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Abstract: Many proteins are causative for inherited partial lipodystrophies, including lamins, the es-
sential constituents of the nuclear envelope scaffold called the lamina. By performing high throughput
sequencing on a panel of genes involved in lipodystrophies, we identified a heterozygous mutation
in LMNB2 gene (c.700C > T p.(Arg234Trp)) in a female patient presenting early onset type II diabetes,
hypertriglyceridemia, and android fat distribution. This mutation is rare in the general population
(frequency 0.013% in GnomAD) and was predicted pathogenic by a set of pathogenicity prediction
software. Patient-derived fibroblasts showed nuclear shape abnormalities and premature senescence
features, which are two typical cellular phenotypes associated with laminopathies. Moreover, we
observed an atypical aggregation of lamin B2 in nucleoplasm, which co-distributes with emerin and
lamin A/C, along with an abnormal distribution of lamin A/C at the nuclear envelope. Finally, re-
ducing lamin B2 expression level by siRNA targeted toward LMNB2 transcripts resulted in decreased
nuclear anomalies and senescence-associated beta-galactosidase, suggesting a role of the mutated
protein in the occurrence of the observed cellular phenotype. Altogether, these results suggest that
mutations in lamin B2 could produce premature senescence and partial lipodystrophy features as
observed with certain mutants of lamin A/C.

Keywords: lamin B2; LMNB2; nuclear envelope; hypertriglyceridemia; type 2 diabetes; lipodystrophy;
senescence

1. Introduction

Lipodystrophy syndromes are a group of heterogeneous disorders characterized by
a dysfunctional adipose tissue. These syndromes are classified first into generalized or
partial forms, depending on the extent of the lipoatrophy, and are classified second on
the basis of their type of occurrence, whether familial or acquired [1]. The last group
gathers iatrogenic causes, such as the forms related to antiretroviral therapy, but also
sporadic forms of the disease, which could be in fact genetic syndromes occurring de
novo or with incomplete penetrance. Mutations in several genes have been found in
patients with inherited lipodystrophies, including mutations in lamins [2]. Lamin proteins
are type V intermediate filaments forming a meshwork underneath the inner nuclear
envelope (NE), where they provide a platform for the binding of proteins and chromatin
and confer mechanical stability. Lamin proteins are encoded by three different genes:
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LMNA encoding the lamin A/C, LMNB1, and LMNB2 encoding for lamin B1 and lamin B2
proteins, respectively. It is well established that lamin B1 is a key player in development
and that lamin A/C is required to ensure mechanical stability of nuclei and chromatin
organization [3,4]. However, the specific functions associated with lamin B2 are more
elusive. For example, it was suggested that lamin B2 is required for maintaining nucleolus
organization and for stabilizing nucleolin within the nucleolus [5].

Mutations in lamin A/C are the most frequent cause of familial partial lipodystrophy,
while mutations in lamin B2 are, conversely, an extremely rare and still controversial
genetic cause of partial lipodystrophy [2]. Indeed, up to now, only five patients with
lipodystrophies due to variants in lamin B2 have been reported in the literature and
have been described as acquired partial lipodystrophy, mainly because of a sporadic
presentation [6–8]. In these reports, the functional alterations induced by the lamin B2
mutants are poorly documented.

Here, we report detailed clinical findings for a patient with a lipodystrophy syndrome
associated with the heterozygous mutation p.(Arg234Trp) in LMNB2, and we characterize
some of the cellular consequences of this lamin B2 mutant expression.

2. Materials and Methods
2.1. Patient

The female patient and her mother were evaluated in the endocrinology department
at the University Hospital La Conception in Marseille, France. A written informed consent
was obtained for genetic testing.

2.2. Molecular Studies

DNA was extracted from peripheral blood using standard procedures and stored at
the certified Biological Resource Center (CRB TAC component (NF S96-900 and ISO 9001
v2015 certification)). The French ministry of Health authorized the use of the patient DNA
sample for research purposes (authorization AC-2018-3105).

