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* Correspondence: janetta.niemann@up.poznan.pl

Abstract

The precise identification, classification, sorting, and rapid and accurate quality assessment
of soybean seeds are extremely important in terms of the continuity of agricultural pro-
duction, varietal purity, seed processing, protein extraction, and food safety. Currently,
commonly used methods for the identification and quality assessment of soybean seeds
include morphological analysis, chemical analysis, protein electrophoresis, liquid chro-
matography, spectral analysis, and image analysis. The use of image analysis and artificial
intelligence is the aim of the presented research, in which a method for the automatic classi-
fication of soybean varieties, the assessment of the degree of damage, and the identification
of geometric features of soybean seeds based on numerical models obtained using a 3D
scanner has been proposed. Unlike traditional two-dimensional images, which only repre-
sent height and width, 3D imaging adds a third dimension, allowing for a more realistic
representation of the shape of the seeds. The research was conducted on soybean seeds
with a moisture content of 13%, and the seeds were stored in a room with a temperature
of 20–23 ◦C and air humidity of 60%. Individual soybean seeds were scanned to create
3D models, allowing for the measurement of their geometric parameters, assessment of
texture, evaluation of damage, and identification of characteristic varietal features. The
developed 3D-CNN network model comprised an architecture consisting of an input layer,
three hidden layers, and one output layer with a single neuron. The aim of the conducted
research is to design a new, three-dimensional 3D-CNN architecture, the main task of which
is the classification of soybean seeds. For the purposes of network analysis and testing,
22 input criteria were defined, with a hierarchy of their importance. The training, testing,
and validation database of the SB3D-NET network consisted of 3D models obtained as a re-
sult of scanning individual soybean seeds, 100 for each variety. The accuracy of the training
process of the proposed SB3D-NET model for the qualitative classification of 3D models of
soybean seeds, based on the adopted criteria, was 95.54%, and the accuracy of its validation
was 90.74%. The relative loss value during the training process of the SB3D-NET model
was 18.53%, and during its validation process, it was 37.76%. The proposed SB3D-NET
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neural network model for all twenty-two criteria achieves values of global error (GE) of
prediction and classification of seeds at the level of 0.0992.

Keywords: soybean; seed quality; digital phenotyping; 3D-CNN; machine learning

1. Introduction
Soybean (Glycine max (Linn.) Merr.) is native to Southeast Asia and is one of the

principal leguminous crops cultivated worldwide. The countries with the largest soybean
cultivation areas include Brazil (ca. 39 million ha), the United States (ca. 35 million ha),
Argentina (ca. 16 million ha), India (ca. 12 million ha), and China (ca. 8 million ha) [1].
Soybean is a short-day plant, requiring high air temperatures during the growing season
and soils above class IV in regards to soil classification, and is considered part of the
whole-grain complex, while also being rich in calcium. Soybean seeds contain from 33%
to even 45% protein [2] and are rich in compounds such as sucrose, stachyose, raffinose,
phospholipids, and isoflavones [3]. The fat content in soybean seeds depends primarily
on the genetic characteristics of the variety and the weather conditions during its growth
period [4]. Soybean can be consumed by humans in various forms, i.e., as whole seeds or in
soybean products such as milk, sauce, or soybean oil. It is also a valuable source of animal
feed. Soybean, as a cultivated plant, also exhibits significant potential for enriching the soil
through symbiotic N2 fixation [5].

Precise identification, classification, sorting, and rapid and accurate quality assess-
ment of soybean seeds are of great importance for the continuity of agricultural production,
varietal purity, seed processing, protein extraction, and food safety. A reduction in nu-
tritional value poses a threat to both humans and animals. Therefore, there is a need to
remove low-quality soybean seeds, with the main criteria for their classification being size,
shape, texture, color, surface quality, any mechanical or insect damage, fungal infections,
and mold.

Currently, traditional organoleptic methods of quality assessment prevail, which
mainly involve visual inspection of soybean seeds to identify visible signs of damage or
discoloration. The sorting of soybean seeds, on the other hand, is carried out by sieving,
primarily based on their size and shape, since damaged seeds often exhibit reduced length
or diameter. The disadvantages of these methods are their labor-intensiveness, high cost,
and the significant subjectivity of assessment, resulting in inconsistency and the incorrect
identification of damaged soybean seeds. An important aspect of soybean seed classifi-
cation is also ensuring varietal purity, particularly in breeding work. Commonly used
methods for the identification of different soybean seed varieties to date include morpholog-
ical analysis [6,7], chemical analysis (molecular markers, random amplified polymorphic
DNA-RAPD) and simple sequence repeat (SSR) [8,9], protein electrophoresis [10], liquid
chromatography [11], and spectral analysis [12,13].

Modern and rapidly developing methods include deep neural networks (DNN) and
convolutional neural networks (CNNs). A CNN is a specific type of deep learning model
that enables the recognition of spatial and textural patterns within a given sample image.
CNN uses convolution and pooling layers to extract significant information from complex
images and learns to predict a specific target variable. These capabilities can be utilized for
automatic feature extraction, whereas tasks related to manual feature engineering can be
avoided during model training. CNNs are excellent tools for solving multi-level complex
tasks, e.g., image analysis and object recognition [14–16], face and person recognition [17,18],
human speech recognition [19], text translation [20], sign language conversion [21], and
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the generation and detection of sound waves [22]. DNN models play an important role
in understanding the genetic backgrounds of diseases such as autism [23] and muscular
dystrophy [24]. They are also used for the detection of skin cancer [25], breast cancer [26],
and brain cancer [27]. Deep neural networks are also used for monitoring road traffic and
drivers [28], robot motion control [29], visual navigation [30], and the supervision and
control of aircraft [31].

Many researchers are investigating the potential use of CNNs and machine vision
for monitoring field crops [32], evaluating climate change in the context of agricultural
production [33], assessing fruit maturity [34], the geometric classification of carrots [35],
and the identification and classification of weeds [36–38], diseases [39–41], or pests of
cultivated plants [42–44]. This technology has now become one of the main methods used
for assessing seeds and grain in terms of quality loss, quantifying the degree of mechanical
damage, maturity stage, infection by diseases, or contamination with other plant species.
Klt et al. [45] proposed a method for the selection and classification of pepper seeds and
Kong et al. [46] for the automatic assessment of rice seed thickness, while Li et al. [47]
proposed a method based on deep neural networks for estimating the number of seeds in a
soybean pod. Rybacki et al. [48], on the other hand, applied machine learning algorithms,
computer image analysis, and CNNs for the qualitative classification and assessment of
maturity level and damage in rapeseed seeds.

