accumulation. Horticulturae 2023, 9, 1080. [Google Scholar] [CrossRef]
- Machado, R.M.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir, an alternative to peat—Effects on plant growth, phytochemical accumulation, and antioxidant power of spinach. Horticulturae 2021, 7, 127. [Google Scholar] [CrossRef]
- Yue, X.-H.; Miao, L.-F.; Yang, F.; Nawaz, M. Morphological and physiological responses of Dalbergia odorifera T. Chen seedlings to different culture substances. PLoS ONE 2020, 15, e0232051. [Google Scholar] [CrossRef]
- Rosen, C.J.; Fritz, V.; Gardner, G.M.; Hecht, S.S.; Carmella, S.; Kenney, P. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. HortScience 2005, 40, 1493–1498. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef] [PubMed]
- Rungapamestry, V.; Duncan, A.J.; Fuller, Z.; Ratcliffe, B. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J. Agric. Food Chem. 2006, 54, 7628–7634. [Google Scholar] [CrossRef] [PubMed]
- Radovich, T.J.; Kleinhenz, M.D.; Streeter, J.G. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J. Am. Soc. Hortic. Sci. 2005, 130, 943–949. [Google Scholar] [CrossRef]
- Augustine, R.; Bisht, N.C. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis Thaliana to Brassica Crops; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
PD (g/cm3) | BD (g/cm3) | WHC (%) | FC (%) | TP (%) | |
---|---|---|---|---|---|
PS (0~20 cm) | 2.13 | 1.21 | 44 | 39 | 43.1 |
CS | 1.37 | 0.08 | 70 | 57 | 78.6 |
pH (1:5) | EC (dS·m−1) | Total N (%) | OM (g·kg−1) | AP (mg·kg−1) | Exch. Cations (cmol+·kg−1) | |||
---|---|---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | ||||||
PS | 5.4 | 0.4 | 0.30 | 17 | 127 | 0.52 | 3.4 | 0.6 |
CS | 5.5 | 4 | 1.89 | 831.9 | 6070.56 | 1.52 | 78.95 | 19.43 |
Irrigation Level | ETc140 | ETc100 | ETc60 | ETc0 |
ET (mm) | 208.21 | 148.72 | 89.23 | 0 |
Treatments | HD (cm·Plant−1) | HFW (g·Plant−1) | HDW (g·Plant−1) | Yield (t·ha−1) | WUE (kg·m−3) |
---|---|---|---|---|---|
CM | |||||
PS | 13.19 b | 970.24 b | 64.81 b | 54.33 b | 49.13 b |
CS | 15.91 a | 1581.14 a | 99.37 a | 87.95 a | 77.74 a |
IL | |||||
ETc140 | 14.43 a | 1238.65 a | 83.46 a | 69.37 a | 38.07 b |
ETc100 | 14.63 a | 1301.97 a | 82.16 a | 72.91 a | 56.02 b |
ETc60 | 14.99 a | 1341.98 a | 85.94 a | 75.15 a | 96.23 a |
ETc0 | 14.13 a | 1190.17 a | 77.29 a | 66.65 a | - |
CM × IL | |||||
PS-ETc140 | 13.32 bc | 1014.31 cd | 71.30 b | 56.80 cd | 31.17 e |
CS-ETc140 | 15.54 ab | 1462.99 b | 95.62 a | 81.93 b | 44.96 c |
PS-ETc100 | 12.80 c | 895.35 d | 59.56 b | 50.14 d | 38.52 d |
CS-ETc100 | 16.46 a | 1708.58 a | 104.76 a | 95.68 a | 73.51 b |
PS-ETc60 | 14.16 abc | 1083.74 c | 71.46 b | 60.69 c | 77.71 b |
CS-ETc60 | 15.82 ab | 1600.22 ab | 100.42 a | 89.61 ab | 114.74 a |
PS-ETc0 | 12.46 c | 887.56 d | 56.90 b | 49.70 d | - |
CS-ETc0 | 15.80 ab | 1492.77 b | 97.68 a | 83.60 b | - |
CM | *** | *** | *** | *** | *** |
IL | NS | NS | NS | NS | *** |
CM × IL | NS | *** | *** | *** | *** |
Treatments | Proline (mg·g−1 DW) | Malondialdehyde (μmol·g−1 DW) | ||
---|---|---|---|---|
