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Abstract: Agricultural water supply (AWS) estimation is one of the first and fundamental steps of
developing agricultural management plans, and its accuracy must have substantial impacts on the
following decision-making processes. In modeling the AWS for paddy fields, it is still common
to determine parameter values, such as infiltration rates and irrigation efficiency, solely based on
literature and rough assumptions due to data limitations; however, the impact of parameter uncertainty
on the estimation has not been fully discussed. In this context, a relative sensitivity index and the
generalized likelihood uncertainty estimation (GLUE) method were applied to quantify the parameter
sensitivity and uncertainty in an AWS simulation. A general continuity equation was employed
to mathematically represent the paddy water balance, and its six parameters were investigated.
The results show that the AWS estimates are sensitive to the irrigation efficiency, drainage outlet
height, minimum ponding depth, and infiltration, with the irrigation efficiency appearing to be
the most important parameter; thus, they should be carefully selected. Multiple combinations of
parameter values were observed to provide similarly good predictions, and such equifinality produced
the substantial amount of uncertainty in AWS estimates regardless of the modeling approaches,
indicating that the uncertainty should be counted when developing water management plans. We also
found that agricultural system simulations using only literature-based parameter values provided
poor accuracy, which can lead to flawed decisions in the water resources planning processes, and
then the inefficient use of public investment and resources. The results indicate that modelers’ careful
parameter selection is required to improve the accuracy of modeling results and estimates from
using not only information from the past studies but also modeling practices enhanced with local
knowledge and experience.

Keywords: agricultural water supply; irrigation water requirement; paddy fields; agricultural
reservoir; parameter sensitivity; parameter uncertainty; equifinality

1. Introduction

Many studies have attempted to understand and quantify the hydrologic consequences of
man-made disturbances from different perspectives, and the human activities associated with
agriculture are now commonly incorporated into hydrological modeling in the forms of farming (land
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use), irrigation (water resource management), and drainage (water quantity and quality control) [1–6].
Modeling a hydrological cycle considering direct human interventions remains challenging, as it
is difficult to determine the set of parameter values (i.e., parameterization) that represent human
interventions, including reservoir operation [7–9], water diversion [10], groundwater pumping [11],
and surface drainage from cultivated fields [2–4]. The limitations of anthropogenic component
parameterization must be considered when modeling agricultural systems, including irrigation
water supply, as they can significantly affect the following decision-making processes for improved
agricultural sustainability.

Agricultural water supply (AWS) is the amount of water supplied from irrigation facilities,
and its accurate estimation is essential, considering the combination of limited water resources and
the ever-growing water demand [7–9,12]. The prediction of accurate variations in the demand for
irrigation water by irrigation districts is important to ensure a stable irrigation water supply and to
operate irrigation reservoirs efficiently [2]. Monitoring is the most accurate way to quantify AWS, but
irrigation facilities are generally distributed in low densities across areas, so it is often economically
challenging to measure them all for both developed and developing countries [13]. The AWS could be
indirectly estimated from gate operation records, using hydraulic calculations [14–16]; however, small
agricultural reservoirs operated by farmers usually do not have detailed operation records, and it is
difficult to obtain such records for large reservoirs because of security reasons, especially where water
conflicts exist or multiple use interests are involved [17,18].

The AWS can be estimated by calculating the irrigation water requirement (IWR) and delivery
management water requirement (DMWR). The IWR for rice paddy fields can be determined by
estimating the daily water demand necessary to maintain the optimal water levels for paddy rice
growth during each cropping period; this is calculated as a function of meteorological data and farming
practice parameters [8,9,12,19]. The DMWR is usually calculated by adopting the irrigation efficiency
(Es) parameter [8,10,20]. However, the actual AWS is controlled by the managers (or operators) of
irrigation facilities, considering water demand estimates based on their customary experience, and is
not usually determined by calculating the IWR. Therefore, it is necessary to evaluate whether AWS
estimation can reflect the pattern of the actual AWS.