Most CNN models developed so far are based on standard RGB images, presenting
the analyzed objects on a two-dimensional (2D) plane. The two-dimensional nature of
images results in certain limitations related to their low accuracy and the need to build
a two-dimensional neural network architecture (2D-CNN) [49–58].

A much more accurate approach is the analysis of seeds using 3D scanning, which
enables the construction of three-dimensional models. The 3D scanning technology itself
has been known for years, but it has only recently gained significant importance due to
the increased computing power of processors and the accuracy of point cloud generation
by scanners, which has led to an improvement in the quality of developed models char-
acterized by higher resolution and accuracy [59]. It is now used in various branches of
the economy and in many disciplines and fields of science. Such 3D models are created
for the needs of games and films, mechanical engineering, archaeology, the automotive
industry, medicine, and of course, agriculture [60]. The 3D scanning method is the process
of creating a digital model of a physical object, consisting of collecting data on its shape
and size in three dimensions. The result of this process is the so-called point cloud, which
is a set of points in space described by Cartesian coordinates (x, y, z).

During the acquisition of 3D models, disturbances (noise) are generated, resulting from
the scanner quality and environmental conditions, which negatively affect the merging
and analysis of the point cloud. Such noise should be eliminated during analysis, and this
can be achieved using various methods. Liu et al. [61] used statistical filtering to remove
noise and reconstruct a 3D model of peanut plants. Wang et al. [62] obtained a point cloud
and 3D model of a potato by applying filtering and k-means clustering using a stereo
scanner. Bao et al. [63] used, among other methods, the RANSAC method and statistical
filtering techniques to eliminate disturbances and obtain models of sorghum plants. Similar
methods were used by references [64–66] in their research on creating 3D models.

An essential step in processing and extracting features from point clouds after scan-
ning objects is the precise segmentation of the data (coordinates), especially when dealing
with large volumes. Segmentation is the process of classifying the point cloud based
on local features, grouping them into regions according to similar attributes, and di-
viding the point cloud into blocks for further processing [67]. The quality and effec-
tiveness of the segmentation process is largely determined by the number of points
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and their structure. Several methods of point cloud segmentation are used, e.g., region
growing [68,69], edge extraction [70,71], model building [72,73], clustering [74,75], and
deep learning algorithms [76–78].

The hypothesis posed in the presented study assumes that the application of three-
dimensional scanning, the construction of 3D models, and the proposed three-dimensional
convolutional neural network (3D-CNN) will enable precise qualitative assessment of
soybean seeds and their classification in terms of damage.

The main research objective presented in this paper is to develop algorithms and
the 3D-CNN architecture for recognizing defects of varying scales in soybean seeds using
digital 3D models. In addition, the developed model will enable the automatic classification
of the tested soybean seed varieties, as well as the assessment of seed maturity and damage
based on their color or geometric shape.

2. Materials and Methods
2.1. Data Set Preparation

The study utilized seeds from five soybean varieties, namely, Aligator, Fiskeby, Mavka,
Merlin, and Petrina, obtained from the collection of the Department of Genetics and Plant
Breeding, Poznań University of Life Sciences (Figure 1). The varieties were selected based
on the most important traits for soybean cultivation under Polish conditions. The selected
varieties differed in morphological characteristics, duration of the vegetation period, and
protein content in the seeds. The seed samples were cleaned using sieves to remove all
foreign matter, such as pods, parts of stems and leaves, weed seeds, soil residues, dust, and
stones, from the samples. The soybean seeds displayed a moisture content of 13%, and the
scanned samples were stored in paper bags at a temperature of 20.0–23.0 ◦C.

(a)  (b)  (c)  (d)  (e) 

Figure 1. Scanned seeds of soybean varieties: (a) Aligator, (b) Fiskeby, (c) Mavka, (d) Merlin, and
(e) Petrina.

The seeds of the scanned varieties were characterized by a spherical shape (Mavka,
Petrina), ovoid shape (Fiskeby, Merlin), or laterally flattened ovoid shape (Aligator). The
hilum, depending on the variety, was either of uniform width (Aligator, Mavka, Petrina) or
wedge-shaped (Fiskeby, Merlin), approximately 1/6 of the seed circumference in length,
dark or light, uniform or with a differently colored stripe along the center. The color of the
scanned seeds is a varietal characteristic and ranged from light cream, cream, to dark cream,
with a uniform or mottled coloration. The dimensions of the seeds are determined by the
variety and weather conditions during growth. The seeds in the analyzed samples were
characterized by varying lengths, i.e., 6.2–13.8 mm, widths of 5.0–10.0 mm, and thicknesses
of 3.0–8.1 mm. The average thousand seed weight (TSW) ranged from 155.4 to 182.3 g. The
protein content in the analyzed varieties ranged between 25.9–41.0% (Table 1).
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Table 1. The main characteristics of soybean varieties used in the experiment.

No. Variety

Seed
Maturity

Plant
Height

Height
of the

First Pod

Color of
Seed Coat

Type of
Seed Coat
Coloration

Marker
Color/
Shape

Total
Protein TSW

Days cm cm - - - % s. m. g

1 Aligator 130–140 60.0–81.7 10.7–12.3 dark cream uniform brown/
oblong 33.8 180.0

2 Fiskeby 121–137 33.5–37.7 9.3–10.6 dark cream spotted brown/
irregular 41.0 171.0

3 Mavka 120–132 80.0–110.0 15.2–21.2 light cream spotted

light
yellow/
narrow
regular

32.9 182.3

4 Merlin 130–137 80.0–95.0 9.0–11.4 dark cream spotted brown/
irregular 32.2 165.0

5 Petrina 265–280 110.5–126.0 14.3–18.0 cream spotted brown/
oblong 25.9 155.4

Each scanned soybean seed was assigned a code (Figure 2), which included the variety
designation and a serial number, after which the seeds were measured and visually assessed
(Table 2). The scanned seeds were also weighed using an electronic balance with an accuracy
of 0.0001 g. Measurements of the geometric parameters were obtained using an electronic
caliper with an accuracy of 0.01 mm.

 
(a)  (b)  (c)  (d)  (e) 

Figure 2. Individual seeds of the analyzed soybean varieties: (a) Aligator, (b) Fiskeby, (c) Mavka,
(d) Merlin, and (e) Petrina.

Table 2. Codes, actual geometric parameters, and organoleptic evaluation of soybean seeds.

