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Abstract: A Differential Evolution (DE) is introduced to predict the parameters of the soil
water retention curve (SWRC) and it is configured for reliability and efficiency with the
Unsaturated Soil Hydraulic Property Database (UNSODA). The main investigated dataset
is 235 samples from lab_drying_h-t table and the testing shows that the data resource is
reliable and steady. Some specific statistical computations are designed to investigate the
convergence speed and the fitness precision of DE, different measurements of hydraulic data,
and parametric characteristics of textural groups. The statistical results on UNSODA show
that DE has higher performance in parameter fitness and time saving than some previous
optimization methods and the statistical values of soil water retention parameters (SWRP)
can be directly applied in the agricultural research and practice.
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1. Introduction

The Van Genuchten model (vG model) describes the soil-water content-pressure head curve and
the closed-form relative hydraulic conductivity expression in unsaturated soils derived from the
predictive conductivity models of Burdine or Mualem [1–5]. At the beginning, Genuchten numerically
obtained the residual soil-water content θr (cm3cm−3) , scaling parameter α (>0, in cm−1) inversely
proportional to the air entry pressure, and the pore-size distribution index n (>1) by the semi-analytical
and semi-graphical method and the nonlinear least-squares curve-fitting method while the saturated
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soil-water content θs and the saturated hydraulic conductivityKs were measured experimentally [3]. The
unsaturated hydraulic conductivity Kr was predicted well in the cases of Hygiene sandstone, Touchet
Silt Loam G.E. 3, Silt Loam G.E.3 and Guelph Loam, but Beit Netofa Clay was not well predicted [3].

It is difficult to estimate SWRPs because of the spatial and temporal variability of the soil hydraulic
properties in the field. In addition, pedotransfer functions (PTF) help to convert the directly-measured
data from soil survey (e.g., field morphology, soil texture, structure, pH, etc.) into estimates of soil
hydraulic parameters [6–9]. Five hierarchical neural network PTFs fulfilled this conversion in vG model
from different levels of input data in Unsaturated Soil Hydraulic Property Database (UNSODA), and
the neural network analyses combining with the bootstrap method generated uncertainty estimates of the
predicted hydraulic properties and statistically appraised the reliability of the predictions [10–15].

Some quasi-physical models have estimated the SWRC according to the shape similarity between
SWRC and the cumulative particle-size distribution [16–18].

The fractal geometry model can mathematically and physically describe porous media and build
functional relationships between the water content and the matric potential. It has three SWRC types
based on the fractal organization of soil structure: fractal mass, fractal surface and fractal pore-size
distribution [19–22]. Ghanbarian et al. [23] used a relationship between the pore size distribution
index of the Brooks and Corey model (BC model) and the fractal dimension of SWRC to evaluate two
approaches for estimating parameter m in vG model [3] and the statistical parameters showed that the
approach proposed by Lenhard et al. [24] provided better estimates of m.

The predictions of parameters in SWRC are severely restricted by the experiment method and
data. The accurate identification of SWRP (θr, α and n) and hydraulic conductivity made demand on
cumulative outflow as input data in the one-step pressure outflow experiments and the initial parameter
evaluation to be reasonably close to their true values [25,26]. An integral method with Richards’ equation
and the closed-form equations of soil hydraulic properties was used to estimate α and n if both infiltration
and wetting front with time in a horizontal absorption experiment were recorded and it then provided a
transient water flow approach to estimate SWRC instead of the usual equilibrium method [27,28].

UNSODA is a database with unsaturated soil hydraulic properties and other soil information [14].
UNSODA version 1 consists of 791 and version 2 of 790 soil materials with water retention, saturated
and unsaturated hydraulic conductivity data measured in the field or laboratory, as well as particle size
distribution and bulk density data. Each soil material has an identifier code, the minimum is 1010, the
maximum is 4960, the soil material with same identifier code in one table is defined as a sample, and the
data size of a sample is the number of data records with the same identifier code in one table. The data
of each soil material are classified to different tables as a consecutive series of records with the same
identifier code according to three hierarchic levels: measurement methodology (filed or lab); hydraulic
drainage curve (drying or wetting); data relationship (preshead-conductivity, preshead-θ, θ-diffusivity
or θ-conductivity). For instance, there are 700 soil samples with available preshead-θ paired data and
90 samples missing data in the lab_drying_h-t table. Kosugi developed a general conductivity model
for soils with lognormal pore-size distribution based on the Mualem-Dagan pore-scale model and two
predictive methods reducing the average prediction error more than 77% compared with the Burdine
and Mualem predictive models with use of 200 soil samples in UNSODA [29,30]. UNSODA was
the database of Neural network analysis, bootstrap method and ROSETTA model implementing five
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PTFs for hierarchical estimation of the soil water retention and the saturated or unsaturated hydraulic
conductivity [10–12].