NGS sequencing was performed on a panel focused on genes associated with lipodys-
trophies and laminopathies. The capture was performed with reagents from a custom de-
sign HaloPlex Target Enrichment kit (Agilent Technologies, Santa Clara, CA, USA), accord-
ing to the HaloPlex Target Enrichment for Ion Torrent Sequencing v D4. Template prepara-
tion, emulsion PCR, and ion sphere particles (ISP) enrichment were carried out as described
previously [9]. The coverage and sequencing depth analysis were computed using BED-
tools suite v2.17 and in-house scripts. Variants were identified using the Torrent Browser
Variant caller (version 4.0.2), annotated and prioritized with the in-house VarAFT system
that included Annovar [10]. The deleterious effect of the sequence variation identified were
analyzed by bioinformatics tools such as MutationTaster (http://www.mutationtaster.org/,
(accessed on 29 October 2019) [11], SIFT (http://sift.bii.a-star.edu.sg/ accessed on 29 Oc-
tober 2019) [12], PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/ accessed on 29
October 2019) [13], and UMD predictor (http://umd-predictor.eu/ accessed on 29 October
2019) [14].

The mutation in the LMNB2 gene was confirmed using Sanger sequencing according
to standard procedures on ABI3500XL (Life Technologies, Carlsbad, CA, USA). The muta-
tion was numbered according to the Ensembl reference sequence ENST00000325327.3
(NM_032737.4) and the Human Genome Variation Society recommendations (http://
varnomen.hgvs.org/,(accessed on 29 October 2019)).

2.3. Cell Culture and Transfection

Control and patient fibroblasts were maintained in DMEM low glucose medium (Biow-
est, Nuaille, France) supplemented with 15% fetal bovine serum (Gibco, Loughborough,
UK) and 2 mM L-glutamine (Gibco, Loughborough, UK) in a humidified atmosphere with
5% CO2 at 37 ◦C. Control fibroblasts (AG09309) from a 21-year-old woman were provided
by Coriell Institute (Camden, N.J, USA). Dermal primary fibroblasts were isolated from

http://www.mutationtaster.org/
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skin biopsies from the patient. Dilacered tissues were placed in culture (37 ◦C, 5% CO2)
in complete DMEM (DMEM with 20% FCS, 2% penicillin 100 UI/mL, streptomycin 100
µg/mL, 1% glutamine 2 mM) for about one month and stored at early passage in complete
DMEM with 10% DMSO at −150 ◦C.

All the experiments were performed at least 3 times at passage 20 for control and
patient cells.

For siRNA transfection, fibroblasts were seeded on coverslips (Lab-tek, SPL Life
Sciences, Gyeonggi-do, Korea) at a density of 3.104 cells/well. INTERFERin®siRNA
Transfection Reagent (Polyplus Transfection, Illkirch, France) was used to transfect 50 nM
of either siRNA negative control (SR-CL005-005, Eurogentec, Fremont, CA, USA) or siRNA
targeting LMNB2 mRNA (ID 131444, Ambion, Austin, TX, USA). The efficiency of siRNA
was analyzed 41 h post-transfection by immunofluorescence.

2.4. Cell Proliferation ELISA and SA-Beta-Galactosidase Assays

To assess proliferation capacity of patient and control cells, we measured 5-bromo-2′-
deoxyuridine (BrdU) incorporation. Cells were seeded on 96-well plates at a density of
1.104 and BrdU provided by the cell proliferation ELISA, and BrdU (colorimetric) Kit (Roche
Applied Science, Penzberg, Germany) was added to the cell medium for a 24 h period after
which the ELISA assay was performed following the manufacturer’s instructions.

To evaluate the senescence rate, cells were seeded on glass coverslips (Lab-tek, SPL
Life Sciences, Gyeonggi-do, Korea) coated with fibronectin (100 µg/mL, fibronectin bovine
protein plasma, Thermo Fisher Scientific, Waltham, MA, USA), and beta-galactosidase
activity was measured using Senescence beta-Galactosidase Staining Kit (Cell Signaling
Technology®, Leiden, The Netherlands) or CellEventTM Senescence Green Detection Kit
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s
instructions.