Code Variety
Length Width Thickness Length of

Marker
Width of
Marker

Seed
Mass

Discoloration
of Seeds

mm mm mm mm mm g -

AR001

Aligator

7.25 5.38 3.59 2.03 1.52 0.1570 none
AR002 7.07 5.58 2.74 2.55 1.02 0.1898 none

. . . . . . . . . . . . . . . . . . . . . . . .
AR099 5.99 3.87 3.03 1.18 1.79 0.2366 none
AR100 8.01 5.60 3.45 1.61 1.51 0.1504 none

FY001

Fiskeby

6.94 5.39 3.92 3.91 1.27 0.2197 none
FY002 8.32 4.03 4.04 1.59 2.21 0.2236 none

. . . . . . . . . . . . . . . . . . . . . . . .
FY099 7.97 5.82 4.02 1.55 1.66 0.1576 none
FY100 8.43 6.05 3.47 4.27 2.38 0.1860 none
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Table 2. Cont.

Code Variety
Length Width Thickness Length of

Marker
Width of
Marker

Seed
Mass

Discoloration
of Seeds

mm mm mm mm mm g -

MA001

Mavka

7.09 4.21 3.69 1.97 1.15 0.1734 light brown
MA002 5.74 3.71 3.10 1.36 2.07 0.2220 light brown

. . . . . . . . . . . . . . . . . . . . . . . .
MA099 7.23 3.82 4.10 1.18 1.79 0.2320 light brown
MA100 5.35 5.41 2.65 1.61 1.51 0.1664 light brown

MN001

Merlin

6.32 3.91 3.45 3.91 1.27 0.1570 dark brown
MN002 6.15 4.48 2.79 1.59 2.21 0.1898 dark brown

. . . . . . . . . . . . . . . . . . . . . . . .
MN099 7.30 4.40 2.73 1.55 1.66 0.2366 dark brown
MN100 7.39 4.77 3.24 4.27 2.38 0.1504 dark brown

PA001

Petrina

8.07 4.98 3.35 1.97 1.15 0.2197 dark brown
PA002 6.11 4.05 3.41 1.36 2.07 0.2236 none

. . . . . . . . . . . . . . . . . . . . . . . .
PA099 6.88 4.52 3.05 1.18 1.79 0.1576 dark brown
PA100 5.74 4.88 2.70 1.61 1.51 0.1860 light brown

2.2. 3D Model Preprocessing

The spatial imaging method applied in the study enabled the creation of three-
dimensional models of soybean seeds. Unlike traditional two-dimensional images, which
only represent height and width, 3D imaging adds a third dimension, allowing for a more
realistic representation of the shape of the seeds. The study used the Revopoint Range
3D scanner (Figure 3), equipped with projectors and dual infrared cameras with aspheric
lenses, enabling a capture range of 360 × 650 mm, a working distance of 100–800 mm,
a scanning speed of 18 frames per second, and a single frame repeatability accuracy of
0.1 mm. The scanning density was 278 points per mm2.

Figure 3. Seed scanning station (Revopoint Range 3D scanner).

The 3D models obtained in the study, 100 for each variety, were analyzed using al-
gorithms developed to determine the geometric parameters of the seeds (length, width,
thickness), the degree of damage to the seed coat, as well as its texture, color, and dis-
coloration. The 3D scanning of the seeds also enabled the identification and assessment
of the shape and color of the hilum of soybean seeds, which is one of the basic criteria
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for differentiating varieties. Figure 4 presents 3D models of soybean seeds with defined
point clouds and a finite element mesh (FEM), forming a database for further analysis,
classification, and qualitative assessment.

   
(a)  (b)  (c)  (d)  (e) 

Figure 4. The 3D soybean seed model with an extracted point cloud and FEM (finite element method)
mesh per variety: (a) Aligator, (b) Fiskeby, (c) Mavka, (d) Merlin, and (e) Petrina.

The algorithms for varietal and qualitative classification of soybean seeds were de-
veloped using two programming tools, namely MATLAB and the high-level program-
ming language Python 3.9, along with libraries (programming environments) for scien-
tific computations: Scikit-shape, Numpy, SciPy, Keras, Scipy, and TensorFlow 2.0. The
codes for these algorithms have been made available on an open-access platform at
https://github.com/piotrrybacki/soybean-SB3D-NET (accessed on 29 July 2025) in the
Supplementary Materials.

2.3. Defining Soybean Seed Classification Criteria

The definition of criteria for the quality assessment and classification of soybean seeds
using 3D models and three-dimensional convolutional neural networks (3D-CNN) was
based on assumptions derived from the quality parameters of seeds within the framework
of the European Union requirements covered by the common market organization. Table 3
lists twenty-two fundamental criteria for the prediction of variety and qualitative assess-
ment of soybean seeds. The developed soybean seed models are classified using eight of
these criteria.

Table 3. Criteria for varietal and quality classification of soybean seeds.

No. Symbol Description Unit

1 A * seed surface area determined using 3D scanner mm2

2 Ag seed surface area calculated based on Equation (1) mm2

3 A seed surface area calculated using Equation (2) mm2

4 Dg * equivalent diameter calculated based on measurements from the 3D model
replacement diameter calculated based on measurements of the 3D model mm

5 Dg equivalent diameter mm
6 L seed length mm
7 L * seed length determined based on the 3D model mm
8 Lm half the sum of the width and length of the seed mm
9 m seed mass g

10 m * mass of 3D model seeds g
11 N sample size No.
12 Ra * shape coefficient calculated based on measurements of the 3D model %
13 Ra shape coefficient %
14 T thickness of seed mm

https://github.com/piotrrybacki/soybean-SB3D-NET
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Table 3. Cont.

No. Symbol Description Unit

15 T * seed thickness determined based on the 3D model mm

16 U seed length-dependent coefficient
factor dependent on the length of soybean seeds -

17 W seed width mm
18 W * seed width determined based on a 3D model mm
19 V * seed volume determined using a 3D scanner mm3

20 Vg seed volume calculated using the formula mm3

21 φ seed sphericity coefficient %
22 φ * seed sphericity coefficient calculated based on 3D model measurements %

* 3D model parameters.

