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Abstract: Salmonella infection remains one of the major public health problems in the world, with
increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection
and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection
include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized
by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2,
respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages,
dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The
cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive
immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through
its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines,
such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of
Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have
anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1β,
IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit
both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins
secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but
IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins
involved in Salmonella infection in the literature.
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1. Introduction

Salmonella infection remains one of the major public health problems in the world, with
increasing resistance to antibiotics. Non-typhoidal Salmonella (NTS) usually causes self-
limiting diarrhea in immunocompetent hosts, but may develop into sepsis or complications
in immunocompromised hosts.

Immune responses to Salmonella infection include innate and adaptive immunity. The
different stages of Salmonella infection are reflected in the innate and acquired immunity,
orchestrated by a variety of immune cells to defend against this bacterium, having a
different importance during distinct infection stages. The innate immune system can
restrict the replication of Salmonella to a certain degree, but acquired immunity is essential
for the effective control and eradication of bacteria.

Besides intestinal epithelial cells which form a physical barrier and produce inflam-
matory cytokines, chemokines, and antimicrobial peptides [1,2], a variety of immune cells
accomplish the innate immunity against Salmonella infection, including dendritic cells,
neutrophils, macrophages, natural killer (NK), and γδ T cells. Phagocytes, central to the
control of Salmonella infection during the initial stages of Salmonella infection, are recruited
and activated by the inflammation of the infected tissues and large amounts of IFN-γ
produced by a variety of cells, with NK cells being an important source [3]. Interleukin
(IL)-8 recruits neutrophils from the circulation system into the infected tissue to defend
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against the invasion of Salmonella [4]. However, the accumulation of neutrophils gives
rise to characteristic pathological changes of colitis. Macrophages appear to be crucial for
protective immunity against intracellular Salmonella by phagocytosis of the bacteria and,
along with dendritic cells, are major sources of many interleukins [5,6]. Moreover, dendritic
cells play an important bridge between innate and acquired immunity via interleukins [7].
T cells are important for the control of S. typhimurium infection and CD4+ T cells in par-
ticular, but also CD8+ T cells and perhaps γδ T cells are involved [5]. Humoral immunity
plays critical role(s) in the response to Salmonella infection, especially at the late phase [8].
Among intracellular bacteria, B cells play a notable role in resistance to Salmonella.

Infection leads to Toll-like receptors or intracellular nucleotide-binding oligomeriza-
tion domain activation, the production of inflammatory interleukins such as IL-1α/β,
IL-6, IL-8, IL-10, IL12/23, IL-15, IL-17A, IL-18, IL-25, IL-27, TNF-α, chemokine (C-C mo-
tif) ligand 2 (CCL2), IFN-γ, and neutrophil and macrophage recruitment. The plasma
pro-inflammatory versus anti-inflammatory cytokine profile in patients with severe sepsis
has been demonstrated to predict mortality [9–14]. In this article, we review the inter-
leukins orchestrate intestinal mucosa responses to Salmonella infection in the literature
(Tables 1 and 2).

Table 1. The interleukins orchestrate mucosal immune responses to defense against Salmonella infection in the intestine.

Interleukin Biologic Functions Experiments Intervention and Effects Clinical
Applications Ref.

IL-1α

Function as a plasma membrane
cytokine involved in the inflammation

and protection from bacterial
infections though its role remains

poorly defined

Mice
IL-1α-enhanced

resistance of mice to S.
Typhimurium infection

Salmonella [15]

IL-6

1. Anti-inflammation
2. Mediator of epithelial barrier

protection
3. Protection from sepsis and

endotoxemia

IECs
PJ-34 up-regulates IL-6

production in
Salmonella-infected IECs

[16–19]

Enterocytes

1. Probiotic (L.
paracasei)
potentiates IL-6
production in
IL-1beta-treated
Caco-2 cells

IL-8

1. Recruits neutrophils to defense
against the invasion of
Salmonella IECs

1. Flagellin and MDP
synergistically
enhance IL-8

1. Salmonella coli-
tis

2. IBD [20–25]

2. Plasma membrane
cholesterol
supports the
survival of
Salmonella in IECs
through anti-IL-8
pathways

3. Probiotics enhance
IL-8 expression
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Table 1. Cont.

Interleukin Biologic Functions Experiments Intervention and Effects Clinical
Applications Ref.