2.5. Immunofluorescence, Imaging, and Analysis

To quantify nuclear shape anomalies along with lamin A/C and lamin B2 expression
levels, immunofluorescence experiments were on cells seeded on plastic coverslips (Lab-
tek, SPL Life Sciences, Gyeonggi-do, Korea) [15]. DNA was stained with cell-permeable
Hoechst (150 ng/mL). Permeabilization was performed with a 0.5% Triton® X-100 (Sigma®,
Ronkonkoma, NY, USA) solution at room temperature for 10 min. PBS 1% BSA (Thermo
Fisher Scientific, Waltham, MA, USA) for 30 min at room temperature was used for satura-
tion. Primary mouse monoclonal antibody anti-lamin A/C diluted at 1/1000 (sc376248,
Santa Cruz Biotechnology, Inc, Dallas, TX, USA) and rabbit polyclonal antibody anti-lamin
B2 diluted at 1/500 (PA5-29121, Thermo Fisher Scientific, Waltham, MA, USA) were incu-
bated for 1.5 h at 37 ◦C. After two washes in PBS 0.1% Tween, slides were incubated with
chicken anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa fluor 488 diluted
at 1/1000 (A-21441), and goat anti-mouse IgG (H+L) cross-adsorbed secondary antibody,
Alexa Fluor 546 diluted at 1/2000 (A-11003, Thermo Fisher Scientific, Waltham, MA, USA)
for 1 h at 37 ◦C. Specimens were then washed twice in PBS, then post-fixed for 10 min in
4% PFA before mounting slides with ProLong™ Diamond Antifade Mountant (Thermo
Fisher Scientific, Waltham, MA, USA).

Cells phenotypes were monitored routinely by at least two independent investigators
by visual inspection of fixed specimens, with an ApoTome system equipped with a charged
coupled device (CCD) camera Axiocam MRm controlled by Zen software (Carl Zeiss, Jena,
Germany). Around 300 nuclei were examined for each condition, and nuclear anomalies
criteria were aberrant nuclear lamin A/C and/or lamin B2 staining pattern, enlarged nuclei,
and aberrant nuclei shape. Confocal images were performed using an LSM 800 airyscan
Axio Observer and a Z1 7 confocal microscope equipped with a 63×/1.20 W Korr UV
VIS IR C-Apochromat objective and driven by Zen 2.3 system software (Carl Zeiss, Jena,
Germany).
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To measure lamin A/C distribution, we compared the fluorescence intensities at the
periphery and in the bulk of the nucleus. Background signal was first subtracted (FIJI
software), then image processing was performed using MATLAB software (r2018b version,
MathWorks). The images were segmented, and the nucleus contours were detected. For
each nucleus, the contour was fitted with an ellipse to determine its centroid. The mean
radial intensity profile was computed by averaging intensity profiles along radial lines
drawn from the centroid to the nucleus edge. The averaged profile was then plotted as
a function of the normalized radial distance (0 at centroid, 1 at edge). The fluorescence
intensity ratio of peripheral over bulk lamin A/C was computed as A/I0, with A the
integrated fluorescence of the area beneath the peak (from 1 to 0.7) and I0 the baseline
(Figure S1).

2.6. Statistical Analyses

For cell proliferation ELISA experiments, the mean value from at least 3 independent
experiments were analyzed using the Mann–Whitney test, which is a non-parametric test
that compares two unpaired groups of ordinal or numerical variables. For experiments
examining the proportions of cells with (a) abnormally shaped nuclei and (b) SA-beta-
galactosidase positive staining, data from individual experiments were analyzed using
the Fisher’s exact test, which is used for small size samples with nominal/categorical
variables. For siRNA transfection experiments, two-way ANOVA was performed on the
data (following a normal distribution) to examine the influence of two different categorical
independent variables (cell line and treatment) on one continuous dependent variable
(lamin B2 expression, SA-beta-galactosidase positive cells, or nuclear anomalies rate). For
SA-beta-galactosidase positive cells or nuclear anomalies rate, we performed in addition,
a multiple comparisons test to study the impact of the siRNA treatment on control and
patient cells.

Statistical calculations were performed using Prism (GraphPad Software 8.0.2) statis-
tical software. p-values <0.05 were considered significant (*, p < 0.05; **, p < 0.01; ***, p <
0.001; ****, p < 0.0001).