DE invented by Kenneth Price and Rainer Storn is a very simple population based, stochastic function
minimizer for continuous function optimization and optimizes a problem by iteratively trying to improve
a candidate solution with regard to a given measure of quality [31–33]. The crucial idea behind DE is
a scheme for generating trial parameter vectors. Basically, DE adds the weighted difference between
two population vectors to a third vector. DE optimizes a problem by maintaining a population of
candidate solutions and creating new candidate solutions by combining existing ones according to its
simple formulae, and then keeping whichever candidate solution has the best score or fitness on the
optimization problem at hand. It has become a popular optimization method widely used in Informatics,
Thermodynamics, dynamic systems, etc., and it is already integrated in Mathematica and MATLAB.
At present, we mainly focus on the compatibility and adaptation of DE and UNSODA.

In this paper, we will show how to generate different datasets from UNSODA, estimate the SWRPs
in vG model on each dataset, and obtain more reliable statistical results with DE. First we will correctly
configure and test DE with UNSODA; then we will design statistical computations to estimate SWRPs
and compare with previous algorithms and results; finally we will present the SWRP tables which can
be referred directly by agricultural research and practice.

2. Differential Evolution

DE is a parallel direct search method which utilizes NP D-dimensional parameter vectors xi,G (i =

1, 2, · · · ,NP) as a population for each generation G and it consists of 4 basic steps: initialization,
mutation, crossover and selection [31,33]. Np is the number of parameters to be optimized.

2.1. Initialization

The initial vector population is randomly selected and should cover the entire parameter space
assuming a uniform probability distribution for all random decisions. If a preliminary solution is
ready, the initial population might be generated by adding normally distributed random deviations to
the nominal solution,

xi,G = xmin + rand(D)(xmax − xmin), G = 0 (1)

where D is the dimension of parameter vector, and xmax and xmin are the lower and upper bounds of the
parameter vectors xi,G.

2.2. Mutation

DE adds the weighted difference between two population vectors to a third one in order to generate
new parameter vectors. For each target vector xi,G (i = 1, 2, · · · ,NP), a mutant vector is generated by

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (2)
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where the mutually different random indexes r1, r2, r3 ∈ {i = 1, 2, · · · ,NP} are different from the
running index i, and F ∈ [0, 2] is a constant factor which controls the amplification of the differential
variation (xr2,G − xr3,G).

2.3. Crossover

Crossover is to increase the diversity of the perturbed parameter vectors. The mutated vector’s
parameters are mixed with the parameters of another predetermined vector, i.e., the target vector, to
yield a trial vector

ui,G+1 = (u1i,G+1,u2i,G+1, · · · ,uDi,G+1) (3)

where

uji,G+1 =

{
vji,G+1 if (randb(j) ≤ CR) or j = rnbr(i)
xji,G if (randb(j) > CR) and j 6= rnbr(i)

(4)

j = 1, 2, · · · , D. In Equation (4), randb(j) is the jth evaluation of a uniform random number generator
within the range [0, 1], CR is the crossover constant in [0, 1] determined by the investigated problem, and
rnbr(i) is the randomly chosen index in [1, 2, · · · , D] ensuring that ui,G+1 gets at least one parameter
from vi,G+1.

2.4. Selection

To decide whether or not it should become a member in generation G + 1, the trial vector ui,G+1 is
compared to the target vector xi,G using the greedy criterion. If ui,G+1 yields a smaller cost function
value than xi,G, xi,G+1 is set to ui,G+1 in the next generation G + 1; otherwise, the old value xi,G is
retained to xi,G+1.