IL-10

1. Anti-inflammation Th2 cytokine
2. Inhibit the development of

Th1-type immune responses
3. Reduce NK cell responses
4. Prevent the differentiation of

naïve T cells into effector
cytotoxic T cells

5. Dampen the secretion of
pro-inflammatory cytokines,
such as IL-12

6. Induce Treg cell proliferation
7. Suppression of T helper 17

(TH17)-driven colitis

Mice IL-10-deficient mice
develop colitis Salmonella sepsis [26,27]

IL-12

1. IL-12/IL-23 component acts on
NK and T cells and NKT cells to
induce IFN-γ-dependent or
IFN-γ-independent immunity
against intracellular Salmonella
infection

2. A Key cytokine for immunity
against invasive Salmonella in
humans

Humans

IL-12 enhances
internalization and early
intracellular killing of
Salmonella enterica Serovar
Typhimurium by human
macrophages

Recurrent,
extraintestinal and
invasive Salmonella

diseases

[28–30]

IL-15

1. Stimulating macrophages, NK
cells, T cells, and B cells to
proliferate, secrete cytokines,
and/or produce antibody

2. Protection against bacterial
infection

Mice

Endogenous IL-15
functions as early
protection against
infection with an
avirulent strain of S.
choleraesuis through
activation of NK cells and
IFN- γ production

Salmonella infection [31,32]

IL-17
A cytokine involved in neutrophil
recruitment to defend against
extracellular bacteria

Mice

Probiotic Lactobacillus
plantarum ZS2058
significantly reduced the
pathogenicity of
Salmonella colitis by
promoting the IL23/IL-22
axis in the mouse ileum

Salmonella colitis [33–36]

IL-18

1. Promotes IFN-γ production by
T cells and NK cells thereby
shaping immunity towards a
Th1-like phenotype

2. Activates the colon epithelial
cells to produce antimicrobial
peptides to maintain
microbiome homeostasis

Salmonella pathogenicity
islands (SPI)-1 effector
secretion leads to NF-kB
signaling and
caspase-1-mediated
IL-1β/IL-18 activation

[37,38]

IL-22

1. Inflammatory responses
2. Maintenance of intestine

mucosal barrier
3. Enhanced antimicrobial activity,

and mucosal healing
4. Resistant to intestinal

colonization of opportunistic
pathogens

Human epithelial
cells

IL-22 promotes
intracellular fusion of
SCVs with lysosomes
leading to
phagolysosomal killing of
S. Typhimurium in
human epithelial cells

1. Salmonella coli-
tis

2. IBD
[39,40]

Mice

IL-22 is able to heal
intestinal inflammation
and promote epithelial
repair from acute injury
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Table 1. Cont.

Interleukin Biologic Functions Experiments Intervention and Effects Clinical
Applications Ref.

IL-23

1. A member of the IL-12 family of
cytokines with
pro-inflammatory properties

2. IL-23 induce IFN-γ and IL-22
production and are associated
with host innate immunity
against Salmonella

Mice
Mice deficient for IL-23 is
associated with S.
Typhimurium colitis

1. IBD
2. Salmonella coli-

tis
[41,42]

IL-27

1. Has fundamental roles in innate
and adaptive immune
regulation

2. Has both anti- and
pro-inflammatory functions

3. Enhance TLR4 or TLR5
expression in human
monocytes and macrophages, to
cooperate for optimal
anti-bacterial responses

1. Monocytes
2.

Macrophages

IL-27-enhanced TLR4 or
TLR5 expression in
human monocytes and
macrophages, induced
greater
LPS/flagellin-mediated
signaling, and
significantly enhanced
pro-inflammatory
cytokines IL-12p40,
TNF-α, and IL-6
production in S.
typhimurium infected cells

Salmonella infection [43–46]

Abbreviations: IECs, intestine epithelial cells; IBD, inflammatory bowel disease; MDP, muramyl dipeptide; NK, natural killer; Treg:
regulatory T cells; NKT, natural killer T; INF, interferon; TNF, tumor necrosis factor; LPS, lipopolysaccharide; Th1, type 1 helper T cells;
SCVs, Salmonella-containing vesicles; TLR, Toll-like receptor.

