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Abstract: Evapotranspiration (ET) is one of the largest components of the water cycle, and accurately
measuring and modeling ET is critical for improving and optimizing agricultural water management.
However, parameterizing ET in croplands can be challenging due to the wide variety of irrigation
strategies and techniques, crop varieties, and management approaches that employ traditional tabular
ET and make crop coefficient approaches obsolete. This special issue of Agronomy highlights nine
approaches to improve the measurement and modeling of ET across a range of spatial and temporal
resolutions and differing environments that address some of the challenges encountered.
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1. Introduction

Knowledge of the evapotranspiration (ET) over croplands is becoming increasingly important
across multiple disciplines, spatial scales, and time as water supplies become increasingly constrained in
the 21st century [1–3]. ET estimation is critical for addressing immediate needs at farm scales, including
improved crop water management and irrigation efficiencies, weather and crop-stress forecasting,
and decision-support tools. Additionally, large-scale ET model development and validation are critically
needed at watershed to continental scales to help assess the agronomic, hydrological, and economic
impacts of drought and climate change.

Despite the importance of ET for optimal water management, the development of data, models,
and tools has not kept pace with changes in many managed ecosystems. One of the most commonly
used models, the Food and Agriculture Organization publication 56 (FAO-56) [4] relies on tabular crop
coefficients that are decades old and do not reflect changes in cultivars or irrigation practices. A diverse
array of high value, non-cereal crops are increasing grown in many regions of the world, and they are
often grown under a variety of biotic and abiotic stressors. The use of greenhouses and screenhouses
to increase fruit and vegetable production is particularly notable, but these environments greatly alter
microclimates. This makes translating open air evaporative demand (e.g., reference ET) into actual
crop ET much more challenging. Finally, other irrigated managed landscapes (e.g., irrigated lawns and
forests) are greatly increasing in area. For example, the area of turfgrass in the United States is more
than 300% that of the largest irrigated crop [5]. To this end, this special issue of Agronomy is focused on
studies of novel cropping systems as well as new observational approaches to measure and model ET.

2. New ET Approaches

New techniques to observe and model ET in a variety of systems will be needed in the future.
In this issue, Monje and Bugbee [6] use infrared thermometers to better assess ET in a controlled growth
chamber where atmospheric resistance can be controlled. Their observations will be useful for using
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radiometric techniques in environments where a normal wind log profile does not apply. Kelley and
Pardyjak [7] used a low cost, on-farm, meteorological station in conjunction with ET observations to
train a neural network to accurately model ET with a training period of as little as a week. This approach
eliminates the need for a crop coefficient to calculate the actual ET. Moorhead et al. [8] intercompared
a large weighing lysimeter with eddy covariance (EC) observations to evaluate the accuracy of ET
observations with EC, which has been an ongoing source of uncertainty due to the energy budget
closure issues that EC suffers. They found that errors were well correlated with total biomass and that
such errors were significantly reduced if energy budgets were closed daily as opposed to at 30 min
timescales. French et al. [9] conducted an evaluation of three satellite-based thermal ET models at
a regional scale in an irrigation district. They found that using an ensemble of models could help
identify outliers and areas for future ground validation. Katsoulas and Stanghellini [10] reviewed
different ET models and their application to greenhouse environments.

3. ET under Different Cropping Systems

This special issue covers diverse crop production systems. Nilahyane et al. [11] assessed ET in drip
irrigated silage maize fields where water and agronomic management goals were substantially different
from grain maize. They found no significant differences in water use efficiency between the two highest
irrigation treatments (100% and 80% ETc). Guenette and Hernandez-Ramirez [12] evaluated the effect
of soil compaction in conjunction with irrigation treatments in faba beans and found that maintaining
high soil water content helps offset compaction damage. Suarez et al. [13] evaluated the combined
abiotic stresses of deficit irrigation and saline water on different wine (Cabernet Sauvignon) rootstocks.
Unlike previous work, these researchers found that salinity stress does not reduce growth and ET
further than drought stress alone at intermediate and severe deficit irrigations (less than 60% of the
control), which is contrary to the FAO-56 model, where drought and salinity stresses are multiplicative.
Finally, Badzmierowski et al. [14] compared the utility of hyperspectral versus lower-cost multispectral
sensors for evaluating turfgrass water use and turf quality. For this application they found that the
predictive capabilities of multispectral sensors were just as good as those of hyperspectral sensors.
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