Moreover, the iteration termination conditions of the main algorithm in DE are relevant to the
fitness effect and the convergence precision, and we adopt some usual methods: Maximum Evolution
Generation (MEG), Maximum Number of Iterations (MIT) or some given objective value (GOV)
for RMSEw.

During the test and selection of algorithms, we found that DE can get higher precision and faster speed
mainly depends on such characteristics: random initialization without predetermined initial parameter
values, vector-based computation, global optimization and evolution strategy. Some algorithms, e.g.,
neural network, support vector regression, genetic algorithms, do not include all these characteristics or
are not easily implemented in pSWRP estimation [6–9,19–22,35–37].

3. Fitting Soil Water Retention Parameters to Hydraulic Data

The soil water retention function in vG model is given by

θ(h) = θr +
θs − θr

[1 + (αh)n]m
(5)
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where m = 1 − 1/n, and θ(h) is the volumetric water content (cm3cm−3) at the pressure head h (cm,
taken positive). The dimensionless effective water content is

Se =
θ(h)− θr
θs − θr

(6)

The objective function that is minimized for fitting SWRC, i.e., Equation (5) to the prehead-θ data in
UNSODA and then gets the optimized SWRPs is

Ow(p) =
Nw∑
i=1

(θi − θ
′

i)
2 (7)

where θi and θ′i are the measured and the estimated water contents respectively, Nw is the number of
measured water retention points for each sample and is taken as the data size of a sample in computation,
and p is the parameter vector (θr, θs, α, n). θi is from UNSODA, and θs and θ′i will be calculated by DE.
The goodness of fit of Equation (5) is quantified with the root mean square error:

RMSEw(p) =

√
Ow(p)
Nw −Np

(8)

Np is the number of parameters to be optimized. Results of Equation (8) will be presented as averages
for each textural group or for the investigated dataset and also be taked as an iteration termination
condition in programming [12].

Before we apply DE to estimate SWRPs, it is necessary to configure DE correctly: choose an
appropriate dataset from UNSODA for specific task, balance the convergency and time consumption,
and evaluate the control variables.

• The choice of dataset. There are four tables about preshead-θ data in UNSODA: field_drying_h-t,
field_wetting_h-t, lab_drying_h-t and lab_wetting_h-t. There are 127 samples in field_drying_h-t
table, 0 samples in field_wetting_h-t table, 700 samples in lab_drying_h-t table, and 28 samples in
lab_wetting_h-t table with available data and this dataset is called dataset 1. The data in dataset 1
are diverse and heterogeneous (field or lab, wetting or drying), and appropriate for looking into
the universal characteristics of UNSODA and the feasibility and robustness of DE. Schaap and
Leij [12] and Schaap et al. [13] chose 235 codes in lab_drying_h-t table as a dataset based on
the criteria: quality of the data; presence of sufficient texture data; the data from the laboratory
drying (drainage) branches; eliminating samples with low bulk density values (<0.5 g/cm3), and
it is called dataset 2 here. Moreover, the designated 235 identifier codes with available data also
partially appear in other two h-t tables: 26 samples in field_drying_h-t table and 1 sample in
lab_wetting_h-t, the sizes of which are not enough for statistics. Tables 1 and 2 show: The
RMSEw mean of dataset 1 becomes numerically stable at MEG = 400 and dataset 2 at MEG = 200;
the RMSEw maximum of dataset 1 is 14 times of the mean, and only 3 times for dataset 2; the
discrepancy between RMSEw maximum and minimum of dataset 1 is 3 times of dataset 2; the
RMSEw mean of dataset 2 is 20% higher than dataset 1; the means of loop times are different
only at MEG ≥10,000; the minimum loop times of dataset 2 is 4∼5 times of dataset 1. The above
differences of RMSEw and loop times between datasets 1 and 2 lie in: Because the dataset 2 is
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completely from lab_drying_h-t table and the data size of any sample in dataset 2 is not less than 6,
the data quality will be higher and the statistical characteristics are more homogeneous.
• The iteration termination. DE is globally convergent, the convergence speed will become slower,