In the mathematical model for simulating AWS, water control practices for rice paddy fields, such
as the height of the outlet weir and minimum ponding depth, are used as model parameters. However,
measuring these parameters at fields of interest is often impractical, particularly when considering the
fact that there are many paddy fields distributed and surrounded by levees in a single irrigation and
drainage district [3,21]. In addition, the parameters representing the hydrological characteristics of
paddy fields, such as the infiltration parameter (INF), are also too expensive to be measured through
field experiments and laboratory tests for the same reason [8]. These parameters are associated with
the characteristics of irrigation districts and farm management practices, which are highly variable
depending on the hydrological characteristics [22]. Several studies have applied AWS models to
estimate water requirements; however, these sensitive parameters were determined on the basis of the
literature [7,9,23,24], which has often led to substantial errors in the estimates [9,20].

Furthermore, some studies have attempted to calibrate the AWS parameters to observations
made at fields. Anan et al. [21] estimated regional water requirements by incorporating empirical
water management practices into the Tank model, which is a widely used lumped bucket-type
daily rainfall–runoff model, prepared for an irrigation district of interest. They calibrated the
model parameters associated with water management practices using a sampling-based optimization
algorithm, the shuffled complex evolution algorithm (SCE). Im et al. [25] and Song et al. [8] linked
an AWS model to a reservoir routing model, and then calibrated the AWS parameters by setting the
reservoir water levels as a calibration target to estimate the AWS.
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However, in previous studies, the parameter sensitivity and uncertainty in agricultural system
modeling have not been sufficiently discussed to provide a clear idea of their impacts on AWS
determination and the following decision-making processes, even though equifinality issues have been
discussed in the field of hydrological modeling [8,20,26–28]. In particular, the irrigation efficiency in
rice paddy fields has been reported to vary substantially every year, and small changes in the irrigation
efficiency could lead to large differences in the AWS estimate and the following management and
construction decisions [8]. Therefore, it is necessary to evaluate the parameter selection practices
and schemes for AWS estimation and to quantify the parameter uncertainty and its impacts on AWS
modeling. This study assessed the parameter sensitivity by employing a relative sensitivity index, and
the generalized likelihood uncertainty estimation (GLUE) framework was applied in the AWS model
to identify the parameter uncertainty. Finally, we assessed the efficiency of four parameter selection
schemes with the goal of providing considerations on parameter selection for reliable AWM estimation.

2. Materials and Methods

2.1. Study Reservoir and Irrigation Districts

Rice self-sufficiency has long been the main focus of agricultural policy in South Korea,
and agricultural water resources have mainly been managed to secure water supply for rice
cultivation [8,9,29]. The majority (82%) of the rice paddy fields in Korea are irrigated, and reservoirs
are the main water sources (61%) for the irrigation [30]. The irrigation and drainage canals are 190,000
km long [30]. The agricultural water and irrigation infrastructure are provided by local and central
governments at no charge to farmers, and thus irrigation facilities are often inappropriately managed
by the water users [13,29]. Besides, empirical and literature-based practices are common for planning
agricultural water management [2,9]. As a result, agricultural water management in South Korea
suffers from low water-use efficiency.

We chose to study the Idong reservoir and its irrigation district, located in Korea (37◦07′, 127◦12′),
because of the length of AWS monitoring records and their quality (Figure 1a). From 2001 to 2013,
the Korea Rural Community Corporation (KRC) measured the water level every 10 min, using
ultrasonic sensors installed at the head of the main irrigation canal (Figure 1b). The observations
were subsequently converted to discharges using the stage–discharge relationship developed for
the point (Figure 1c) [20]. The amount of water supplied to the irrigation district was compared
with predicted AWS to assess the performance and uncertainty of the AWS model. Weather records
including the temperature, wind speed, relative humidity, and solar radiation were obtained from the
Suwon National Weather station 20 km away from the study area, and the data was used as input for
the AWS simulation.
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Figure 1. (a) Location of the Idong reservoir irrigated district, (b) the photo of the main irrigation canal,
and (c) the stage–discharge relationship curve (modified from [20]).

2.2. Agricultural Water Supply (AWS) Model

The AWS is determined based on the IWR, the efficiency of water conveyance, and distribution to
a rice paddy field [8,10,20]. An irrigation system efficiency (Es) is used to determine the DMWR [10,20].
The AWS was calculated using the following equations [8,31]:

AWSi =
Arice
Es

IWRi
1000

for AWSi < AWSmax (1)

AWSi = AWSmax for AWSi ≥ AWSmax (2)

where Arice is the irrigated area (m2), IWR is the irrigation water requirement, as denoted above (mm),
Es is the irrigation efficiency (%), AWSmax is the maximum amount of irrigation water supply (m3),
and i is time interval (day).

