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Abstract: Copper, zinc, manganese, iron, nickel and molybdenum are essential 

micronutrients for plants. However, when present in excess they may damage the plant or 

decrease the quality of harvested plant products. Some other heavy metals such as cadmium, 

lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, 

the loading into the xylem, the acropetal transport to the shoot with the transpiration stream 

and the further redistribution in the phloem are crucial for the distribution in aerial plant 

parts. This review is focused on long-distance transport of heavy metals via xylem and 

phloem and on interactions between the two transport systems. Phloem transport is the basis 

for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes 

may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of 

cereals, in minor leaf veins). Nickel is highly phloem-mobile and directed to expanding plant 

parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate 

in meristems (root tips, shoot apex, axillary buds). Iron and manganese are characterized by 

poor phloem mobility and are retained in older leaves. 

Keywords: heavy metals; micronutrients; pollutants; transport; xylem;  

phloem; redistribution 
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1. Heavy Metals: Micronutrients or Pollutants? 

Several heavy metals (e.g., Fe, Mn, Cu, Zn, Ni, and Mo) are required in traces as micronutrients by  

plants [1–3], while others (e.g., Cd, Cr, Hg, and Pb) are known as pollutants [4–12]. Major functions of 

heavy metals in plant metabolism are based on their involvement in oxidation/reduction  

processes [1,2,13]. Fe is essential as central ion in heme proteins (e.g., in cytochromes, nitrate reductase, 

catalase, and peroxidase), in siroheme proteins (e.g., nitrite reductase and sulfite reductase), in iron-sulfur 

proteins (e.g., ferredoxin) and in other iron-containing proteins (e.g., lipoxygenases) [1,2,13–16]. Ferritin is 

located in plastids and represents important intracellular storage form for Fe [17–19]. Mn is essential for 

the oxygen evolution in photosystem II and for a series of enzymatic reactions (e.g., phosphoenolpyruvate 

carboxykinase, and superoxide dismutase) [1,2,13,20–22]. Cu is present in the plastidial plastocyanin, in 

the mitochondrial cytochrome c oxidase, in Cu-Zn superoxide dismutase as well as in a series of other 

proteins [1,2,13,23–26]. Zn is essential for several enzymes (e.g., metalloproteinase, carbonic anhydrase, 

and Cu-Zn superoxide dismutase) [1,2,13,26–30]. Ni is known for its involvement in urease  

activity [1,2,13,14,31–34]. Mo (present in the soil solution as molybdate anion) is part of the 

molybdenum cofactor, which is required for nitrate reductase or xanthine dehydrogenase  

activity [1,2,13,14,35–37]. Co is an interesting element in this context, since it is not required by the 

higher plant itself, but is essential for the microorganisms involved in symbiotic nitrogen  

fixation [2,38,39]. Even those heavy metals required as micronutrients by all plants may become 

pollutants at elevated levels [2,40,41]. This review is focused on long-distance transport of heavy metals 

in crop plants, since the redistribution via xylem and phloem is important for the micronutrient supply 

of various plant parts and also for the accumulation of undesirably large quantities damaging the plant 

or negatively influencing the quality of harvested plant products. 

The importance of heavy metal homeostasis in plants is illustrated in Figure 1. Heavy metals  

present at elevated levels may cause an increased production of reactive oxygen species (ROS) in plant 

cells on one hand [42–51] and may be involved in the enzymatic detoxification of ROS on the other 

hand [2,3,42,52–54]. Stresses (e.g., drought, heat and high light intensity) may also cause an 

accumulation of ROS and of ROS-damaged cell constituents [54,55]. These findings underline the 

importance of heavy metal homeostasis for plant cells. Several forms of superoxide dismutases are 

present in plants: Cu/Zn superoxide dismutases (usually present under several forms) were reported to 

be present in various subcellular compartments, while Mn superoxide dismutase isoforms were localized 

in the mitochondria and Fe superoxide dismutase was reported to be a plastidial enzyme [1,2,54]. 