RMSEw will not decrease for long time after reaching certain relatively steady value, and this
value can be taken as a numerical convergence value (NCV). MEG or MIT shall satisfy that every
sample in dataset can reach a NCV. The loop times that a sample takes to reach its own NCV
is called the actual loop times and it should be less than MEG. The NCVs of RMSEw mean in
Tables 1 and 2 can be respectively taken as 0.0106∼0.0107 and 0.0121∼0.0122 while means of
loop times remarkably increase with MEG. In Table 2, RMSEw becomes stable at MEG = 200,
but the corresponding mean loop times 197 is close to MEG and it can not ensure that some
samples already get NCV when MEG and mean loop times are close. Therefore it is ideal to set
MEG = 1000 or above as an iteration termination condition according to the first and the sixth
columns in Table 2. If a sample reaches GOV, the iteration will terminate. Hence we utilize both
MEG and GOV as the termination conditions in DE programming.
• The relationship between the loop times and the data size of a soil sample. The data size is the

number of data records of a soil sample, i.e., Nw in Equation (3). In Table 3, MEG = 10,000;
in the minimum case of soil samples, the loop times is the minimum for all samples, and the
maximum likewise; number is the count of the minimum or maximum cases; but the average data
sizes, 13 and 12.23 of the minimum and the maximum cases are very close and it means that loop
times are unrelated to data size; the maximum cases have much lower RMSEw mean and more
loop times will get better fitness. It implies that DE time consumption depends on the convergency
speed rather than the data size.
• The range of control variables. The rule of thumb values for the control variables in DE is:

F ∈ [0.5, 1.0], Cr ∈ [0.8, 1.0] and Np = 10 · D [33]. The designated 235 identifier codes have
only 26 samples with available data in the field_drying_h-t table, which composes dataset 3. We
compare dataset 2 with 235 samples and dataset 3 with 26 samples by different values of Cr,
0.3 and 0.8 in Table 4 as MEG = 10,000: In dataset 2, different Crs do not generate evidently
different estimates of water retention parameters; compared with dataset 2, the estimation
differences in dataset 3 can not be ignored except θr and RMSEw. It means the value of Cr is not
crucial to the parametric estimation in UNSODA if the dataset is big enough and this conclusion
can also be safely applied to other control variables and even the initial values of parameters.

After DE configuration and implement, we now apply it to predict the SWRPs of different soil texture
groups and investigate its computation speed and goodness of fit. The composition of dataset 2 with 235
samples is: 112 sands, 37 loams, 55 silts and 31 clays. This composition is different from that used by
Schaap and Leij [12], and Schaap et al. [13]. We think that UNSODA version 2 has been updated from
version 1. We will examine this viewpoint by comparing the results in Table 5 with Table 1 in Schaap
and Leij [12]: Most estimates of parameters θr, θs, lg(α), lg(n) and even their standard deviations in the
first row of two tables for two datasets are close and the highest relative difference is only 3%; however,
θs of sands, lg(α) of loams, θr and lg(n) of loams, silts and clays in both tables appear different and their
relative differences are more than 12%. According to this comparison, we can confirm that the dataset 2
and the dataset used by Schaap and Leij [12] have selected the samples with the same 235 identifier
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codes, but the compositions are different: some soil materials have been reclassified to another textural
groups in UNSODA version 2. RMSEws in the first 4 rows of Table 5 are almost 0.001 and is one
order of magnitude lower than the values in Table 1 [12], which indicates SWRP estimates by DE are
improved after grouping soil texture. The higher-precision prediction and fit of DE are also found in
the comparison with nonlinear least-squares curve-fitting method or damper least square method [12].
Plant stresses (drought stress, flood stress) are related to θr and θs, and tensile and shear modulus and the
constitutive variables of soil to lg(α) and lg(n). Table 5 indicates that soil texture should be taken into
the agriculture engineering and the precaution of geological disasters.

