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Abstract: Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence and
mortality rates have been increasing annually in recent years. A variety of different small extracellular
vesicles (sEVs) are important mediators of intercellular communication and have an important role
in tumor metastasis and progression. The development and metastasis of CRC are closely linked
to tumor-cell-derived sEVs, non-tumor-cell-derived sEVs, and intestinal-microbiota-derived sEVs.
Numerous studies have shown that the tumor microenvironment (TME) is a key component in
the regulation of CRC proliferation, development, and metastasis. These sEVs can create a TME
conducive to CRC growth and metastasis by forming an immunosuppressive microenvironment,
remodeling the extracellular matrix, and promoting tumor cell metabolism. Therefore, in this paper,
we review the role of different types of sEVs in colorectal cancer development and metastasis.
Furthermore, based on the properties of sEVs, we further discuss the use of sEVs as early biomarkers
for colorectal cancer diagnosis and the potential for their use in the treatment of CRC.
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1. Background

Colorectal cancer is the third leading cause of cancer deaths and a major burden for
health systems and patients globally [1]. For instance, the incidence and mortality rates of
colorectal cancer in 2018 were 6.1% and 9.2%, respectively [2]. The transformation of normal
epithelial mucosa into a hyperproliferative epithelium indicates the onset of colorectal
cancer. These hyperproliferating intestinal epithelial cells (IECs) form adenomas after
losing their normal tissue and structure, invading the lower mucosa, and they eventually
spread to the colorectal system, becoming cancerous [3]. The TME is a complex, dynamic
network of cells consisting of tumor cells, various types of immune cells (T cells, B cells,
tumor macrophages, and NK cells), fibroblasts, adipocytes, extracellular matrix, microbiota,
and a variety of cytokines and metabolites [4,5]. The TME promotes the development
and proliferation of tumor cells by recruiting immunosuppressive cells, remodeling the
extracellular matrix, and promoting angiogenesis [6]. Furthermore, abnormalities such
as hypoxia, metabolic disturbances, and oxidative stress are evident in the TME. These
abnormalities further suppress normal immune function and promote stromal fibrosis,
which ultimately leads to tumor cell proliferation and metastasis. In CRC, there is little
and phenotypically dysregulated infiltration of normal T and NK cells, resulting in the
suppression of normal anti-tumor functions [7]. At the same time, myeloid suppressor
cells and tumor-associated neutrophils (TAN), which are recruited in large numbers in
the TME, suppress normal immune function by activating metalloproteinases, creating an
immunosuppressive microenvironment [8]. In addition, pro-angiogenic factors secreted by
CRC tumor cells promote the generation of dense vascular tissue that, together with the
dense fibrotic network, leads to hypoxia and metabolic disturbances in the TME [9]. These
factors interact and ultimately promote CRC proliferation and metastasis.
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sEVs have a diameter of 30–150 nm and are found in all cells, including epithelial
cells, endothelial cells, neuronal cells, fibroblasts, immune cells, and cancer cells [10]. They
are surrounded by a lipid bilayer and contain typical biomolecules, including DNA, RNA,
glycans, lipids, proteins, and metabolites [11]. sEVs can transfer the proteins and nucleic
acids into the microenvironment where tumors grow, thus promoting tumor cell growth
and metastasis [12]. sEVs promote tumorigenesis and metastasis by mediating intercellular
communication in three ways: first, sEVs bind to target cell membrane proteins through
their membrane proteins, thereby opening up signaling pathways in the target cell. Second,
sEVs are cleaved by proteases; thus, the exosomal membrane proteins bind to receptors
on the cell membrane to activate intracellular signaling pathways. Third, sEVs carry pro-
teins, mRNAs, and microRNAs that can fuse with target cell membranes through the
exosome membrane and exert their corresponding biological effects [13,14]. Tumor-cell-
derived sEVs promote colorectal cancer (CRC) development and metastasis by forming
an immunosuppressive microenvironment, remodeling the extracellular matrix, and pro-
moting cellular metabolism [15]. M2 macrophage-derived sEVs and cancer-associated
fibroblast (CAF)-derived sEVs also play a key role by remodeling the extracellular matrix
and helping CRC tumor cells to accomplish immune evasion. The intestinal microbiota
plays a crucial role in colorectal cancer development, progression, and metastasis. The
intestinal microbiota enters the body’s circulatory system through its derived sEVs and
becomes implanted in other organs, providing a suitable pre-metastatic microenvironment
for colorectal cancer cell metastasis. Intestinal-microbiota-derived exosomes promote CRC
by breaking the outer intestinal mucosal barrier, producing chronic inflammation, and
mediating immunosuppression.

This study highlights the effects of tumor-derived sEVs, M2 macrophage-derived
sEVs, CAF-derived sEVs, and intestinal-microbiota-derived sEVs on CRC progression and
metastasis. This study also focuses on the use of sEVs in the diagnosis and treatment of
colorectal cancer.