The developed algorithms, based on the three-dimensional models of soybean seeds,
enabled the measurement of geometric parameters, which will serve as the basis for variety
classification. Knowing the seed dimensions from the analysis of the 3D models, the
physical quantities were calculated using the following equations:

Ag = π·D2
g [mm2], (1)

A =
π

2
·L·Lm·

(
Lm

L
+

1
U
·arcsin(U)

)
[mm2] (2)

Lm =
W + T

2
[mm], (3)

U =
(L2 − L2

m)
1
2

L
(4)

Vg =
π

6
·L·W·T [mm3]. (5)

The equivalent diameter Dg, sphericity coefficient φ, and shape coefficient Ra were
calculated using Equations (6)–(8):

Dg = (L·W·T)
1
3 [mm], (6)

φ =
(L·W·T)

1
3

L
[−], (7)

Ra =
W
L

[−], (8)

The 3D models of soybean seeds are characterized by a large number of features and
classification criteria, which in turn generate an enormous volume of data. These include
the geometric parameters of the seeds, primarily resulting from their varietal characteristics,
as well as criteria defining the method of classifying the damage or disease infection of
the seeds. In order to filter the classification criteria and identify the most significant
types, a method based on the maximum relevance and minimum redundancy (MRMR)
algorithms [79] was applied. This is a filtering method aimed at optimizing redundancy
among the simultaneously selected features of soybean seed classification and selecting
the most significant features. Each feature is treated by the algorithm as a discrete random
variable. The idea of MRMR is that two features use the mutual information between them,
I(X,Y), to measure the level of similarity between X and Y, according to Equation (9):

I (X, Y) = ∑y∈Y ∑x∈X p(x, y)log
(

p(x, y)
p1(x)p2(y)

)
, (9)
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In Equation (9), p(x,y) is the joint probability distribution function of X and Y, while
p1(x) and p2(y) represent the marginal probability distribution functions of the random
variables X and Y. If Fi is a discrete random variable, e.g., the mass of a soybean seed, then
the mutual information between feature i and j, e.g., the diameter of a soybean seed, is
expressed as I(Fi, Fj). The parameter d, in turn, reflects the number of features in the dataset,
i.e., i, j = 1, 2, . . ., d.

If I(H, Fi) is the measure of similarity between any feature i and the class vector
h ([h = h1, h2,. . ., hN]), and at the same time, S is the set of features to be selected, then |S|
indicates the number of elements in this set, through the minimum redundancy determined
according to Equation (10):

W =
1

|S|2 ∑Fi,Fj ∈S I
(

Fi, Fj
)
, (10)

Meanwhile, the maximum relevance of feature selection is determined by Equation (11):

V =
1
|S| ∑Fi∈S I(Fi, H), (11)

Combinations linking conditions (10) and (11) can be expressed as max(V − W) and
max(V/W). Additionally, according to Equations (10) and (11), the best feature set can be
determined as a result of a search O(N|S|), whereby the MRMR algorithm first selects
the initial feature according to the above equations. At each subsequent stage, feature i
is selected, satisfying conditions (12) and (13). The selected feature is stored in set S. All
features, except the selected features, can be described as ΩS = Ω − S.

max
F1 ∈ ΩS

I(H, Fi), (12)

min
F1 ∈ ΩS

1
|S| ∑Fj∈ΩS

I
(

Fi, Fj
)
, (13)

Combining Equations (12) and (13) according to the mathematical relationships
max(V − W) and max(V/W), two selection criteria (14) and (15) are also obtained for
the MRMR algorithm.

MID = max
FI∈QS

[
I(Fi, H)− 1

|S| ∑FjϵS
I
(

Fi, Fj
)]

, (14)

MIQ = max
FI∈QS

[
I(Fi, H)

1
|S| ∑FjϵS

I
(

Fi, Fj
)], (15)

The MID and MIQ indices allow for the determination of selection criteria for the ap-
propriate geometric features of soybean seeds. The complexity of these indices is described
as O(|S|·N) [79].

The maximum relevance and minimum redundancy (MRMR) algorithm is a filtering
method that seeks to minimize redundancy among the simultaneously selected features
while attempting to select the features most associated with class significance (Figure 5).
The algorithm treats each feature as a discrete random variable. Two features use the
mutual information between them, I(X, Y), to measure the level of similarity between
X and Y.
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Figure 5. Stability of MID vs. MIQ.

2.4. Architecture of the Multilayer 3D-CNN Network

The widely available literature proposes ready-made 3D-CNN architectures. However,
each of these is most effective under specific conditions, with a precisely defined dataset
and strictly defined object classification criteria. The aim of the conducted research is
to design a new, three-dimensional 3D-CNN architecture, the main task of which is the
classification of soybean seeds. The main advantage of the proposed 3D-CNN solution is
the absence of the need for the pre-processing of data in the form of 3D models to obtain
features used at the classification stage.

The 3D-CNN architecture proposed in this study for the automatic classification
of soybean seeds, designated as SB3D-NET, has a 3D convolution filter and a pooling
layer consisting of three elements, namely Tn × Hn × Wn, where Tn, Hn, and Wn are the
thickness, height, and width, respectively, analogous to the case of 2D-CNN networks. The
additional dimension d defines the depth of the network, indicating the number of frames
or images. The result of the 3D convolution is three-dimensional cuboids (Figure 6).

Figure 6. Architecture of the SB3D-NET multilayer neural network.

The dataset, in the form of 3D models of soybean seeds, was randomly divided into
a training set, a validation set (being a subset of the training set), and a test set. In the
network training process, the 3D models from the validation set are used to control the
course of the training process, the purpose of which is to monitor the SB3D-NET network
in terms of the degree of training of its neurons. The training process itself consists of two
stages, namely the selection of weights for the training set and their testing on models
from the validation set. The weights determine the significance of the dataset and criteria.
The selection of weights and their correct testing allows for the avoidance of the so-called
generalization error.



Agronomy 2025, 15, 2074 11 of 24

The correction of weight values, both at the training and validation stages, continues
until the approximation error in the training set is minimized, or until the error value in the
validation set does not increase. The error is most often assumed to be the sum of squares
(SS) of deviations between the assumed value and the output from the network. After the
selection of the significance indicator weights has been completed, the SB3D-NET network
model enters playback mode, and the input data are then 3D models of soybean seeds from
the test set, which did not participate in the network training process.