Especially Mn superoxide dismutase activity was found to be increased under drought stress [54]. 
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Figure 1. Involvement of micronutrients (e.g., Fe, Mn, Zn, Cu and Ni) in the generation and 

detoxification of ROS in plant cells under abiotic and biotic stress. Micronutrient deficiency 

and excess influence ROS levels and as a consequence damages caused by them. 

2. Transport with the Transpiration Stream in the Xylem 

Numerous processes in the soil, which are not subject of this review, may influence heavy metal 

solubility and as a consequence the availability for plants [2]. In some cases, heavy metals (e.g., Co, Cr, 

and Fe) are retained in the roots and only a minor portion reaches the shoot [56–61]. This retention can 

be due to insolubilization (e.g., at the root surface and in the root apoplast) [56,57] or to a 

compartmentation in cells avoiding the release to the xylem [58,59]. Oxygen released from the roots 

may cause oxidation and insolubilization of iron in the root apoplast of rice grown in waterlogged  

soil [57]. 

A strong retention in the roots was detected in wheat and lupin for Co [60,61] and in lupin also for 

Cd [60]. These elements were present in soluble form, but only a minor portion reached the vascular 

cylinder suggesting that compartmentation played a major role [58–60]. The abundance of ligands and 

the formation of heavy metal complexes with organic acids [62,63], with phytochelatin [64] or with 

nicotianamine [65] were found to be important for the retention in the roots. Good evidence was 

presented for the involvement of Ni-histidine complexes in the vacuolar compartmentation of Ni and as 

a consequence in the retention of this heavy metal in roots [59]. A heavy metal ATPase was suggested 

to be involved in Cd accumulation in vacuoles of root cells causing Cd retention in roots and decreasing 

the transport to the shoot [66]. 

Heavy metals are transported with the transpiration stream in the xylem from the roots to transpiring 

shoot parts (e.g., photosynthesizing leaves) [60,61,67]. After the release into the root xylem, free or 

chelated ions flow with the xylem sap upwards (Figure 2). Important for the concentration of heavy 

metals in the transpiration stream are xylem loading in the roots, interactions with cell walls during 

acropetal transport and selective removal from the xylem sap [65,66,68,69]. If there would be no further 

redistribution, the heavy metals would accumulate primarily in photosynthetically active (transpiring) 

leaves. Such an accumulation with no or only a minor redistribution was observed for the micronutrient 

Mn as well as for the macronutrient Ca and to a minor extent for Fe (Figures 2 and 3) [2,67–70]. Although 
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the xylem vessels are dead, membranes of living cells around the vessels allow a selective removal of 

ions from the xylem sap [68,69]. 

 

Figure 2. Xylem and phloem transport in the intact plant. Zn, Ni and Mn are readily 

transported via xylem to the shoot. Mn is essentially immobile in phloem, while Ni is rapidly 

redistributed to the youngest (expanding) plant parts and Zn is more slowly redistributed via 

the phloem (accumulation in meristems, but also well mobile in the phloem). 
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Figure 3. Autoradiographs documenting 65Zn and 59Fe distribution and redistribution in 

millet, mustard, tomato and dwarf bean. Young plants were labeled for one day with nutrient 

solution containing 65Zn or 59Fe. The roots of the labeled plants were rinsed several times 

with unlabeled nutrient solution and then incubated for up to 12 days (bean),  

15 days (mustard, tomato) or 21 days (millet). Plants collected throughout the incubation 

period were dried, fixed on cardboard and then exposed in darkness to an X-ray film. The 

relative distribution of the label in a plant must be considered and not the absolute label 

content in a particular plant part, since initial labeling was not identical. 

3. Redistribution via the Phloem 

The symplastic transport via the phloem allows a redistribution of nutrients, assimilates and  

pollutants within the plants and depends on the actual source/sink network (Figure 2) [71–73]. Phloem 

mobility of heavy metals varies in a wide range. Ni is highly phloem-mobile and can be repeatedly 

redistributed in crop plants throughout vegetative growth and the reproductive phase (Figure 2) [60,61,69]. 