3. Results
3.1. Patient Description

A 28-year-old woman was admitted in the endocrinology unit for etiological diag-
nosis of diabetes associated with a severe hypertriglyceridemia. The type 2 diabetes was
discovered at 25 years old and rapidly treated with metformin, glinid, GLP-1 analogue,
and insulin. This therapy allowed a satisfactory glycemic control with an HbA1c of 6.2%
at the admission in the endocrinology department. The fasting insulinemia was high at
30 mUI/L. Hypertriglyceridemia was discovered simultaneously with diabetes at 17.1
mmol/L, but levels increased up to 99.4 mmol/L during the six months preceding the
hospital admission, without acute pancreatitis, and despite a good glycemic control. The
patient also presented liver steatosis with an increase in serum liver enzymes about twice
the upper limit. Physically, she had an android obesity (weight = 73 kg, size = 150 cm, BMI
= 32.5 kg/m2) with a waist circumference increase at 110 cm and an acanthosis nigricans.
Adipose tissue (AT) was mostly located on the trunk, and the neck and lower limbs were
thin without adipose tissue (Figure 1A). Body composition assessed by dual X-ray absorp-
tiometry showed 34% fat mass and 56% lean mass, and the distribution of abdominal fat
mass evaluated with computed tomography scan was as follows: visceral AT = 294 cm2

and total subcutaneous AT (SCAT) = 365 cm2 (superficial SCAT 163 cm2 and deep SCAT =
202 cm2) (Figure 1B,C). Secondary causes of severe insulin resistance were ruled out (no
hypercorticism and no cortisone therapy or other drugs). After two months of follow-up in
the department, a treatment with an insulin pomp was started for a pregnancy, and she
delivered a healthy boy (weight at birth = 3210 g). Currently, the patient is treated with
very high insulin doses—300 UI/day and GLP-1 analogue—but no metformin because of a
digestive intolerance, to maintain HbA1c around 7.5%. Triglyceride levels are maintained
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between 0.6 and 4 mmol/L with the following therapy: fenofibrate, n-3 unsaturated fatty
acids at pharmacological doses (2 g/day), and a low carbohydrate diet.

Figure 1. Patient clinical description. (A) Photographs of the patient showing central/android shape
obesity with fat accumulation in the facial and supraclavicular regions and abdominal region and
fat loss in lower limbs (cushingoid morphotype). (B) Dual energy X-ray absorptiometry (DEXA)
showing body fat distribution. (C) Percentage of fat mass compared with the reference curve and
abdominal computed tomography (CT) scan confirming the presence of an excessive accumulation of
visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT).
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3.2. Molecular Findings

No mutation in the major genes involved in severe hypertriglyceridemia (LPL, APOAV,
APOCII, LMF1, GPIHBP1) was found. NGS of a panel of 14 genes involved in lipodystro-
phies and laminopathies was then performed (AGPAT2, BSCL2, CAV1, CAVIN1, CIDEC,
FBN1, FPLD1, LIPE, LMNA, LMNB2, PLIN1, PPARG, SYNE1, ZMPSTE24). Among all
variants identified, we selected rare heterozygous exonic variations corresponding to the
expected dominant transmission mode of partial lipodystrophies. An allelic frequency
cutoff to consider a variant as rare was established at <0.02% in the GnomAD database
(https://gnomad.broadinstitute.org/, accessed on 12 December 2021).

Using VarAFT software, two non-synonymous variants in two different genes, LMNB2
and SYNE1, passed the filters (Table 1). Only one was predicted to be pathogenic by all the
prediction software tested (Figure 2A). This mutation was located in exon 5 of the LMNB2
gene (c. 700C > T, p.(Arg234Trp), rs148936043) and was reported with an allele frequency
of 0.0001351 in GnomAD (36 heterozygotes, no homozygotes). Importantly, the mutation
location in position 234 corresponds to a highly conserved amino acid in the sequence
of lamin A/C, B1 and B2 proteins (Figure 2B), and among different species (Figure 2C),
reinforcing the probability of a pathogenic effect.

Table 1. Non-synonymous variants found after filtration.

Refgene Mutation SNP Ref GnomAD UMD Score Mutation Taster

SYNE1:
NM_182961

Exon 24: c.2882G > A
p.(Arg961Gln) rs76646638 0.001423 68/100 Polymorphism

LMNB2:
NM_032737.4

Exon 5: c.700C > T
p.(Arg234Trp) rs148936043 0.0001351 100/100 Disease causing

This mutation was confirmed by direct sequencing and was not found in the patient’s
mother DNA sample; the patient’s father died several years ago from a liver cancer and did
not present diabetes at the time of death. Sanger sequencing of RT-PCR fragments obtained
from total mRNA extraction showed no abnormal size transcript, and the ratio between the
mutant and the normal allele based on sequencing results was approximately 50%.