2.2.1. Irrigation Efficiency

The Es represents the relative portion of agricultural water delivered to the target paddy fields,
and it considers the combined efficiency of the water conveyance and distribution systems [32,33].
The Es for paddy fields has been reported to vary substantially over time, even daily, mainly due to
differences in weather conditions, reservoir operation, and water management practices employed by
the local farmers [8,20,34]. In Asian paddy fields, the Es was observed to vary from 34% to 93%. It is
known that Es is relatively high under the drought condition, because farmers tend to pay additional
care to managing irrigation water [10]; however, the functional relationships between time-varying Es
and other variables have not been fully investigated enough to provide a solid Es estimate for this
study [8].

Es is usually neither known nor observed for the study areas. Even when Es was measured
for a short period, the measurement could not show long-term variations. Thus, it is common to
determine the value of Es from the literature, and assume that it is constant over time to avoid the
introduction of unnecessary complexity and uncertainty into irrigation studies and planning [2,9,23,31].
AWS estimates are sensitive to Es, and the time-invariant Es values are likely to bring errors into
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the estimation of AWS [8]. A few studies attempted to devise methods to construct time-varying Es
for ungauged conditions or tried to improve the accuracy of Es estimates by considering the annual
variations of hydrology when determining Es [18].

In this study, we prepared a mathematical model, the AWS model, to accommodate both methods,
a fixed and time-varying Es. The sensitivity of AWS modeling outputs to the Es estimates was
quantified, and uncertainty associated with employing the Es estimation methods was also investigated
in this study.

2.2.2. Irrigation Water Requirement

The rice-growing season was split into the nursery, transplanting, rice-planting, and mid-summer
drainage periods [35]. We set the water requirements during the nursery period (NWR) and the
transplanting period (TWR) as input parameters, and water that reached the entrance of the irrigation
district was assumed to be evenly distributed across the rice paddies during the growing season
from the reservoir operators’ perspective. The IWR during the rice-planting period can be calculated
according to the following water balance (or continuity) equation:

PDt = PDt−1 + RAINt + IWRt − (DRt + ETt + INFt) (3)

where PD is the ponding depth, RAIN is the rainfall (mm), DR is the surface drainage (mm), ET
is the actual evapotranspiration (mm), and INF is the infiltration (mm). The ET is calculated by
multiplying the reference evapotranspiration by the crop coefficient. We used the Food and Agriculture
Organization (FAO) Penman–Monteith equation [36] for estimation of the reference evapotranspiration
and adopted the crop coefficient for a Korean rice paddy [9]. The INF rates vary from 1.0 to 8.8 mm/day
in Korea, depending on the soil conditions [37,38]. The DR occurs when the PD is greater than the
height of the outlet weir (PDmax) [20,38]:

DRi = PDi − PDmax for PDi > PDmax (4)

DRi = 0 for PDi ≤ PDmax (5)

The IWR can be estimated by subtracting the PD from the minimum ponding depth (PDmin)
when the PD drops below PDmin:

IWRi = PDmin− PDi for PDi < PDmin (6)

IWRi = 0 for PDi ≥ PDmin (7)

It has been reported that the AWS model parameters (PDmax, PDmin, INF, Es, NWR, and TWR)
are highly variable, depending on the regional characteristics [8,20,22]. Besides, there is no known
study that accurately related their values to a specific local area [39]. Thus, the feasible ranges of AWS
model parameters were investigated from the literature (Table 1), and the range is used as a constraint
in the calibration and uncertainty analysis.

Table 1. Range of calibration parameters for agricultural water supply simulation.

Parameter Definition Range References

PDmax Outlet height in paddy fields (mm) 34.6–123.7 [3]
PDmin Minimum ponding depth for rice cultivation (mm) 3.0–60.0 [21,40]

INF Infiltration in paddy fields (mm) 1.0–8.8 [37,38]
Es Irrigation efficiency (%) 34–93 [10,32]

NWR Water requirement during the nursery period (mm) 80–250 [41]
TWR Water requirement during the transplanting period (mm) 80–250 [41]
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2.3. Parameter Selection Scheme