Cupping | Harvesting | Cupping | Harvesting | |
CM | ||||
PS | 1.21 a | 1.54 a | 270.47 a | 479.39 a |
CS | 0.94 a | 0.82 b | 240.23 b | 460.34 a |
IL | ||||
ETc140 | 1.13 b | 1.27 a | 258.48 a | 505.49 a |
ETc100 | 0.97 b | 0.91 a | 259.10 a | 447.42 b |
ETc60 | 0.68 c | 0.89 a | 243.93 a | 428.58 b |
ETc0 | 1.54 a | 1.65 a | 259.89 a | 497.98 a |
CM × IL | ||||
PS-ETc140 | 1.20 b | 1.47 b | 284.00 a | 532.91 a |
CS-ETc140 | 1.05 bc | 1.06 bc | 232.97 c | 478.08 bc |
PS-ETc100 | 1.13 bc | 1.11 bc | 278.21 a | 478.35 bc |
CS-ETc100 | 0.81 d | 0.71 c | 239.99 bc | 416.49 d |
PS-ETc60 | 0.89 cd | 1.11 bc | 248.51 abc | 411.18 d |
CS-ETc60 | 0.46 e | 0.66 c | 239.36 bc | 445.97 cd |
PS-ETc0 | 1.62 a | 2.45 a | 271.17 ab | 495.13 b |
CS-ETc0 | 1.45 a | 0.84 bc | 248.61 abc | 500.82 ab |
CM | *** | *** | *** | ** |
IL | *** | *** | NS | *** |
CM × IL | * | ** | NS | *** |
Treatments | Glucosinolate Concentration (μmol·g−1 DW) | |||||
---|---|---|---|---|---|---|
PRO | SIN | 4HGBS | 4MGBS | NGBS | Total GLs | |
CM | ||||||
PS | 0.28 a | 4.02 a | 0.04 a | 1.29 a | 0.01 a | 5.63 a |
CS | 0.27 a | 3.62 a | 0.03 a | 1.84 a | 0.01 a | 5.77 a |
IL | ||||||
ETc140 | 0.36 a | 4.57 a | 0.04 a | 2.27 a | n.d. | 7.23 a |
ETc100 | 0.34 a | 4.59 a | 0.05 a | 1.65 a | 0.02 a | 6.64 a |
ETc60 | 0.28 a | 4.17 a | 0.03 b | 1.75 a | n.d. | 6.22 a |
ETc0 | 0.13 b | 1.94 b | 0.02 c | 0.61 b | 0.02 a | 2.70 b |
CM × IL | ||||||
PS-ETc140 | 0.37 a | 4.55 ab | 0.05 a | 1.30 de | n.d. | 6.26 bc |
CS-ETc140 | 0.35 a | 4.59 ab | 0.03 bcd | 3.23 a | n.d. | 8.20 a |
PS-ETc100 | 0.27 ab | 4.09 bc | 0.04 abc | 1.47 cd | 0.03 | 5.92 c |
CS-ETc100 | 0.40 a | 5.08 a | 0.05 ab | 1.83 bc | n.d. | 7.36 ab |
PS-ETc60 | 0.30 ab | 4.52 ab | 0.03 cd | 1.49 cd | n.d. | 6.34 bc |
CS-ETc60 | 0.26 ab | 3.82 c | 0.03 cd | 2.00 b | n.d. | 6.10 c |
PS-ETc0 | 0.17 bc | 2.90 d | 0.02 de | 0.91 e | n.d. | 4.00 d |
CS-ETc0 | 0.08 c | 0.97 e | 0.01 e | 0.31 f | 0.03 | 1.40 e |
CM | NS | ** | ** | *** | NS | NS |
IL | *** | *** | *** | *** | NS | *** |
CM × IL | * | *** | * | *** | NS | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lee, Y.; Kang, T.; Park, J. Optimizing Cabbage Cultivation in Paddy-Converted Fields Using Discarded Coir Substrates and Controlled Irrigation. Agronomy 2025, 15, 8. https://doi.org/10.3390/agronomy15010008
Wang X, Lee Y, Kang T, Park J. Optimizing Cabbage Cultivation in Paddy-Converted Fields Using Discarded Coir Substrates and Controlled Irrigation. Agronomy. 2025; 15(1):8. https://doi.org/10.3390/agronomy15010008
Chicago/Turabian StyleWang, Xin, Yongjae Lee, To Kang, and Jongseok Park. 2025. "Optimizing Cabbage Cultivation in Paddy-Converted Fields Using Discarded Coir Substrates and Controlled Irrigation" Agronomy 15, no. 1: 8. https://doi.org/10.3390/agronomy15010008
APA StyleWang, X., Lee, Y., Kang, T., & Park, J. (2025). Optimizing Cabbage Cultivation in Paddy-Converted Fields Using Discarded Coir Substrates and Controlled Irrigation. Agronomy, 15(1), 8. https://doi.org/10.3390/agronomy15010008