3.3. Nuclear Abnormalities and Cellular Senescence Assays

In lipodystrophies related to lamin A mutations, patient cells display premature
senescence and abnormally shaped nuclei due to a disorganization of the lamina [15]. Thus,
based on the hypothesis that lamin B2 could produce a similar effect, we explored the
potential impact of the LMNB2 mutation p.(Arg234Trp) on nuclei shape and senescence
on the patient fibroblasts. First, we performed BrdU incorporation ELISA and SA-beta-
galactosidase labelling as measurements of cell proliferation and senescence, respectively.
Although the differences did not reach a significant level, we observed a mild decrease in
BrdU incorporation in patient cells compared with control cells, indicating a trend for a
decreased replication rate in fibroblasts carrying the p.(Arg234Trp) mutation (Figure 3A).
In parallel, a significant increase in the proportion of cells showing a SA-beta-galactosidase-
positive staining was evidenced (Figure 3B).

Then, we performed immunostaining of lamin A/C and lamin B2 to evaluate the
percentage of abnormal nuclei shape and abnormal intranuclear distribution of the protein.
At passage 20, 46% of patient cells showed abnormally shaped nuclei with invagina-
tions, abnormal blebbing, or enlarged nuclei sizes, compared with 26% for control cells
(Figure 4A,B). Importantly, even when normal nuclei shape was conserved, we observed
an atypical aggregation of lamin B2 and an abnormal distribution of lamin A/C at the NE,
suggesting a disorganization of the lamina (Figure 4A,C). Moreover, after a co-staining of
lamin B2 and emerin proteins in patient and control cells, we observed a marked increase in
both signals at the NE in fibroblasts carrying LMNB2 p.(Arg234Trp) mutation (Figure 4D,E).
Together, these results suggest an abnormal accumulation of several lamina proteins at
the NE.

https://gnomad.broadinstitute.org/
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Figure 2. Bioinformatic analysis of the mutation. (A) Pathogenicity prediction of the mutation of
LMNB2 p.(Arg234Trp) by a set of bioinformatics tools. (B) The position of the mutation is located
(framed) within the linker 2 of the highly conserved rod domain. The homologous regions from
Lamin B1, B2, and A were aligned with Geneious 4.8.5. (C) Multiple sequence alignment on CLUSTAL
O 1.2.4.
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Figure 3. LMNB2 p.(Arg234Trp) mutation induces premature cell senescence. (A) Proportion of
proliferative cells by BrdU incorporation during 24 h for control and patient fibroblasts. Mean +/−
standard deviation (SD) of four independent experiments; ns compares control with patient condition
by the Mann–Whitney test. (B) Left panel: percentage of SA-beta-galactosidase positive cells stained
in blue. Mean +/− SD of four independent experiments. ****, p < 0.0001 compares patient with control
condition by the Fisher exact test. Right panel: representative pictures of control and patient cells.