The parameter calibration of an AWS model is usually unavailable due to the lack of observations.
In such cases, the values reported in other studies have been commonly used instead, which could
significantly affect simulation results. In this study, parameter selection schemes based on either
calibration or the literature were compared (Table 2). In Cases I and II, all parameter values were
obtained from the literature. Case I used a fixed PDmax (80 mm) [42], and PDmin (30 mm) [18,40],
while Case II considered the seasonal variation of the PDmax and PDmin values [3,12] (Table 3).
We investigated the INF (4.6 mm/day), Es (75%), NWR (140 mm), and TWR (140 mm) values,
considering the characteristics of the study area, and common values were applied in Cases I and
II [43–45]. Meanwhile, Cases III and IV were schemes whereby all or some of the parameters were
calibrated. In Case III, all six parameters were calibrated, and the parameter set with the highest
Nash–Sutcliffe Efficiency (NSE) [46] among the behavioral sets was selected. In Case IV, only Es was
calibrated on a yearly basis to minimize the absolute value of the Percent BIAS (PBIAS) (%) [47], and
the same parameter values selected in Case II were used for the other parameters.

NSE = 1−


∑n

j=1

(
O j − S j

)2

∑n
j=1

(
O j −O

)2

 (8)

PBIAS =

∑n
i=1(Oi − Si)

2∑n
i=1(Oi)

2 (9)

where O and S represent the observed and simulated AWS, respectively, n is the number of time steps
at time step j (here, a 10-day time interval), and the over-bar represents an average of the given variable
over the selected period.

Table 2. The overview of the parameter selection schemes compared in this study.

Parameter
Parameter Selection Schemes

Case I Case II Case III Case IV

PDmax (mm) 80.0 a S.V.P. f C.P. S.V.P. f

PDmin (mm) 30.0 b S.V.P. g C.P. S.V.P. g

INF (mm/day) 4.6 c 4.6 c C.P. 4.6 c

Es (%) 75 d 75 d C.P. Y.C.P.
NWR (mm) 140.0 e 140.0 e C.P. 140.0 e

TWR (mm) 140.0 e 140.0 e C.P. 140.0 e

S.V.P. is seasonally varying parameters, C.P. is calibrated parameters, Y.C.P. is yearly calibrated parameter. a [42] b

[18,40], c [43], d [44], e [45], f [3] g [12]. PDmax is outlet height in paddy fields, PDmin is minimum ponding depth
for rice cultivation, INF is infiltration in paddy fields, Es is irrigation efficiency, NWR is water requirement during
the nursery period, TWR is water requirement during the transplanting period.

Table 3. Seasonal crop coefficients, minimum ponding depths, and outlet heights of paddy fields that
are commonly found in the literature for the rice paddy field condition of Korea [3,9,12,19].

Parameter P.S. T.S.
Growing and Harvesting Season

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Kc 0.78 0.78 0.78 0.97 1.07 1.16 1.28 1.45 1.5 1.58 1.46 1.45 1.25 1.01 1.01 1.01 1.01
PDmin 20 60 40 40 20 20 30 30 30 40 40 40 40 40 40 40 40
PDmax 66.1 80.9 74 57.3 34.6 72.9 67.2 57.7 63.4 67.2 66.1 66.1 66.1 66.1 66.1 66.1 66.1

P.S. is a preparation season for transplanting, T.S. is a season for transplanting.
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2.4. Sensitivity and Uncertainty Analysis Methods

2.4.1. Sensitivity Analysis

Parameter sensitivity analysis was implemented to determine the influence that a set of parameters
had on predicting the AWS [48,49]. The sensitivity was measured using a relative sensitivity (Sr),
which explains how the model output varies with changes in input parameters [8,50]:

Sr =
∆O/Ob
∆P/Pb

=
(O−Ob)/Ob

(P− Pb)/Pb
(10)

where ∆O is the change in the output, Ob is the base output, O is the output according to the new input
parameter, ∆P is the change in the parameter value, and Pb is the base parameter value. The median
of the feasible value range of each parameter was selected to represent its base value (Pb), and the
corresponding simulation result (Ob) was tracked to calculate the relative sensitivity while changing
parameter values in the sensitivity analysis. The greater the Sr, the more sensitive a model output
variable was to that particular parameter [8,49,51]. The Sr was calculated at six different levels (+50%,
+25%, +10%, −10%, −25%, and −50% change from base value) to consider the non-linear response of
the model to input parameters [8,51]. A sensitivity index (SI), providing a method to compare the
overall relative sensitivities of the output variables, was then calculated as follows:

SI =
1
N

N∑
i=1

Sr(i) (11)

where N is the total number of levels of parameter changes for Sr. The overall relative sensitivities
were categorized based on the following criteria [8,52,53]: insensitive (|SI| < 0.01), slightly sensitive
(0.01 < |SI| < 0.1), moderately sensitive (0.1 < |SI| < 1.0), sensitive (1.0 < |SI| < 2.0), and extremely
sensitive (|SI| > 2.0).