Table 2. The interleukins orchestrate mucosal immune responses to enhance Salmonella colitis.

Interleukin Biologic Functions Experiments Intervention and Effects Clinical
Applications Ref.

IL-1β

1. Amplifying intestinal
inflammation by increasing
intestinal epithelial tight
junction permeability

2. Atg16L1 suppresses IL-1β
expression in macrophage
and IECs

IECs

Active vitamin D decrease
IL-1β response to
Salmonella infection to
prevent the host from
detrimental inflammation

IBD [2,47–50]Mice

Active vitamin D3
attenuates the severity of
Salmonella colitis in mice by
decreasing IL-1β response

Rabbit

Blockade of IL-1 receptors
reduces the inflammatory
responses in experiment
colitis

IL-8 Accumulation of neutrophils gives
rise to colitis and sepsis IECs

1. Probiotics suppress
IL-8 expression

1. Salmonella coli-
tis

2. IBD [1,25,51]
2. Active vitamin D3

suppresses IL-8
expression

IL-10 Promote systemic S. Typhimurium
infection in mice Mice

Anti-IL-10 monoclonal
antibody block IL-10 to
defense against systemic
Salmonella infection

Salmonella sepsis [52,53]
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Table 2. Cont.

Interleukin Biologic Functions Experiments Intervention and Effects Clinical
Applications Ref.

IL-12 A pro-inflammatory cytokine in
response to microbial pathogens Humans

Ustekinumab, the
monoclonal antibody
targeting the shared p40
subunit of IL12/IL23, has
been approved for
treatment of IBD

IBD [30,54]

IL-15

1. Pro-inflammatory by itself
2. Promote intestinal dysbiosis

that increases susceptibility to
colitis

Mice
1. Celiac disease
2. IBD [32,55,56]

IL-17

1. Orchestrate mucosal
inflammation in IBD and
Salmonella colitis

2. iNKT cells play a protective
role against
Salmonella-enterocolitis by
downregulating
IL-17-producing γδT cells

1.
Macrophages

2. iNKT cells

Lactobacillus plantarum Lp62
was able to suppress IL-17,
IL1-β and TNF-α
production in
LPS-stimulated J774
macrophages

1. Salmonella coli-
tis

2. IBD
[36,57,58]

IL-18

1. A member of the IL-1 family
of cytokines with
pro-inflammatory and
tumor-suppressive properties

2. Initiates a pro-inflammatory
cytokine cascade in
peripheral blood
mononuclear cells (PBMC)

1. Salmonella
pathogenicity is-
lands (SPI)-1 effector
secretion leads to
NF-kB signaling and
caspase-1-mediated
IL-1β/IL-18 activa-
tion

2. Animal models sug-
gest suppression of
IL-18 bioactivity as
a novel therapeutic
concept specifically
for the treatment of
chronic inflammatory
diseases

[37,59,60]

IL-23

1. Accelerate proliferation of
both murine and human
memory T cells producing
Th17 cytokines including
iIL-17 and IL-22

2. Increased production of IL-23
in various mouse models of
colitis and IBD patients

Humanmice

Neutralizing antibodies
against IL-12/IL-23 p40 and

IL-23 p19 have been
successfully used in clinical

trials for therapy of IBD

1. IBD
2. Salmonella coli-

tis
[41,61–63]

IL-27

IL-27 can directly induce expression
of IL-1 and TNF-α by primary mast
cells and production of IL-1, TNF-α,

IL-12p35 and IL-18 by monocytes

1. Monocytes
2. Mast cells Salmonella infection [44]

Abbreviations: IECs, intestine epithelial cells; IBD, inflammatory bowel disease; MDP, muramyl dipeptide; NK, natural killer; Treg:
regulatory T cells; NKT, natural killer T; INF, interferon; TNF, tumor necrosis factor; LPS, lipopolysaccharide; Th1, type 1 helper T cells;
SCVs, Salmonella-containing vesicles; TLR, Toll-like receptor.