Zn is also mobile in plants and can be transported via the phloem to growing plant parts  

(Figure 2) [60,61,68,69]. Cd (a pollutant and not a nutrient for plants) is less phloem-mobile than Zn, 

but it is also to some extent redistributed via the phloem [60,61,69]. An extremely poor redistribution 

via the phloem was found for Mn and Fe [60,61,69]. Although these two elements are micronutrients, 

they are not easily transported from mature organs to major sinks (e.g., developing roots, emerging 

leaves, maturing fruits). Distribution patterns for several heavy metals are summarized in Figure 4. 

Approaches to identify redistribution processes via the phloem include balance sheets for contents in 

various organs [60,61,70,74], introduction of radiolabeled heavy metals into a defined leaf via a flap [69] 

and phloem interruption (e.g., by steam-girdling) [68,69,74]. 

Source strength and sink strength are important for the direction and the velocity of phloem sap flow, 

while phloem loading is essential for the transported compounds [71–73]. The delivery through 

plasmodesmata in symplastic phloem loaders and the uptake through the membrane of the sieve  

tube-companion cell complex are crucial for the composition of the phloem sap [71–73]. Within the 

shoot, heavy metals can be redistributed from senescing leaves via the phloem to sinks (e.g., growing 

vegetative parts and maturing fruits). Another possibility is the transfer to the phloem before the xylem 

sap reaches mesophyll cells [2,68,69]. Several types of metal-binding compounds including 

nicotianamine and phytochelatins were reported to be relevant for the transport of heavy metals in the 

phloem [75–77]. A transporter for the copper–nicotianamine complex was found to be located in the 

phloem of rice leaves and was proposed to be important for the translocation of Cu from leaves to 

developing organs and maturing seeds [78]. 
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Figure 4. Scheme summarizing the processes involved in the distribution and  

redistribution of heavy metals in plants. The relative distribution patterns (red color) of 65Zn, 
109Cd, 63Ni, 59Fe, 54Mn and 57Co are based on autoradiographs with various plant species 

emphasizing important findings. The following processes are involved in generating these 

radionuclide-specific distribution patterns: insolubilization at the roots surface and in the 

root apoplast (A); uptake and loading into the root xylem (B); uptake and retention in root 

cells (C); basipetal transport to the roots via the phloem (D); cell-to-cell transport in 

meristems and regions without functional phloem (E); transport with the transpiration stream 

in the xylem to mesophyll cells (F); transfer from xylem to phloem via transfer cells in small 

bundles (G); and remobilization from senescing leaves and transport to sinks via the  

phloem (H). 
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The redistribution from expanded leaves to sinks represents besides the flux from the roots to the 

shoot an additional control mechanism for the heavy metal contents in emerging organs and maturing 

fruits and seeds [68,70,74,79]. Fe and Mn are reduced in waterlogged soil to the well water-soluble Fe++ 

and Mn++ ions increasing for these two elements the concentration in the soil solution [70]. As  

a consequence, higher Fe and Mn contents can be detected in wheat shoots under such conditions [70]. 

The contents are drastically increased in leaves and glumes, while the grains are far less affected [70]. 

These findings indicate that the control of redistribution processes via the phloem is important for the 

composition of harvested grains [70]. Elevated concentrations of Zn, Ni, Co or Cd cause somewhat 

increased contents in wheat grains, but leaves and glumes are far more affected suggesting again  

a control of heavy metal delivery to the grains via the phloem [68,80,81]. 

4. Xylem/Phloem Interactions 

Xylem and phloem are two different long-distance transport systems with different properties. 

Functional xylem and phloem are often separated by a cambium and not yet fully differentiated elements 

(e.g., in stems of dicotyledonous plants or in gymnosperms) [82]. Rays may allow a xylem–phloem 

exchange of solutes [84]. Functional xylem and phloem elements are close together and may interact 

more directly in the small stem bundles of cereals or in minor leaf veins without cambium and without 

formation of secondary vascular tissues [82,83]. This arrangement allows the selective transfer of solutes 

from the xylem to the phloem [2,84]. Transfer cells with a proliferated cell surface are presumably key 

players for the selective xylem-to-phloem transfer of heavy metals and other solutes (Figure 4) [2,84,85]. 