2.4.2. Uncertainty Analysis

Parameter calibration (or optimization) practices may not always give reasonable modeling
results, and there are many reasons for a calibrated model to fail to provide reliable outputs beyond
the calibration period due to the uncertainty and equifinality caused by incomplete values used
for calibration, simplifications, and approximations introduced into the modeling exercise, and the
parameter estimation method [28,54,55]. It is essential that an uncertainty analysis is conducted
in order to determine the reliability of the model predictions and account for various sources of
uncertainty [54,56–58] A GLUE [26,27], known as a Monte Carlo-based analysis, is commonly used
to quantify the equifinality of parameters and uncertainty of model outputs in this study. Multiple
parameter sets that satisfy the predefined performance requirements were identified as behavioral
sets under the GLUE framework [27,59,60]. These behavioral sets are defined as “equally good” in
this study [61]. The uncertainty analysis applied in this study includes the following steps: (1) Monte
Carlo random sampling from a feasible parameter space with uniform distribution; (2) defining a
likelihood function and a threshold value for the behavioral parameter sets; (3) calculating likelihood
values for the behavioral parameter sets; and (4) deriving the posterior distributions of the calibration
parameters and the 90% confidence interval (90CI) for the AWS [27,28,58,60]. The feasible parameter
spaces were investigated from the previous observations considering the acceptable ranges in Korea
(Table 1). The uniform distribution was chosen because the prior parameter distributions of the
model were not known [60,62]. In this study, the NSE was selected as the likelihood function, as it
has been the most frequently used likelihood measure for GLUE based on the literature [27,28,57,60].
A cut-off threshold of a NSE greater than 0.65 was applied to identify a behavioral parameter set.
The threshold of NSE > 0.65 has been widely used as a criterion for the “good” performance in
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hydrological modeling [61]. The identified behavioral parameter sets were utilized to derive the
posterior distributions of the calibration parameters.

3. Results

3.1. Parameter Sensitivity in Estimating Total AWS Volume

The sensitivity analysis showed that the level of predicted AWS increased with increases in INF,
PDmin, TWR, and NWR and decreases in PDmin and Es. When INF rates are large, frequent water
supply is required to avoid drought stress [63–65]. The decrease in the PDmin saves irrigation water
in regions with a shallow ponding depth and increases storage for more effective rainfall [66,67].
The increasing PDmax allowed the conservation of rainfall and minimized the supplemental irrigation
requirements during the dry periods [67,68]. The improvement of Es indicates a decrease in the amount
of water required to maintain the desired water level, which decreases the AWS. [8]. From Figure 2,
we can see that the total AWS volume was the most sensitive to Es (1.0 < |SI| < 2.0), but the least
sensitive to NWR (|SI| < 0.01). The PDmax, PDmin, INF, and TWR values were identified as moderately
(0.1 < |SI| < 1.0) or slightly (0.01 < |SI| < 0.1) sensitive parameters.
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3.2. Parameter Uncertainty in Reproducing actual AWS

A total of 200,000 samples were drawn from the Monte Carlo simulation, and 5023 (2.5% of the
total samples) parameter sets that provided NSE values greater than 0.65 were retained as behavioral
sets. The posterior parameter distributions were derived from the 5023 behavioral parameter values,
and the spread of each distribution indicates the degree of uncertainty (Figure 3). Sharp and peaked
distributions are associated with well-identifiable parameters, while flat distributions indicate greater
parameter uncertainty [58]. As shown in Figure 3, five parameters, PDmax, PDmin, INF, Es, and TWR,
were not uniformly or normally distributed, whereas, in comparison, NWR exhibited a distribution
close to uniform. As shown by the wide range of parameter values, there may be many combinations of
parameter sets that would result in similar model performance statistics. Such a result is also consistent
with the well-known fact that there are many different parameter sets within a chosen model that may
be behavioral or acceptable in reproducing the observed behavior of the system [26,27].
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The degree of uncertainty in simulating AWS was also expressed with the 90CI, which was
constructed by ordering the 5023 behavioral outputs, and then identifying the 5% and 95% threshold
values (Figure 4). The uncertainty analysis showed that the variations of streamflow simulated with
the behavioral parameters could be significant, as shown by the fact that the annual average of the
AWS of the 95th percentile (2085 mm) was more than twice than that of the lower 5th percentile limit
(906 mm), even though they were evaluated using the same ‘NSE > 0.65’ premise.
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3.3. Evaluation of Parameter Selection Schemes