The first hierarchic level in UNSODA is the measurement methodology, field or lab. Dataset 3 has
only 26 of 235 designated identifier codes with available data in field_drying_h-t table. The samples
with the same 26 identifier codes in lab_drying_h-t table are called dataset 4. We can compare the field
and lab measurements by dataset 3 and dataset 4 in Table 6: RMSEw of field is 10 times of the lab;
the field and lab values of θr and lg(n) are evidently different, but θs and lg(α) otherwise; the standard
deviation of each entry in the lab row are much smaller than the field one. Theses results verify again
that the data gotten from lab measurement are more steady and accurate.

Table 1. RMSEw and loop times of dataset 1.

MEG
RMSEw Loop Times Time Consumption

Mean Maximum Minimum Std. Deviation Mean Maximum Minimum (h:m:s)

50 0.018 0.193 0.001 0.014 46 49 13 00:02:38
100 0.012 0.182 0.001 0.011 97 99 58 00:04:29
200 0.011 0.141 0.001 0.009 196 199 55 00:08:16
300 0.011 0.141 0.001 0.009 286 299 55 00:11:56
400 0.011 0.141 0.001 0.009 356 399 52 00:15:28
500 0.011 0.141 0.001 0.009 426 499 51 00:19:08

1000 0.011 0.141 0.001 0.009 748 999 50 00:37:11
10,000 0.011 0.141 0.001 0.009 3322 9999 49 07:51:09
40,000 0.011 0.141 0.001 0.009 10,247 39,999 57 27:15:55

Std. deviation 2.53× 10−3 2.07× 10−2 1.52× 10−4 1.44× 10−3

Table 2. RMSEw and loop times of dataset 2.

MEG
RMSEw Loop Times

Mean Maximum Minimum Std. Deviation Mean Maximum Minimum

50 0.018 0.065 0.002 0.010 47 49 25
100 0.013 0.039 0.001 0.007 97 99 83
200 0.012 0.039 0.001 0.007 197 199 183
300 0.012 0.039 0.001 0.007 287 299 218
400 0.012 0.039 0.001 0.007 353 399 221
500 0.012 0.039 0.001 0.007 424 499 221

1000 0.012 0.039 0.001 0.007 722 999 254
10,000 0.012 0.039 0.001 0.007 2963 9999 240
40,000 0.012 0.039 0.001 0.007 7838 39,999 265

Std. deviation 2.067× 10−3 9.24× 10−3 3.26× 10−4 9.84× 10−4
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Table 3. Relationship between loop times and the data size of soil sample.

Case Loop Times Number Data Size RMSEw Mean

minimum 240 1 13 0.017
maximum 9999 31 12.23 0.009

Table 4. CR range.

Dataset 2 Dataset 3
Cr = 0.3 Cr = 0.8 Cr = 0.3 Cr = 0.8

θr 0.054 0.057 0.166 0.152
θs 0.463 0.466 0.442 0.476

lg(α) −1.625 −1.607 −1.581 −1.495
lg(n) 0.214 0.208 0.604 0.536

RMSEw 0.001 0.001 0.015 0.015

Table 5. Average hydraulic parameters for each soil textural group with standard deviations
in parentheses.

N θr (cm3cm−3) θs lg(α) (cm−1) lg(n) RMSEw (cm3cm−3)

All 235 0.057 (0.081) 0.467 (0.139) −1.606 (0.550) 0.204 (0.197) 0.001 (0.002)
Sands 112 0.050 (0.044) 0.442 (0.154) −1.534 (0.421) 0.321 (0.321) 0.001 (0.002)
Loams 37 0.096 (0.137) 0.525 (0.139) −1.239 (0.488) 0.106 (0.109) 0.001 (0.002)
Silts 55 0.035 (0.064) 0.436 (0.097) −1.890 (0.594) 0.106 (0.057) 0.002 (0.003)
Clays 31 0.071 (0.104) 0.542 (0.099) −1.799 (0.644) 0.075 (0.051) 0.051 (0.001)

Sands: sand, loamy sand, sandy loam, sandy clay loam; Loams: loam, clay loam; Silts: silt loam, silt; Clays:
clay, sandy clay, silty clay, silty clay loam.

Table 6. Comparison between field and lab measurements.