From steam-girdling experiments and heavy metal balance sheets it became evident that in the stem of 

wheat some heavy metals (e.g., the micronutrients Zn and Ni and the pollutant Cd) are transferred from 

the xylem to the phloem, while other heavy metals (e.g., the micronutrient Mn or Fe) are not or only much 

less efficiently loaded into the phloem [68,69,74,80]. Since the transfer of 65Zn from the xylem to the 

phloem was also observed in the wheat peduncle without node, it can be concluded that this type of 

phloem loading occurs in the small bundles in internodes and that the node is not a prerequisite [68]. 

Such a selective xylem-to-phloem transfer (e.g., in the peduncle of wheat or in minor veins of lupin) 

allows a channeling of solutes to the maturing grains/seeds. In leaves of legumes labeled via the roots 

for a short period (e.g., for one day) and then incubated for several days in unlabeled medium clear 

differences between the labeling patterns with 65Zn and 59Fe can be observed (Figures 3 and 4). The 

veins in bean leaves are strongly labeled after 65Zn introduction, while other leaf cells contain far less 
65Zn. This pattern can be explained by the transfer from the rapidly flowing xylem to the more slowly 

flowing phloem (Figure 4). In contrast, 59Fe is mainly present in interveinal regions, while the veins are 

far less labeled (Figures 3 and 4). Such a labeling pattern can be explained by the flux with the 

transpiration stream to minor leaf veins followed by an accumulation in non-vascular tissues (Figure 4), 

as was proposed previously for some amino acids [84]. 

Some heavy metals (e.g., Ni, Zn, Co, and Cd) may be delivered to roots by basipetal transport in the 

phloem (Figure 4) [69]. Afterwards they may be partially loaded again into the xylem and flow upwards 

with the transpiration stream. 63Ni, 65Zn and 109Cd are redistributed via the phloem and can be 

translocated to previously unlabeled roots and to newly formed leaves [60,61]. However, the distribution 

of 63Ni differs from that of 65Zn and 109Cd [60,61,86]. While 63Ni accumulates in expanding leaves and 
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in root parts behind the meristem, 65Zn and 109Cd strongly accumulate in root tips, apical shoot meristems 

and axillary buds [60,61,86]. This difference might be caused by a transport of 63Ni, 65Zn and 109Cd via 

the phloem followed by an efficient cell-to-cell transport of 65Zn and 109Cd (but not of 63Ni) to the 

meristem through the not yet fully differentiated regions without a functional phloem [60,61,86]. 

5. Selective Accumulation of Heavy Metals in Harvested Plant Parts 

The contents of heavy metals in plant products for human nutrition or in fodder plants are important 

for the quality of the harvest [87–98]. It must be distinguished between seed/grain crops such as cereals 

or soybean and plants of which the whole shoot is harvested such as plants used for silage or grasslands. 

Good phloem mobility is a prerequisite for the redistribution of heavy metals from leaves to maturing 

seeds. When whole shoots are used for human or animal nutrition, the total content in the shoot is very 

important, while redistribution via the phloem is far less relevant. In contrast, phloem transport is highly 

relevant when only cereal grains or seeds of dicotyledenous plants are harvested. 

In certain regions a sufficient supply of heavy metals for humans (e.g., Fe and Zn) is an  

issue [87–91]. The uptake of heavy metals into the plants, the transport to the shoot and redistribution 

processes within the shoot are involved in controlling the contents in harvested products. Breeding is a 

key aspect in the context of biofortification of plant products with heavy metals to overcome deficiencies 

in humans and animals [88,90]. Furthermore, negative effects of antinutrients interfering with heavy 

metal availability (e.g., phytate, oxalate) must be considered when evaluating the bioavailability of 

essential heavy metals [90,91]. 