The assessment of the SB3D-NET network model in terms of its ability to classify
soybean varieties and the qualitative quantification of seeds was carried out based on the
value of the global error (GE) of the model, determined for the test set from Equation (16):

GE =

√
∑n

i=1(zi − yi)
2

∑n
i=1 zi

2 , (16)

where n—number of cases, z—set value (benchmark), and y—network response.
In addition, error values were analyzed at each stage, i.e., training, validation and test-

ing, serving as the criterion for assessing the overall model accuracy. The most commonly
used criteria are

- Standard deviation:

RMS =

√
∑n

i=1(zi − yi)
2

n − 1
, (17)

- Mean error:

ME =
1
n ∑n

i=1(zi − yi), (18)

- Absolute mean error:

MAE =
1
n ∑n

i=1 | (zi − yi) |, (19)

- Normalized standard deviation:

nRMS =
RMS

ymax − ymin
, (20)

- Error variance:

MSE =
1

n − 1 ∑n
i=1(zi − yi)

2, (21)

For a more precise assessment of the SB3D-NET network model proposed in this study,
an additional quality indicator for the quantification of soybean seeds was used in the form
of the standard deviation ratio (SDR), determined as the ratio of the standard deviation of
quantification errors to the standard deviation of the output variable, and the Pearson linear
correlation coefficient (R). This indicator can be calculated in total or for specific types of 3D
model sets of soybean seeds at the result stage, as well as for the set values. The soybean
seed classification model was also assessed in terms of its performance. For this purpose,
measures quantifying the operating speed and classification accuracy of the 3D models
were applied. The operating speed indicator was the classification rate, expressing the
number of assigned 3D models of soybean seeds per second, and the average classification
time of a single soybean seed model. The accuracy of the proposed SB3D-NET model was
estimated using the following indicators: classification accuracy (PPV) and true positive
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rate (TPR), as well as the result correction coefficient (f) and its accuracy (ACC). These
indicators were determined using Equations (22)–(25).

PPVX =
TPX

TPX + FPX
, (22)

TPRX =
TPX

TPX + FNX
, (23)

f scoreX =
1

∝
PPVX

+ ∝
TPRX

, (24)

where ∝ = 0.5 gives equal weight to TPR and PPV:

ACC =
∑n

i=1
TPi
Ii

n
, (25)

where n = no. of classes; Ii = no. of images in class i.

3. Results
The final outcome of the conducted research and analyses is the proposal of a three-

dimensional convolutional neural network architecture, designated as SB3D-NET, along
with a set of codes developed in MATLAB R2024a and Python 3.9 (https://github.com/
piotrrybacki/soybean-SB3D-NET; accessed on 29 July 2025 in the Supplementary Materi-
als). These codes enable the automatic classification and qualitative assessment of soybean
seeds based on the adopted criteria derived from the geometric parameters of their 3D mod-
els. The basis of the 3D model analysis is their conversion from a solid model (Figure 7a),
through the point cloud forming it (Figure 7b), to a model in the form of a triangular FEM
mesh (Figure 7c).

 
(a)  (b)  (c) 

Figure 7. Conversion of 3D soybean seed models using AR001 as an example: (a) solid model;
(b) point cloud model; (c) FEM mesh model (https://github.com/piotrrybacki/soybean-SB3D-NET;
accessed on 29 July 2025 in the Supplementary Materials).

The detection of the contours of the 3D soybean seed models, the surface areas of
discolorations on the seed coat, and the size of the hilum enable their varietal and qualita-
tive classification. The model contours constitute the basis for calculating the geometric
parameters of the seeds, i.e., their size, thickness, and width. The areas of discoloration
marked on the models can also be treated as varietal features, if such a criterion for a given
variety is adopted, but they may also be indicative of damage to the seed coat or infection
by disease.

https://github.com/piotrrybacki/soybean-SB3D-NET
https://github.com/piotrrybacki/soybean-SB3D-NET
https://github.com/piotrrybacki/soybean-SB3D-NET
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As shown in Figure 8 for randomly selected 3D models of soybean seeds, using
differing colors, the proposed algorithms and codes indicate the areas of the seed coat and
the hilum of the seed, while simultaneously estimating its dimensions.

(a)  (b)  (c)  (d) 

Figure 8. Detection of geometric parameters of 3D soybean seed models and the size of its
markers: (a) PA003—Petrina, (b) MA063—Mavka, (c) MN012—Merlin, and (d) AR077—Aligator
(https://github.com/piotrrybacki/soybean-SB3D-NET; accessed on 29 July 2025 in the Supplemen-
tary Materials).

Table 4 presents a summary of the results of the statistical calculations of the geometric
features of the analyzed 3D models of soybean seeds, which form the database for the
proposed algorithm.

The dataset used to build the soybean seed classification model contained 500 3D
models and 22 criteria. The models were divided into a training set containing 300 (60%) ran-
domly selected models and test and validation sets, each containing 100 (20%) of the remain-
ing models. The SB3D-NET neural network model with the structure of 12:12:3 × 12:12:1
achieved the approximation criterion in the 53rd cycle, which means that the weight
adaptation was performed by the learning algorithm 53 times (Figure 9).

Figure 9. Diagram of the training, testing, and validation process of the SB3D-NET model for soybean
seed model classification.

https://github.com/piotrrybacki/soybean-SB3D-NET
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Table 4. Summary of statistical calculations of geometric features for 3D soybean seed models (https://github.com/piotrrybacki/soybean-SB3D-NET; accessed on
29 July 2025 in the Supplementary Materials).

Variable
L L * W W * T T * Dg Dg * Ra Ra * φ φ * A Ag A * Vg V * m

mm mm mm mm mm mm mm mm - - - - mm2 mm2 mm2 mm3 mm3 g

Aligator
Min. 5.26 5.14 3.60 3.71 2.59 2.67 3.66 3.71 0.68 0.66 0.70 0.69 42.4 42.1 43.1 25.7 26.6 0.1493
Max. 8.04 8.27 5.79 5.96 4.17 4.30 5.79 5.96 0.72 0.73 0.72 0.72 106.1 105.3 111.6 101.7 110.9 0.2685

Average 6.47 6.60 4.62 4.76 3.33 3.43 4.64 4.76 0.71 0.70 0.71 0.70 68.4 67.5 71.1 52.1 56.4 0.2207
Standard deviation 0.91 1.04 0.73 0.75 0.53 0.54 0.74 0.73 0.72 0.71 0.72 0.71 0.71 0.72 0.71 0.72 0.71 0.0325

Variation
coefficient 14.09 15.78 15.66 15.82 15.78 14.44 15.66 15.71 15.33 15.26 15.13 15.21 15.23 15.11 15.22 15.11 15.22 14.720

Fiskeby
Min. 5.77 5.65 3.96 4.07 2.85 2.94 4.02 4.07 0.67 0.68 0.71 0.69 50.1 50.8 52.1 34.1 35.4 0.2186
Max. 8.55 8.78 6.15 6.33 4.43 4.56 6.15 6.33 0.71 0.73 0.73 0.73 111.4 118.8 125.8 121.9 132.8 0.2950