3.4. Downregulation of Lamin B2

To test whether the mutant lamin B2 expression is responsible for abnormal nuclear
shape, we evaluated the effect of lamin B2 down-expression on the nuclear morphology
of patient and control fibroblasts. We first checked by immunofluorescence the efficiency
of siRNA on the expression levels of lamin B2. A reduction of 50% was obtained in
several experiments (Figure 5A,B). A two-way ANOVA was performed on GraphPad, and
a significant influence of the siRNA treatment on lamin B2 staining (p < 0.05, without
difference between cell lines) was observed. We then analyzed the effects of lamin B2
depletion on nuclear morphology. While lamin B2 depletion did not affect the proportion
of abnormal nuclei in the control cells, it led to its decrease by 2.5-fold in patient fibroblasts
(p = 0.0008). This results shows that decreasing the level of mutated lamin B2 is sufficient to
induce a phenotype improvement and suggests a causal effect of the LMNB2 p.(Arg234Trp)
mutation on nuclear shape abnormalities (Figure 5C). We also assessed the effects of lamin
B2 depletion on cellular senescence, and we observed a rescue of the SA-beta-galactosidases
positive cells at the level observed for the control. A two-way ANOVA followed by multiple
comparisons test showed a significant difference in the impact of the two different siRNAs
on patient cells (p = 0.0091) and not on control cells.
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Figure 4. LMNB2 p.(Arg234Trp) mutation induces abnormally shaped nucleus, lamin B2 aggrega-
tion, and lamin A/C preferential location at the nuclear envelope. (A) Confocal images showing
abnormally shaped nucleus, lamin B2 aggregation, and intense lamin A/C signal at the nuclear
envelope of patient fibroblasts compared with control. Lamin A/C (green) and B2 (red) were marked
with appropriate antibodies and DNA with Hoechst. White arrowheads designate typical lamin B2
aggregates. (B) The graph shows the percentages of cells with abnormally shaped nuclei, means
+/− standard error (SE) from three independent experiments. ****, p < 0.0001 compares patient with
control nucleus by the Fischer exact test. (C) Ratio of lamin A/C signal at the nuclear envelope and
in the nucleus. Means +/− SE from three independent experiments. ****, p < 0.0001 compares patient
with control condition by the Mann–Whitney test. (D) Confocal images showing co-staining of
emerin and lamin B2 in abnormally shaped nuclei. Lamin B2 (green) and emerin (red) were marked
with appropriate antibodies and DNA with Hoechst. (E) The graph depicts the mean intensity at the
nuclear envelope of lamin B2 (grey) and emerin (blue) for control and patient cells. Means +/− SE
from one experiment.
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Figure 5. Decrease in lamin B2 expression leads to a decrease in nuclear abnormalities in patient cells.
(A) Apotome images (objective 63×) showing the decrease in lamin B2 staining after transfection
of siRNA targeting LMNB2 for both cell lines and decrease in nuclear abnormalities for patient
cells. (B) The graph shows the mean intensity of lamin B2 (mean +/– SE from three independent
experiments). Two-way ANOVA was performed on GraphPad, and a significant influence of the
siRNA treatment on lamin B2 staining (*, p < 0.05, without difference between cell lines) was observed.
(C) The graph depicts the percentage of cells with abnormally shaped nuclei (mean +/− SE from
three independent experiments). Two-way ANOVA was performed and measured a significant
influence of the column factor (siRNA treatment) and of the interaction between row (cell lines) and
column factor on the nuclear anomalies percentage (**, p < 0.01). A multiple comparison test showed
a significant difference in the impact of the two different siRNAs on patient cells (p = 0.0008) and not
on control cells. (D) Percentage of SA-beta-galactosidase cells (mean +/− SE from three independent
experiments). Two-way ANOVA was performed and measured a significant influence of the row
factor (cell line) and of the interaction between row (cell lines) and column factor (siRNA treatment)
on the percentage of SA-beta-galactosidase cells (**, p < 0.01). A multiple comparison test showed a
significant difference in the impact of the two different siRNAs on patient cells (p = 0.0091) and not
on control cells.

4. Discussion

We describe here a rare mutation (c.700C > T; p.(Arg234Trp)) in LMNB2 in a patient
suffering from a central obesity associated with hypertriglyceridemia and type 2 diabetes,
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acanthosis nigricans, and liver steatosis—all signs overlapping with genetic partial lipodys-
trophy syndrome. The substituted amino acid is much conserved across species and
between the different lamins, which supports the pathogenicity of this mutation. More-
over, senescence tests indicated that patient cells were more senescent than control cells
and promoted the assumption that the LMNB2 mutation may drive premature cell aging.
This hypothesis was sustained by an improvement in patient fibroblasts’ phenotype when
transfected with siRNA specifically targeting LMNB2 transcripts.

Lamin B2 is one of the constituents of the nuclear lamina, a meshwork of proteins
located at the inner face of the NE, and it plays a major role, together with the lamins A/C
and B1, in the maintenance of nucleus integrity and gene expression regulation [16]. Lamin
B2 also exerts a specific role in modulating the morphology, dynamics, and function of the
nucleolus [5]. In pathology, dysfunctions of lamin B2 have been linked to lipodystrophy as
early as 2006, but since then, only a very few cases of such a disorder have been reported.
In addition to genetic lipodystrophy, lamin B2 has been recently involved in progressive
myoclonic epilepsy [17,18] and in severe intellectual deficiency syndromes with severe
microcephaly [19], widening the spectrum of genetic conditions associated with this lamin
alteration.