Elevated contents of heavy metals—especially of pollutants such as Cd, Cr or Pb—can also decrease 

the quality of harvested plant products [92–98]. Undesirably high or even toxic levels are a rather local, 

but nevertheless an important problem. Low uptake rates for the pollutant(s), a slow  

root-to-shoot transfer and a minimized redistribution to harvested shoot parts is desirable for crops grown 

on polluted soil. Contaminated irrigation water, the use of sewage sludge for fertilization, the release of 

pollutants from industrial processes and an improved solubilization of some heavy metals under extreme 

climatic conditions (e.g., flooding) may cause undesirably high concentrations in plant products [93–98]. 

Even when the input of heavy metals in contaminated soil is drastically lowered, fields may still contain 

high heavy metal contents for decades. A cautious selection of crop species and varieties, optimized 

nutrient supply, and phytoremediation of the field may contribute to improve the situation. 

6. Relevance of Long-Distance Transport for Phytoremediation 

Hyperaccumulators of heavy metals are important for phytoremediation of polluted soils [99–101]. 

Such plants should have properties clearly differing from desirable properties of crop plants. 

Hyperaccumulators should efficiently take up heavy metals from the soil, should transport them to the 

shoot and not retain them in the belowground plant parts. Furthermore, they should tolerate high contents 

without showing symptoms of toxicity [99–104]. Cd, Co and Zn are efficiently transported from the 

roots to the shoot of the hyperaccumulator Solanum nigrum and are further redistributed within the shoot 

via the phloem [103]. Rapid uptake and release into the xylem are key properties of this species, while 

the redistribution via the phloem would be less important when whole shoots would be collected for 

phytoremediation [103]. 
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Ligands were found to be important in hyperaccumulators for vacuolar sequestration and for the 

transport of heavy metals in the xylem [59,62,65]. Genetic engineering of the metabolism may lead to 

increased concentrations of ligands important for xylem loading and to decreased levels of ligands 

leading to vacuolar sequestration causing a retention of heavy metals in the roots [59,62,65,105,106]. 

Transporters for heavy metals or heavy metal complexes represent other targets for classical breeding 

and genetic engineering to improve properties of plants envisaged for phytoremediation [107,108]. 

7. Conclusions 

Some translocators for heavy metals or heavy metal complexes are known, but we are far away from 

knowing the network of translocator proteins involved in the uptake into the roots, the subcellular 

distribution in roots and shoots, the release from the root symplast to the xylem, the uptake from the 

apoplast into leaf cells and the loading into the phloem for further redistribution [78,109,110]. A more 

complete picture of transporters for heavy metals is highly desirable and may serve as a basis for 

genotype selection and breeding. Genetic tools available nowadays will presumably allow a rapid 

progress in this field. 

The chemical forms (e.g., chelating agents) in various subcellular compartments as well as during 

long-distance transport in xylem and phloem should be known in more detail. The availability of 

complexing agents in a plant cell may be relevant for the retention in the cell (e.g., transport across the 

tonoplast and storage in the vacuole), the transfer to neighbor cells through plasmodesmata and the 

release into the apoplast for xylem or phloem loading. Sensitive localization techniques for heavy  

metals and metabolic studies for ligand availability may serve as a basis for more detailed  

studies [59,62–66,71,78,111]. 

Often interactions between various biotic and/or abiotic stresses affect plant growth and the 

composition of the biomass [112,113]. High salt concentrations or climatic factors such as drought or 

heat should be considered in more detail in the context of global change. 

It will be a challenge for agronomists and for plant breeders to select appropriate genotypes for  

a given environment and to breed new genotypes with desired properties [114,115]. The harvested plant 

parts as well as the utilization of the plant biomass and not only heavy metal availability in the soil or 

other environmental factors are relevant in this context. Biofortification depends on the accumulation of 

desired micronutrients and on avoiding high levels of undesired heavy metals in plant parts harvested 

for human or animal nutrition [88,91]. Selective redistribution and accumulation processes for various 

heavy metals are the basis for well-balanced contents and must be considered for agronomic strategies, 

including plant breeding, genotype selection and agronomic practices [88,91]. Criteria for seed crops, 

grassland plants and heavy metal hyperaccumulators differ considerably. This must be adequately 

considered in basic research as well as in agronomic applications and breeding programs. 
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