2. IL-1

Interleukin (IL)-1α and IL-1β are equally potent inflammatory cytokines but reveal
highly dissimilar functions and biogenesis. IL-1α is constitutively expressed in many cell
types at a steady state, and can be induced in response to cell stress, injury, infection, or pro-
inflammatory stimuli [64]. IL-1α can function as a plasma membrane-bound cytokine. The
exposure of cells to bacterial infection stimulates the intracellular expression of IL-1α as well
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as resulting in membrane IL-1α expression [65–67]. Although the biogenesis of IL-1α and
its distinctive role in the inflammatory process remain poorly defined, recombinant murine
TNF-α and IL-1α can protect mice from lethal bacterial infections [68]. The resistance of
mice to a lethal dose of S. typhimurium could be enhanced if the mice were pretreated with
IL-1α [15]. IL-1β is a key mediator of the inflammatory response and plays a major role on
the pathogenesis of inflammatory bowel disease (IBD), consistent with the finding that IL-
1β is up-regulated in IBD patients [48] and IBD colonic macrophages release mature IL-1β
on exposure to lipopolysaccharide (LPS) [47]. The IL-1β-induced increase in the intestinal
epithelial tight junction permeability may contribute to intestinal inflammation. Autophagy
protein Atg16L1 polymorphisms in Crohn disease exhibit an excessive production of IL-1β
and overwhelming inflammation in the colon [69,70]. Active vitamin D might enhance
autophagy and decrease the IL-1β response to defend against Salmonella invasiveness and
prevent the host from detrimental inflammation [2]. In vivo, active vitamin D3 attenuates
the severity of Salmonella colitis in mice by decreasing IL-1β expression [50]. Furthermore,
specific blockade of IL-1 receptors reduces the inflammatory responses in rabbit immune
complex colitis [49]

3. IL-6

Interleukin (IL)-6 produced by enterocytes has anti-inflammatory and cell-protective
effects in intestinal mucosa and enterocytes. It may counteract some of the injurious effects
of sepsis and endotoxemia [17,71]. IL-6 has been reported to be a mediator of the epithelial
barrier protection [72] and endogenous IL-6 plays an essential, non-redundant role in limit-
ing intestinal injury [16]. Salmonella-induced intense inflammation causes the breakdown
of the intestinal epithelial barrier, translocation of bacteria, and absorption of endotoxins
into the circulation [73] and, consequently, bacteremia as well as endotoxemia. The pro-
biotic Lactobacillus paracasei may exert some of their beneficial effects by enhancing IL-6
production in enterocytes subjected to an inflammatory stimulus [18]. PJ-34, a potent poly
(ADP-ribose) polymerase-1 (PARP-1) inhibitor, may exert defense on intestinal epithelial
cells (IECs) against invasive Salmonella infection by up-regulating IL-6 production through
the ERK and NF-κB signal pathway [19].

4. IL-8

Current data indicate that IECs orchestrate mucosal innate immunity through their
production of inflammatory cytokines, chemokines, and antimicrobial peptides [74,75].
Chemokines, such as IL-8, recruits neutrophils into cecal mucosa to defend against the inva-
sion of Salmonella [20–22]. However, the accumulation of neutrophils gives rise to colitis [76]
and sepsis [51]. Toll-like receptor 5 (TLR5) and intracellular nucleotide-binding oligomer-
ization domain 2 (NOD2) are two important pattern recognition receptors involved in
innate immunity to invading pathogens. Flagellin, a ligand for TLR5, is a dominant pro-
inflammatory determinant in IECs infected by Salmonella. The cooperation of flagellin and
muramyl dipeptide, a NOD2 agonist, in IECs synergistically upregulates inflammatory IL-8
response to Salmonella infection [23]. Intracellular Salmonella infection in both macrophages
and IECs induces cholesterol accumulation in the Salmonella-containing vesicles (SCVs) [77]
within which the virulent bacteria survive and replicate [78,79]. Plasma membrane choles-
terol supports the survival of Salmonella in IECs through the PI3K-dependent anti-IL-8
pathway [24]. Contrasting to membrane cholesterol, sphingolipids act on epithelial defense
against the invasive pathogen by enhancing the NOD2-mediated human beta-defensin 2
(hBD-2) response [80]. The probiotic Lactobacillus plantarum Lp62 inhibited IL-8 produc-
tion by Salmonella Typhi-stimulated IECs and prevented the adhesion of pathogens to the
cells [57]. The treatment of probiotics before and after infection having different effects
on the Salmonella-induced IL-8 response in IECs suggests the critical timing of probiotic
supplementation [25]. Active vitamin D modulates the pro-inflammatory IL-8 response in
Salmonella-infected IECs to prevent the host from detrimental extreme inflammation [1].
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5. IL-10