In this study, we used both visual and statistical measures to assess the performance of the
parameter selection schemes in Cases I–IV ( Tables 2 and 4). Time-series and scatter plots were used to
identify general trends, potential sources of error, and differences between the observed and predicted
values [69] (Figures 5 and 6). As quantitative criteria, NSE was used to measure the overall fit between
the observed and simulated data [61]. The PBIAS measures the average tendency of the simulated data
as larger or smaller than their observed counterparts [47,55] (Table 5), and the performance evaluation
criteria proposed by [61] were applied.

Table 4. Calibrated parameter values for Case III and Case IV.

Scheme Parameter Value

Case III

PDmax (mm) 40
PDmin (mm) 8

INF (mm) 8.6
Es (%) 60

NWR (mm) 232
TWR (mm) 234

Case IV Es (%)

2001 58
2002 75
2003 43
2004 56
2005 49
2006 50
2007 61
2008 52
2009 56
2010 48
2011 50
2012 57
2013 50
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Figure 5. Time-series plots of observed vs. simulated agricultural water supply.
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Figure 6. Scatter plots of observed vs. simulated agricultural water supply.

Table 5. Model simulation statistics for parameter-selection schemes.

Statistics Case I Case II Case III Case IV

NSE
10-day 0.29 0.42 0.78 0.67

Monthly 0.09 0.33 0.85 0.83

PBIAS (%) 39.0 31.9 6.4 0.0

The simulation results for Cases I and II showed an underestimation of the AWS (Figures 5 and 6),
with PBIAS values of 39.0% and 31.9%, respectively (Table 5). Case II yielded slightly better NSE values
compared to Case I, but both cases were classified as “Not Satisfactory” (Table 5) [61]. Such findings
indicate that the value (from the literature) of Es, the most sensitive parameter, was not appropriate
for the study site. The actual Es of the Idong reservoir that was calculated from the observations was
much lower than the values applied in Cases I and II.

Calibration scheme Case III provided PBIAS and NSE values of 6.4% and 0.85, respectively, at a
monthly scale, which is much better than those of Case I and II (Table 5). The AWS simulated from
Case III follows the trends in measurements well (Figures 5 and 6). Case IV, only considering the yearly
variation of Es based on Case II, produced “Very Good” performance statistics, a PBIAS of 0.0%, and
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NSE of 0.83 at a monthly scale [61], even though the NSE values were slightly lower than those of Case
III (Table 5).

4. Discussion

The sensitivity analysis indicates that the AWS simulation is sensitive to PDmax, PDmin, Es, and
INF, with Es, the irrigation efficiency, being the most sensitive parameter. The irrigation efficiency is
known to vary over time, being influenced by various factors, including climate, weather conditions,
irrigation system maintenance, farming practices, and reservoir operation [10,32,67]. It has also been
reported that, in a modeling approach, the time-varied irrigation efficiency could provide better
simulation compared with using fixed parameter values [8,34,39]. This finding was also observed in
the performance of Case IV in this study.

From the GLUE analysis, we found that different combinations of parameter values could yield
similar model performances, in what has been termed “equifinality” in the literature [26,27,58,60,70].
Such a finding indicates that a modeler who uses a parameter set among those providing equally
good performances could obtain significantly different simulation results, depending on which set
was selected [28]. We also evaluated the impact of the parameter-selection scheme on the AWS
simulation performance in Cases I–IV. Cases I and II provided poor simulations, which indicates
that literature-based parameters, rather than a careful selection, may lead to inaccurate simulations.
Cases III and IV produced better results than I and II, indicating that although AWS is related to
human activities, simulation using appropriate parameter values could represent the actual AWS trend
precisely [8].