Average 6.98 7.11 4.98 5.13 3.59 3.70 5.00 5.13 0.70 0.71 0.71 0.71 77.2 78.4 82.5 65.3 70.5 0.2602
Standard deviation 0.91 1.05 0.73 0.75 0.52 0.55 0.71 0.72 0.70 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.0216

Variation
coefficient 13.06 14.45 14.71 14.44 14.66 14.87 14.72 14.52 9.21 9.21 15.32 15.21 10.26 10.11 8.21 9.11 8.89 8.2980

Mavka
Min. 5.27 5.15 3.61 3.71 2.60 2.68 3.67 3.71 0.69 0.68 0.69 0.70 43.1 42.3 43.3 25.8 26.8 0.1900
Max. 8.05 8.28 5.80 5.97 4.18 4.30 5.80 5.97 0.75 0.76 0.72 0.74 110.5 105.6 111.9 102.0 111.3 0.2663

Average 6.48 6.61 4.63 4.77 3.34 3.44 4.64 4.77 0.73 0.73 0.71 0.72 69.3 67.7 71.3 52.4 56.6 0.2284
Standard deviation 0.91 1.06 0.74 0.75 0.54 0.53 0.75 0.76 0.72 0.71 0.72 0.71 0.71 0.72 0.71 0.72 0.71 0.0244

Variation
coefficient 14.06 15.76 14.56 15.99 15.76 15.54 14.57 14.55 15.33 15.26 15.11 14.99 15.21 15.44 15.24 10.14 10.21 10.679

Merlin
Min. 5.01 5.10 3.57 3.68 2.57 2.65 3.58 3.68 0.65 0.66 0.68 0.70 41.2 40.3 42.5 24.1 26.0 0.1454
Max. 8.01 7.77 5.44 5.60 3.92 3.93 5.55 5.60 0.70 0.73 0.72 0.73 96.1 96.7 98,5 89.4 92.0 0.2184

Average 6.55 6.50 4.55 4.69 3.28 3.38 4.61 4.69 0.69 0.70 0.70 0.71 67.2 66.7 69.0 51.3 54.0 0.1850
Standard deviation 0.99 0.85 0.60 0.62 0.43 0.44 0.61 0.63 0.70 0.7 0.72 0.71 0.71 0.72 0.71 0.72 0.71 0.0224

Variation
coefficient 12.18 13.12 13.13 13.22 13.17 13.24 13.15 13.34 13.11 14.21 12.12 13.21 12.09 12.05 12.25 12.15 12.15 12.095

Petrina
Min. 5.04 5.11 3.58 3.38 2.58 2.66 3.59 3.67 0.68 0.67 0.68 0.67 42.1 40.5 42.6 24.2 26.2 0.1219
Max. 8.20 7.78 5.45 5.61 3.93 4.04 5.56 5.61 0.74 0.73 0.72 0.70 97.2 96.9 98.8 89.8 92.4 0.2326

Average 6.56 6.51 4.56 4.70 3.29 3.39 4.62 4.70 0.71 0.71 0.71 0.69 67.2 66.9 69.3 51.5 54.2 0.1810
Standard deviation 0.99 0.86 0.60 0.61 0.43 0.44 0.60 0.61 0.69 0.71 0.72 0.70 0.71 0.72 0.71 0.72 0.71 0.0322

Variation
coefficient 15.16 15.11 17.11 17.63 13.21 13.12 16.12 13.15 16.21 16.11 16.03 16.01 16.24 16.14 15.89 16.24 15.29 17.772

* 3D model parameters.

https://github.com/piotrrybacki/soybean-SB3D-NET
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The constructed SB3D-NET network architecture and the codes developed for it enable
the automatic and importantly, random, sorting of 3D models of soybean seeds, creating
training, validation, and test databases. Table 5 presents a summary of the changes in map
sizes depending on the layer number of the developed SB3D-NET model. As can be seen
from the data, each hidden layer of the 3D-CNN network model causes a reduction in map
sizes, resulting in 90,561,020 parameters at the output.

Table 5. Changes in map size depending on the layer number of the developed SB3D-NET model.

Layer (Type) Output Shape Param.

conv3d (Conv3D) (None, 1, 1, 198, 198, 32) 8900
max_pooling3d (MaxPooling3D) (None, 1, 1, 179, 179, 32) 0

dropout (Dropout) (None, 1, 1, 179, 179, 32) 0
conv3d_1 (Conv3D) (None, 1, 1, 117, 117, 32) 184,060

max_pooling3d_1 (MaxPooling3D) (None, 1, 1, 98, 98, 32) 0
dropout_1 (Dropout) (None, 1, 1, 98, 98, 32) 0
conv3d_2 (Conv3D) (None, 1, 1, 66, 66, 64) 1,030,560

max_pooling3d_2 (MaxPooling3D) (None, 1, 1, 43, 43, 64) 0
dropout_2 (Dropout) (None, 1, 1, 43, 43, 64) 0
conv3d_3 (Conv3D) (None, 1, 1, 41, 41, 64) 6,075,040

max_pooling2d_3 (MaxPooling3D) (None, 1, 1, 30, 30, 64) 0
dropout_3 (Dropout) (None, 1, 1, 30, 30, 64) 0
conv3d_4 (Conv3D) (None, 1, 1, 24, 24, 128) 10,102,620

max_pooling2d_4 (MaxPooling3D) (None, 1, 1, 17, 17, 128) 0
dropout_4 (Dropout) (None, 1, 1, 17, 17, 128) 0
conv3d_5 (Conv3D) (None, 1, 1, 21, 21, 128) 60,068,620

max_pooling2d_5 (MaxPooling3D) (None, 1, 1, 10, 10, 128) 0
dropout_5 (Dropout) (None, 1, 1, 10, 10, 128) 0
conv2d_6 (Conv3D) (None, 1, 1, 19, 19, 128) 80,840,010

max_pooling3d_6 (MaxPooling3D) (None, 1, 1, 7, 7, 128) 0
dropout_6 (Dropout) (None, 1, 1, 7, 7, 128) 0

flatten (Flatten) (None, 1, 1, 12,800) 0
dense (Dense) (None, 1, 1, 512) 90,561,020

Total params: 90,561,020; trainable params: 90,561,020; non-trainable params: 0.

In the next stage, the algorithms performed the training, validation, and testing of the
SB3D-NET model, the results of which are presented in Figure 10.