IL-10 is a powerful anti-inflammatory Th2 cytokine with a broad range of target cell
types, primarily of the innate cells, such as dendric cells (DCs), macrophages, neutrophils,
B cells, and T cells. Mice deficient in IL-10 spontaneously develop colitis resembling
IBD. During Clostridium difficile infection, IL-10 is required to avoid an excessive immune
reaction and prevent the host from more severe acute colitis [81]. IL-10 can dampen the
secretion of pro-inflammatory cytokines, such as IL-12 [26] and prevents tissue damage [82]
by acting on antigen-presenting cells. Furthermore, IL-10 facilities the regulatory T (Treg)
cell-mediated suppression of T helper 17 (Th17)-driven colitis in mice [27]. On the other
hand, S. Typhimurium can infect and persist in B cells [83], which provide additional
signals to transform T cells to Treg cells. IL-10 produced by T and B cells promotes systemic
Salmonella enterica serovar Typhimurium infection in mice [52]. The in vivo administration
of the anti-IL-10 monoclonal antibody significantly enhanced host resistance at the early
stage of Salmonella infection by accelerating macrophage functions and, consequently, the
activation of γδT cells and enhanced levels of monokine mRNA, including IL-lα, tumor
necrosis factor-α (TNF-α), and IL-12 [53].

6. IL-12

IL-12, similar to IL-23, is a pro-inflammatory cytokine produced by activated DCs,
macrophages in response to microbial pathogens [84,85], and stimulates natural killer
(NK), T, and natural killer T (NKT) cells to produce IFN-γ, which, in turn, aid in the
elimination of intramacrophage pathogens, including S. Typhimurium [30,86]. These two
cytokines must be considered together, because both share a common p40 subunit and
their biology is closely interlocked [7]. IL-12 and IL-23 can also induce TNF-α and GM-
CSF production in T cells via IFN-γ-independent signal transduction and bactericidal
mechanisms [28]. In a human study, a high incidence of invasive Salmonella diseases in
patients with IL-12/IL-23-INF-γ-axis deficiency highlights the importance of IL-12/IL-23-
INF-γ-axis for immunity against Salmonella in humans [29]. Clinicians should consider an
underlying IL-12/IL-23-INF-γ-axis deficiency in patients with recurrent, extraintestinal,
and invasive Salmonella diseases, which usually require extensive treatment. Recombinant
gamma interferon enhances the internalization and early intracellular killing of Salmonella
enterica serovar Typhimurium by human macrophages [30], which release more IL-12 and
less IL-10. Ustekinumab, the monoclonal antibody targeting the shared p40 subunit, has
been approved for Crohn’s disease (CD) and has demonstrated promising results in the
treatment of ulcerative colitis [54].

7. IL-15

Interleukin-15 (IL-15) is a cytokine that resembles IL-2 in its biological activities [31],
stimulating macrophages, NK cells, T cells, and B cells to secrete cytokines, and has pro-
inflammatory properties by itself [55]. It is upregulated under the conditions of tissue
destruction and during infection [87,88]. IL-15 was reported to be involved in protection
against bacterial infection mediated by NK and γδ T cells [31]. IL-15 overexpression
promotes intestinal dysbiosis with a decrease in luminal butyrate-producing bacteria,
lowers butyrate levels, and is associated with an increased susceptibility to colitis [56] and
impacts on the pathogenesis of intestinal inflammatory diseases, such as celiac disease and
IBD. Endogenous IL-15 had an important function in early protection against infection
with an avirulent strain of S. choleraesuis through the activation of NK cells and IFN- γ
production [32].