Up to now, five patients with lipodystrophy and metabolic disorders have been
reported carrying a mutation in the coding region of LMNB2. Among those, 3 were
carriers of the same heterozygous missense variant p.(Arg235Gln) (rs 121912497) and were
found after investigation of 2 relatively small cohorts of 9 patients with acquired partial
lipodystrophy (APL) (n = 2) and 18 patients with familial partial lipodystrophy (FPLD)
(n = 1) [6,8]. The allelic frequency of this variant is around 1% in the population database
GnomAD, and the mutated amino acid is not very conserved across species (Figure 2C).
This suggests that this variant may not be the only cause of the pathological phenotype but
should rather be considered as a predisposition factor. The patients carrying this mutation
probably have secondary conditions triggering the occurrence of metabolic disorders.
Gao et al. identified another rare heterozygous mutation p.(Tyr252His) in a woman with
progressive loss of subcutaneous fat since adolescence [7]. This mutation occurred de
novo, was not reported in the GnomAD database, and modifies a highly conserved amino
acid (Figure 2C). These two mutations, p.(Arg235Gln) and p.(Tyr252His), and the one we
described here, are all located in the same region of lamin B2, which corresponds to the
linker-2 of the rod domain of the protein (amino acids 230–256). The function of this region
is not well defined, and functional studies are needed to understand its role on the structure
and function of the protein. The main clinical features associated with these three LMNB2
mutations are summarized in Table 2. Although there are common features between the
five patients who are women suffering from type 2 diabetes and hypertriglyceridemia,
there are different patterns of lipodystrophy since two patients present with a phenotype
corresponding to a partial lipodystrophy, whereas the three others present a Barraquer–
Simons syndrome (fat loss observed at the upper part of the body, trunk, face, and neck).

In lamin A, the residue 234 corresponds to the residue located in 219 and is involved
in pathogenic substitutions. Several papers reported a variant, p.(Lys219Thr), which
is associated with a cardiomyopathy development by inducing the down-expression of
SCN5A [20,21]. In addition, another variant on the same residue p.(Lys219Asp) and variants
in nearby residues (p.(Leu215Pro), p.(Arg216Cys), p.(Arg220Cys), and p.(His222Tyr)) are
found in HGMD (http://www.hgmd.cf.ac.uk/ac/index.php, accessed on 12 December
2021) associated with cardiomyopathy or Emery Dreyfuss myopathy.

Up to now, the causative role of lamin B2 in lipodystrophy has not been clearly
established, especially because it is likely associated with attenuated partial forms of the
disease that are not always investigated and/or correlated with molecular analysis. The
clinical heterogeneity and complex genotype–phenotype association observed for lamin
B2 dysfunction resemble the wide spectrum of laminopathies linked to lamin A/C but,
if the clinical spectrum associated with lamin A/C alterations is well established, the
pathologies linked to lamin B2 still need to be fully unraveled. That is why comprehensive

http://www.hgmd.cf.ac.uk/ac/index.php
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phenotypic descriptions of patients with rare variants in lamin B2 are critically needed to
better delineate their specific functions, to facilitate the interpretation of lamin B2 variants
identified in pathology, and to broaden the genetic spectrum associated with this protein.

Table 2. Clinical features of subjects with lipodystrophy and rare LMNB2 mutations annotated
according to the transcript NM_032737.4 (NA: not applicable, NR: not reported).

Our Publication Gao et al., 2012 Hegele et al., 2006 Hegele et al., 2006 Akinci et al., 2017

LMNB2 mutation p.(Arg234Trp) p.(Tyr252His) p.(Arg235Gln) p.(Arg235Gln) p.(Arg235Gln)

Age when fat loss
began (years) - 12 5 16 13

Age at APL
diagnosis (years) NA NA 9 30 NR

Diabetes, age at
onset (years) Yes, 19

No
At 26:

increased insulin
level

Yes, 19 Yes, 37 Yes

Extent of fat loss Limbs Symmetrical, face
and upper body

Symmetrical,
upper body to

knees

Symmetrical,
upper body to

upper thigh

Limbs, trunk,
gluteal

Excess of fat Face, neck, trunk NR NR NR Face, neck

Dyslipidemia Severe Moderate Type V Type IV Severe

Hypertension No No No Yes NR

Polycystic ovarian
syndrome Yes Yes No Yes Yes

Autoimmune
disease No NR No Yes NR

Hirsutism NR NR No Yes NR

Other
CAD

Osteoporosis
Alopecia

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells11010050/s1, Figure S1: Quantification of peripheral vs. bulk lamin A/C.
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