(a)  (b) 

Figure 10. Visualization of training and validation accuracy and loss curves for the SB3D-NET model
in the classification of 3D soybean seed models: (a) training and validation accuracy; (b) training and
validation loss.

The accuracy of the training process of the proposed SB3D-NET model for the qualita-
tive classification of 3D models of soybean seeds, based on the adopted criteria, was 95.54%,
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and the accuracy of its validation was 90.74% (Figure 10a). Figure 10b shows that the
relative loss value during the training process of the SB3D-NET model was at the level of
18.53%, and during its validation process, it was 37.76%. The developed algorithm searched
for 3D models of soybean seeds with the highest probability of belonging to and complying
with the adopted classification criteria and assigned the appropriate informational label.
The label is a set of information calculated based on the geometric shape of the soybean
seed model and the number of pixels defining the size of its hilum and the surface area
of the seed coat discoloration. Figure 11 presents eight sample analyzed 3D models of
soybean seeds, along with the assigned informational label and varietal classification. The
expression “True” was added to the label with the correct variety classification and the
expression “False” indicating incorrect label assignment.

Figure 11. Sample output data of the analyzed 3D soybean seed models, along with their
predicted labels.

Table 6 presents a summary of the data generated by the proposed SB3D-NET model
and the constructed 3D-CNN architecture. The numerical values were compared with
empirical measurements of the geometric parameters of the soybean seeds, noting that the
accuracy of the readings for the physical dimensions of the 3D models of the soybean seeds,
based on the number of pixels and considering only their length, width, and thickness, was
85.37%, 88.20%, 88.11%, respectively. The detection of the hilum of the soybean seed, which
co-determines varietal classification, was performed with an accuracy 82.47% for its length
and 87.93% for its width.

The fitting of the SB3D-NET model was performed based on the determined value of
the global error (GE). This indicator shows that the proposed network reflects an error on
the order of 0.0992 in the classification of 3D models of soybean seeds (Table 7). The value of
this error indicates the correct selection of the network architecture, mainly the number of
hidden layers with 12 neurons each, which ensures the model’s generalization capabilities.

Table 6. Data from labels generated by the SB3D-NET network based on the analysis of 3D soybean
seed models.

Code
Length Length

Precision Width Width
Precision Thickness Thickness

Precision

Length
of

Marker

Precision
of

Marker
Length

Width of
Marker

Precision
of

Marker
Width

mm % mm % mm % mm % mm %

AR001 7.53 96.28 5.23 97.21 3.73 96.25 2.80 72.50 1.60 95.02
AR002 7.78 90.87 5.41 96.95 2.94 93.20 3.09 82.52 1.32 77.27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AR099 5.61 93.66 5.38 71.93 3.82 79.32 1.50 78.67 2.03 88.18
AR100 7.70 96.13 4.59 81.96 2.72 78.84 2.01 80.50 1.72 87.79
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Table 6. Cont.

Code
Length Length

Precision Width Width
Precision Thickness Thickness

Precision

Length
of

Marker

Precision
of

Marker
Length

Width of
Marker

Precision
of

Marker
Width

mm % mm % mm % mm % mm %

FY001 7.53 92.16 4.7 87.20 4.06 96.55 4.58 85.37 1.72 73.84
FY002 6.04 72.60 4.17 96.64 3.45 85.40 2.82 56.38 2.66 83.08

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FY099 6.54 82.06 4.29 73.71 4.47 89.93 2.34 66.24 1.81 91.71
FY100 7.29 86.48 5.95 98.35 2.99 86.17 4.38 97.49 2.45 97.14

MA001 7.93 89.41 4.70 89.57 2.98 80.76 2.31 85.28 1.32 87.12
MA002 7.95 72.20 4.57 81.18 3.47 89.34 1.42 95.77 2.10 98.57

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MA099 5.71 78.98 5.44 70.22 3.40 82.93 1.23 95.93 1.86 96.24
MA100 7.97 67.13 5.50 98.36 3.72 71.24 1.79 89.94 1.66 90.96

MN001 7.88 80.20 5.04 77.58 3.56 96.91 4.21 92.87 1.54 82.47
MN002 6.47 95.05 5.12 87.50 2.88 96.88 1.99 79.90 2.66 83.08

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MN099 7.41 98.52 4.21 95.68 2.82 96.81 1.80 86.11 1.68 98.81
MN100 5.44 73.61 4.98 95.78 3.34 97.01 4.30 99.30 3.38 70.41

PA001 6.37 78.93 5.52 90.22 3.69 90.79 2.62 75.19 1.48 77.70
PA002 7.93 77.05 4.13 98.06 3.01 88.27 1.85 73.51 2.30 90.00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PA099 7.54 91.25 4.68 96.58 3.35 91.04 1.55 76.13 1.97 90.86
PA100 6.05 94.88 3.87 79.30 3.62 74.59 2.02 79.70 1.60 94.38

Average 85.37 --- 88.20 --- 88.11 --- 82.47 --- 87.73

Table 7. Numerical metrics of the SB3D-NET model performance for qualitative classification of
soybean seeds.

Metrics Training Set Test Set Validation Set

SS 0.1332 1.4355 1.3778
MAE 0.0022 0.0185 0.0399
MSE 0.0017 0.0181 0.0365
RMS 0.0677 0.1421 0.1466
R2 0.9410 0.9599 0.9997

SDR 0.0053 0.0277 0.0497
GE 0.0992

From the classification point of view, the processing time is of great importance. Three
variants were analyzed using a GPU (Graphics Processing Unit). These were classification
based on the geometric parameters of the soybean seed models, the color or discolorations of
the seed coat, and a variant combining the two. As shown in Table 8, the fastest classification
occurred for the models of soybean seeds based on the reading of geometric parameters
(7.32 ms/model). The classification and analysis of the seed coat color of soybeans took
longer, at 5.54 ms/model. The longest, at 8.78 ms/model, was the classification of models
when combining the groups of criteria, i.e., using geometric parameters and color. However,
the combination of classification criteria significantly increased the process accuracy, which
reached 95.54% for the proposed SB3D-NET model and architecture.
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Table 8. Performance of the SB3D-NET model for qualitative and varietal classification of 3D soybean
seed models.

Classification Type
ACC PPV TPR fscore

Average
Classification
Time GPU *

% % % % ms/Model

Geometric parameters of seeds 89.33 89.79 88.74 91.87 7.32
Discoloration of seeds 91.31 90.87 90.76 92.54 5.54

Discoloration and geometric parameters of seeds 91.78 92.67 93.87 94.78 8.78
* GPU: NVIDIA GeForce RTX Studio 2060, 32 GB.