8. IL-17

Interleukin-17 (IL-17), a cytokine produced by Th17 cells, recruits neutrophils and
plays a crucial role in host defense against extracellular bacteria [33]. Additionally, IL-
17 helps to orchestrate mucosal inflammation by inducing the production of neutrophil
chemoattractants (e.g., IL-8, CCL20, Lipocalin-2, and iNOS) in the intestines [41]. In IBD
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patients, the increased expression of IL-17 was observed in the intestinal mucosa [89]. In
the mouse colitis model of S. Typhimurium infection, IL-23 orchestrates mucosal responses
to release IL-17 [41] that contribute specifically to neutrophil recruitment into the cecal
mucosa to prevent Salmonella dissemination [34,35]. iNKT cells play a protective role
against Salmonella enterocolitis by downregulating IL-17-producing γδT cells [58]. The pro-
biotic Lactobacillus plantarum ZS2058 significantly reduced the pathogenicity of Salmonella
colitis by promoting the colon IL23/IL-22 axis in the mouse [36]. Lactobacillus plantarum
Lp62 was able to suppress IL-17, IL1-β, and TNF-α production in LPS-stimulated J774
macrophages [57].

9. IL-18

IL-18 is a cytokine that binds to a specific receptor expressed on various types of cells
and has pleiotropic functions [37,59]. Its capability to promote INF-γ production by T
cells and NK cells leads to pro-inflammatory activity. Colon epithelial cells constitutively
produce IL-18, which increases upon NLRP6 inflammasome and in turn activates the
epithelial cells to produce antimicrobial peptides to maintain microbiome homeostasis [38].
Moreover, the binding of TLR5 to its ligand flagellin not only results in a NF-κB-mediated
pro-inflammatory cytokine responses, including IL-8, TNFα, and the matrix metallopro-
tease (MMP)-9, but induces IL-18 secretion and Th1-like cytokine responses in human
peripheral blood mononuclear cells (PBMC) [37]. Salmonella pathogenicity islands (SPI)-1
effector secretion leads to NF-κB signaling and caspase-1-mediated IL-1β/IL-18 activa-
tion [60].

10. IL-22

The major functions of IL-22 in the intestine are the inflammatory response, enhanced
antimicrobial activity, the maintenance of the mucosal barrier, resistance to colonization
of opportunistic pathogens, enhancement of epithelial regeneration, and wound heal-
ing [40,90]. IL-22 can restrict the growth of M. tuberculosis intracellularly in macrophages
by enhancing phagosomal fusion. IL-22 can also orchestrate mucosal inflammation by
inducing the production of neutrophil chemoattractants (e.g., IL-8, CCL20, Lipocalin-2, and
iNOS) in the intestines [41]. IL-22 promotes the intracellular fusion of SCVs with lysosomes,
leading to the phagolysosomal killing of S. Typhimurium in human epithelial cells [39].
Salmonella-induced IL-22 production can suppress the growth of commensal Enterobacte-
riaceae, the closest competitors for Salmonella, in the inflamed gut, thereby enhancing the
Salmonella colonization of mucosal layers [91]. Furthermore, the ability of IL-22 to heal
intestinal inflammation and promote epithelial repair from acute injury [40] highlights
IL-22 as a promising target for future IBD therapy.

11. IL-23

Interleukin-23 (IL-23) is a member of the IL-12 family of cytokines with pro-inflammatory
properties. Its ability to potently enhance the expansion of Th17 cells indicates the respon-
sibility for many of the inflammatory autoimmune responses. IL-23 is a key participant
in the central regulation of the cellular mechanisms involved in inflammation [61]. IL-23
is produced by various immune cells such as dendritic cells, monocytes, as well as type 1
macrophages (Mφ1) upon Toll-like receptor signaling [92] in response to the binding of
pathogens. In addition, neutrophils have been identified as a potential source of IL-23 pro-
duction [93]. Recent studies have identified an increased production of IL-23 in various
mouse models of colitis and IBD patients (review in [63]). IL-23 is able to accelerate the
proliferation of both murine and human memory T cells producing Th17 cytokines such as
IL-17A, IL-17F, and IL-22 [62]. IL-23 is known to induce IFN-γ production and is associated
with host innate immunity against Salmonella. The IL-23/IL-22 axis during innate immunity
against Salmonella may contribute to protection against Salmonella infection by several ways,
such as IL-22-regulated expression of anti-microbial peptides and acute phase proteins and
IL-17A-dependent neutrophil recruitment [42]. IL-23 deficient mice were unable to express
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IL-17A during S. Typhimurium-induced colitis [41]. Infection with Salmonella can induce
IL-23, IL-18, and IL-1β, but not IL-12, production in monocytes and type 1 pro-inflammatory
macrophages [94].