Of the four schemes, Case III, where all parameters were calibrated, yielded the best NSE results,
and PDmax and PDmin were calibrated to 40 mm and 8 mm, respectively. These values were within the
ranges that were determined considering the water management practices (shallow irrigation) that are
actually implemented in the study areas (Table 1) [71,72]. It should be worth noting that the parameter
value ranges should be adjusted to make the calibration realistic and obtain reasonable modeling
results in the case of implementing other practices such as deep ponding irrigation [3,12]. Such results
suggest that, in the calibration processes, a modeler should use all possible information and knowledge
to make a realistic and reasonable parameter selection that represents the characteristics of a study area.
It also confirms that the decision-making processes balance between experience, prior knowledge and
understanding, and modeling.

To demonstrate the importance of a realistic representation of the study system, we investigated
the results of calibration additionally implemented with a parameter value range that represents a
deep irrigation practice that is different from the reality (shallow irrigation) (Table S1 and Figure S1).
In the calibration, we changed the parameter value ranges of PDmax and PDmin to 60–150 mm and
60–80 mm respectively, to describe the deep irrigation practice under the original Case III scenario.
From the additional analysis, we found that the deep irrigation scenario provided poorer performance
(NSE: 0.72) compared to the original scenario (NSE: 0.78). We also found that the calibrated values
of the PDmax and PDmin were converged to the minimum values (60 mm and 60 mm) of the ranges.
Such calibration results indicate the shallow irrigation practice (rather than deep irrigation one) would
be better explained by the model and observations in the study area, emphasizing the importance of
using realistic parameter constraints and local knowledge for reasonable agricultural water modeling.

Compared to Case III, the parameter values inputted from Case IV were more practical, as the
scheme adopted values for PDmax, PDmin, and INF from the literature. We calibrated only Es on a
yearly basis, and the simulation performance was evaluated as “Very Good”. This result indicates that
a combination of annually calibrated Es values (Table 4) and literature-based parameter values (Table 2)
for the other parameters is the most recommended scheme, as it could provide acceptable performance
as well as realistic parameter values. This scheme could be applicable when AWS observations are
available, although most agricultural reservoirs do not have AWS observations. As an alternative, if
reservoir water levels are measured, as is relatively common in Korea, it would be expected that the Es
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parameter could be calibrated by linking the AWS model to a reservoir water balance model, with the
reservoir water levels as a calibration target [8].

5. Conclusions

In this study, the parameter sensitivity and uncertainty in simulating agricultural water supply
for paddy fields were analyzed using the Idong reservoir and its irrigation districts as the study area.
We measured the parameter sensitivity based on a relative sensitivity index, while the GLUE method
was used to assess the parameter uncertainty. We also evaluated four parameter selection schemes to
provide useful assistance for future selection procedures. The sensitivity analysis indicates that PDmax,
PDmin, Es, and INF are sensitive and significantly affected our AWS simulations. Among them, Es
appears to be the most sensitive; thus, values for the irrigation efficiency should be carefully selected to
produce more accurate simulations. Conversely, NWR was insensitive, indicating that the calibration
of this parameter might be infeasible. Through the uncertainty analysis, even though the posterior
distributions for the four sensitive parameters, PDmax, PDmin, Es, and INF, were not uniformly
distributed, there were multiple possible values satisfying the cut-off threshold (here NSE > 0.65).
The distributions in the ‘behavioral’ parameter sets were systemically related to parameter uncertainty,
which even led to equifinality in the AWS modeling.

Furthermore, this study demonstrated that reasonable water use estimates could be obtained
only when actual water management practices were appropriately considered as constraints in the
calibration processes (Case III), which emphasizes that modelers should carefully check if their
calibrated parameter values agree with the understanding of study areas and parameters. We also
found that simulations with uncalibrated parameters, based purely on the literature, could produce poor
results (Cases I and II), but that a combination of Es values varied annually with uncalibrated values for
the other parameters (Case IV) could provide good performance. In the future, the establishment of the
functional relationships between the time-varying irrigation efficiency and dependent variables should
be investigated to help modelers make more informed parameter selections. This study suggests that
modelers should not only perceive the parameter uncertainty and equifinality but also understand the
relationships between the hydrological meaning of parameters and hydrological processes that occur
in a watershed, including rice paddy fields and blocks.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/10/662/s1,
Figure S1: Scatter and time-series plots for deep irrigation scenario under Case III., Table S1: Calibrated parameter
values for deep irrigation scenario under Case III.
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