4. Discussion
Knowledge of the geometric and physical properties of soybean seeds allows for

the design of devices that accelerate various technological processes regarding their han-
dling, primarily cleaning, separation, drying, and processing. The rapid development of
digitization and AI has led to proposals in the literature for models aimed at the quali-
tative assessment of agricultural produce, including seeds and grains (soybean, maize,
rice, wheat) [39–44]. However, these are predominantly based on two-dimensional images,
mainly acquired using RGB technology or spectral cameras. Currently, there are a few
emerging proposals for the use of three-dimensional scanners to develop 3D models of
whole plants or their parts, which form the basis for developing qualitative assessment and
classification methods [76–78,80–83].

The method proposed in this paper, along with the developed SB3D-NET three-
dimensional neural network model, enables the automation of this classification process.
The accuracy of the training process for the proposed SB3D-NET model in the qualitative
classification of 3D soybean seed models, based on the adopted criteria, was 95.54%, with
a validation accuracy of 90.74% and a relative loss value of 18.53% during training and
37.76% during validation. As shown in Figure 8, the developed algorithm achieved the
highest accuracy, with 53 epochs. Further training of the network would certainly lead to
overtraining and overfitting, as evidenced by the lower loss. The size of the validation sam-
ple may also contribute to a higher loss in the validation process. A similar level of accuracy,
90.67%, was achieved by Fan et al. [84], who used a large-scale 3D-CNN network to analyze
individual maize seeds with respect to their germination strength. A similar model to the
one presented in our study, referred to as SSDINet, was introduced by Sable et al. [85],
which was designed for quantifying defects and classifying soybean seeds. The authors
reported that their experiments demonstrated that SSDINet achieved the highest accuracy
of 98.64%, with 1.15 million parameters processed in 4.70 ms, outperforming existing state-
of-the-art models. Saito et al. [86] applied CNN models for the classification of soybean
seeds, which were developed using three pre-trained network architectures: AlexNet,
ResNet-18, and EfficientNet. The highest classification accuracy reported by the authors
was 93.90% for CNN models using ResNet-18. Convolutional neural networks for soybean
seed classification were also applied by Lin et al. [87], achieving fscore values for normal,
damaged, and out-of-class soybean seeds of 95.97%, 97.41%, and 96.14%, respectively.
Ultimately, using the NVIDIA Jetson TX2 platform, they achieved an accuracy of 95.63%. In
the SB3D-NET model proposed in this study, the fscore values were 91.87, 92.54, and 94.78,
respectively, for soybean seed analyses of the geometric parameters of soybean seeds, seed
coat color and hilum identification, and both criteria combined (Table 9).
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Table 9. Comparison with existing major studies.

Studies Utilized Method Utilized Equipment Dataset Overall Accuracy

[53] point cloud method UAV-based RGB
imaging system 70.922 plant images 71.20–96.00%

[54] AI-based classification
models

Tesla V100 GPU with 32
GB video random access

memory (VRAM)
2.138 images 58.34%

[56]
deep learning

convolutional neural
networks (DCNNs)

RGB image 14 classes of seeds 95.00%

[57] YOLO-V5 UAV-based RGB
imaging system 125 images 92.34%.

[58]
least-squares method

(LSM) and Hough
transform

digital imaging
technology

DJI Phantom 4

180 RGB plant
images 93.54%

[88] high-throughput
analysis method RGB image 39,065 seed images 97.00%

[89] regression analysis RGB image 1000 seed images 93.70%

Another important parameter for agricultural practice is the seed classification
time, which mainly depends on the computing power. In this study, the shortest time,
i.e., 5.54 ms/model, was obtained when classifying seeds based on seed coat color and
7.32 ms/model when classifying geometric parameters. The longest classification time,
i.e., 8.78 ms/model, was achieved when all criteria were taken into account. However, these
values may change when using graphics cards with higher computing power. All statistics
used to characterize the neural network model (i.e., SS, MAE, MSE, RMS, R2, SDR, and GE)
show its high effectiveness and accuracy, especially at the testing and validation stage.

Important parameters characterizing the proposed SB3D-NET model also include the
average precision values compared to actual measurements. The average measurement
precision for soybean seed length was 85.37%, for width, it was 88.20%, and for thickness, it
was 88.11%. Soybean seed marker identification was performed with an accuracy of 82.47%
for length and 87.35% for width. A similar study was presented by Baek et al. [88], who
also determined the geometric parameters of soybean seeds by measuring their length,
width, and thickness, with an accuracy of approximately 90.00%.

5. Conclusions
This study proposed a three-dimensional artificial neural network model, designated

SB3D-NET, aimed at multi-criteria varietal and qualitative classification of seeds from five
soybean varieties. The database used for analysis comprised 3D models of soybean seeds,
obtained through scanning. Seed model classification was performed based on 22 criteria,
relying on geometric parameters of the seed models and seed coat color. The color of
the soybean seed coat indicated the degree of their maturity, as well as the presence of
mechanical or pathological damage.

The accuracy of the training process of the proposed SB3D-NET model for the qualita-
tive classification of 3D models of soybean seeds, based on the adopted criteria, was 95.54%,
and the accuracy of its validation was 90.74%. The relative loss value during the training
process of the SB3D-NET model was 18.53%, while during its validation, it amounted to
37.76%. The classification speed ranged from 5.54 to 8.78 ms per model, largely depending
on the computing power of the graphics card. Meanwhile, the score values achieved were:
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91.87, 92.54, and 94.78, respectively, for analyses of geometric seed parameters, seed coat
color and hilum identification, and both criteria combined.

Based on the conducted analyses, it can be concluded that the research hypothesis—that
the application of three-dimensional scanning, the construction of 3D models, and the
proposed three-dimensional convolutional neural network (3D-CNN) would enable precise
qualitative assessment and classification of soybean seeds with respect to damage—has
been fully confirmed.

The most important advantage of 3D scanning is the acquisition of three-dimensional
models of soybeans, which contain more information, as the model can be analyzed in
a Cartesian coordinate system (x, y, z). The model can be analyzed in a 360-degree plane,
which gives it an advantage over RGB images. However, the practical limitation of this
technology may lie in the difficulty of scanning individual seeds, especially those that are
small or have varied shapes.

Supplementary Materials: The following supporting information can be downloaded at: https://github.
com/piotrrybacki/soybean-SB3D-NET (accessed on 29 July 2025).
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