12. IL-27

Interleukin (IL)-27, one of heterodimeric cytokines that belongs to the IL-12 fam-
ily, has fundamental roles in innate and adaptive immune regulation [95]. It is pro-
duced in myeloid cells in response to bacterial infection and has both anti- and pro-
inflammatory functions [95,96]. Accordingly, the role of IL-27 in human and experimen-
tal mouse colitis is controversial. IL-27 enhanced TLR4 or TLR5 expression in human
monocytes and macrophages, induced greater LPS/flagellin-mediated signaling, and sig-
nificantly enhanced pro-inflammatory cytokines IL-12p40, TNF-α, and IL-6 production
in S. typhimurium-infected cells [43,44,46]. These findings support the role for IL-27 in
anti-microbial defenses by altering the expression of innate immune sensors such as TLR4
or TLR5 [45].

13. Conclusions

Salmonella infection remains one of the major public health problems in the world,
with increasing resistance to antibiotics. The resolution is to look for alternative therapy
other than antibiotics based on the host immune reaction to infection. Interleukins play
a crucial role in orchestrating mucosal immune responses to Salmonella infection in the
intestine. How to take advantage of is knowledge and exploit effective reagents to treat
Salmonella infection would be the essential next-generation issue.

In recent years, our group has contributed much effort to exploit the biotherapy that
could prevent or treat Salmonellosis. PJ-34, a PARP-1 inhibitor, may exert its protective effect
on intestinal epithelial cells against invasive Salmonella infection by up-regulating IL-6
production, which has anti-inflammatory and cell-protective effects [19], and counteracts
some of the injurious effects of sepsis and endotoxemia.

Salmonella-induced plasma membrane cholesterol accumulation in SCVs [24] may, sub-
sequently, protect intestinal epithelial cells from apoptosis and produce an anti-inflammatory
signal, both of which may contribute to the establishment of a Salmonella infection in cells.
Contrasting to the utilization of membrane cholesterol on the maintenance of Salmonella-
containing vacuoles and anti-inflammatory responses, sphingolipids act on the epithelial
defense against the invasive pathogen [80]. Simvastatin or Fluvastatin, cholesterol-lowering
statins, can suppress the pro-inflammatory IL-8 response in Salmonella-infected IECs to
prevent the detrimental effects of overwhelming inflammation in the host [97].

Our recent in vitro and in vivo studies observed that active vitamin D prevented
the host from the detrimental effects of overwhelming inflammation by downregulating
pro-inflammatory responses (IL-6, TNF-α, IL-8, and IL-1β) [1,2,25] in Salmonella-infected
IECs and decreased the severity of colitis in mice. The different regulation of probiotics
on Salmonella-induced IL-8 responses in Caco-2 cells according to the administered timing
supports a rationale for the therapeutic use of probiotics in the treatment of Salmonella
colitis and inflammatory bowel disease [25]. Furthermore, we observed the synergistic
effects of probiotics or postbiotics and active vitamin D on anti-inflammatory responses
(IL-6, TNF-α, IL-8, and IL-1β) in Salmonella colitis mice [98,99].

It is mandatory to elucidate the pathogenesis of Salmonella infection for the design
of intervention strategies that might reduce the use of antimicrobial agents and decrease
the incidence of multidrug-resistant Salmonellosis. All these novel findings and thoughtful
explorations of health knowledge could be applied to perform clinical trials and preventive
medicine for the better lives of future generations.
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