Measurement θr θs lg(α) lg(n) RMSEw

field 0.155 (0.102) 0.454 (0.196) −1.562 (0.557 ) 0.533 (0.354) 0.015 (0.064)
lab 0.075 (0.051) 0.494 (0.131) −1.568 (0.311) 0.288 (0.186) 0.001 (0.003)

4. Results and Discussion

In Section 3, DE has already applied to estimate SWRPs after the dataset filtering, DE and UNSODA
configuring and the statistical calculation compiling, and we have gotten some significant results
from the calculation and Tables 1–6: The dataset composed of the designated 235 identifier codes in
lab_drying_h-t table is more appropriate for statistical research and the results based on this dataset
are credible; the data size of a soil sample has no direct relationship with the actual loop times in DE
main iteration; the different values of control variables will not produce evident change on the average
estimates of SWRPs if the dataset is big enough; the average RMSEws of dataset 2, sands, loams and
silts groups are almost one order of magnitude lower than some previous optimization methods, and DE
has higher precision and better fitness; the estimates of θs and lg(α) from field and lab measurements
are close, and θr and lg(n) otherwise; parameter estimates on the whole dataset 2 are close to the dataset
used by Schaap and Leij [12], but there appear differences on the estimates of θr and lg(n) of loam, silt
and clay groups; θr has showed different change trend from other parameters in statistical process.
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The convergence speed is a fascinating issue when using database. It is already shown that there is no
evident relationship between the loop times and the data size of a soil sample in Table 3. In Table 7: a and
b represent two program runnings with the same MEG so that we can estimate the effect of stochastic
factors in DE; the first column is actual loop times and the second is RMSEw under same MEG. Loop
times change irregularly while RMSEws maintain steady in a and b runnings under the same MEG; the
sample with identifier code = 2763 has 13 pairs of data and gets the minimum loop times 240, and
the sample with identifier code = 2660 has 12 pairs of data and gets the maximum loop times 19,999
when MEG = 20,000 a, b; in the row of code = 2763, RMSEw = 0.017, but the actual loop times are
extraordinarily higher when MEG = 5000 b and MEG = 20,000 a; in the row of code = 2660, the actual
loop times fluctuate abruptly while RMSEws swing in narrow range (0.012, 0.014), and the three smallest
loop times 1117, 1982 and 1578 contrarily get the smallest RMSEw = 0.012790 under MEG = 3000 a,
3000 b and 5000 b. These statistical results in Table 7 seem to contradict to the common sense: Similar
RMSEws or similar data sizes of a sample should take similar loop times; smaller RMSEw should take
more loop times. We guess that the stochastic factors (e.g., random seed, mutation step, crossover step,
etc.) in DE might have considerable impact on the computation speed and the optimization efficacy.

Table 7. Convergence speed.

Code
MEG

3000 a 3000 b 5000 a 5000 b 10,000 a 10,000 b 20,000 a 20,000 b
2763 328 0.017 293 0.017 399 0.017 504 0.017 240 0.017 310 0.017 849 0.017 372 0.017
2660 1117 0.013 1982 0.013 4999 0.013 1578 0.013 9999 0.013 9998 0.013 19,999 0.014 19,999 0.013

5. Conclusions

In this paper we first introduced UNSODA and DE, and then applied DE to estimate SWRPs in
vG model based on UNSODA. We have configured DE and tested specific datasets in order to derive
statistically tenable results. We have discussed the relationship between the data size of a soil sample and
the actual loop times in the DE main iteration for reaching a NCV. Some specific statistical computations
have been designed to select appropriate datasets and compare the parameter estimates between different
values of control variables, different measurements or different textual groups, etc., and the calculation
results shows that DE is capable to derive the values of soil water retention parameters from UNSODA,
UNSODA is a reliable database for soil hydraulic property indices and statistical Tables 1–7 can be
applied directly in agricultural research and practice.

We have also statistically analysed the factors on convergence or fitness as the fundamental issues of
DE. The methods above are illuminative for correctly using UNSODA and DE, and the conclusions are
valuable for soil hydraulic parameters. In the future, We will predict SWRC and unsaturated hydraulic
conductivity expression together with basic or advanced forms of DE, explore some fundamental issues
in DE in order to explain some basic problems in the determination of soil hydraulic parameters and then
propose new algorithmic, survey or experimental methods.
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