2. Tumor-Derived sEVs Reshape the CRC Tumor Microenvironment

The tumor microenvironment (TME) plays a crucial role in cancer progression and
metastasis [16]. Immune cells, fibroblasts, and endothelial cells are the main cells in the
TME of colorectal cancer [17]. sEVs, as key mediators of intercellular communication,
mediate communication between tumor cells and the surrounding microenvironment
as well as cells from distant organs [18]. Here, the role of tumor-derived sEVs in the
surrounding microenvironment of CRC consists mainly of forming an immunosuppressive
environment, remodeling the extracellular matrix, and influencing cellular metabolism, as
has been discussed. The mechanisms by which sEVs are involved in these processes have
also been explained.

2.1. sEVs Mediate the Formation of Immunosuppressive Environments in Distant Organs

Tumor-cell-derived sEVs promote CRC development and metastasis by mediating the
formation of an immunosuppressive microenvironment in distant organs. sEV-mediated
immunosuppression mainly involves the inhibition of immune cell proliferation and the
recruitment of immunosuppressive cells [19].

(1) The inhibition of the proliferation and function of normal immune cells. Im-
mune cells consist of T and B lymphocytes, natural killer (NK) cells, and tumor-associated
macrophages (TAM) [20]. The NK cells recognize, respond to, and directly defend against
invading tumor cells; B cells combined with T helper cells can inhibit tumor progression by
producing tumor-specific antibodies. For instance, CD8 cytotoxic T lymphocytes (CTL) can
directly destroy tumor cells [21]. sEVs carrying PD-L1 enter the lymphatic system from
the bloodstream, preventing T cell activity. As a result, immune cells cannot recognize and
remove tumor cells [22,23]. Tumor sEVs can also interfere with monocyte differentiation
and inhibit NK2D expression in normal NK cells [19]. Mutations in exosomal KRAS can
lead to increased IL-8 production, neutrophil recruitment, and the formation of neutrophil
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extracellular traps (NETs), causing CRC development [24]. Tumor-derived sEVs can pro-
mote CRC development by carrying lncRNAs that promote the differentiation of CD+4 T
cells to Th17 cells, which destroy associated immune cells [25].

(2) The recruitment of immunosuppressive cells to co-create an immunosuppressive
microenvironment. sEVs can recruit regulatory T cells (Tregs) and bone-marrow-derived
suppressor cells (MDSCs) to distant secondary sites to suppress anti-tumor immunity
and promote tumor progression [21,26]. Tregs can suppress cytotoxic T cell responses
and maintain immune tolerance by producing the immunosuppressive cytokines TGF-β
and interleukin-10(IL-10) [27]. Similarly, MDSCs can inhibit T cell activation. Moreover,
exosome-carried HSP72 can induce the STAT3-dependent immunosuppressive function of
MDSCs, thus achieving immune tolerance [28]. Wang et al. showed that exosome S100A9
can promote MDSC accumulation in tumor tissue and mediate G-MDSC chemotaxis during
colorectal carcinogenesis. Meanwhile, MDSCs can enhance the stemness of colorectal
cancer cells in a partially exosome-dependent manner [29]. Tumor-associated macrophages
(TAM), the most abundant cells in the TME, are crucial for remodeling the microenvi-
ronment surrounding tumor cells, accelerating the formation of an immunosuppressive
TME [30,31]. For instance, M1-type macrophages are involved in anti-tumor immunity,
while M2 macrophages promote the immune evasion capabilities of CRC by generating
anti-inflammatory signals [32], similar to what was shown in several studies [33,34]. For in-
stance, Wang et al. demonstrated that several exosome-encapsulated miRNAs (miR-25-3p,
miR-130b-3p, and miR-425-5p) can induce M2 polarization in macrophages by activating
the PI3K/AKT signal pathway, thereby promoting CXCL12/CXCR4-induced colorectal
cancer liver metastasis (CRLM) [33]. Zhao et al. found that the CRC-derived exosome
miR-934 can induce M2 macrophage polarization by downregulating PTEN expression
and activating the PI3K/AKT signaling pathway. They also showed that polarized M2
macrophages could promote CRLM through a CXCL13/CXCR5/NFκB/p65/miR-934 posi-
tive feedback loop [34]. These results indicate that sEVs promote an immunosuppressive
environment by suppressing immune cells and recruiting immunosuppressive cells. More-
over, sEVs combined with TAMs can promote the development of colorectal cancer. Here,
we summarize the role of CRC-tumor-cell-derived sEVs in shaping the immunosuppressive
microenvironment (Figure 1).

2.2. sEVs Are Involved in Remodeling the Extracellular Matrix of CRC

The extracellular matrix (ECM) is a non-cellular component contained in all tissues.
Its immune and stromal components play a key role in the metastasis and progression
of colorectal cancer [35,36]. Proteins and other RNAs on the surface of sEVs induce
inflammation, fibrosis, and damage to the ECM, thus metastasizing tumor cells to distant
organs. The CAFs are the major stromal cells in CRC tissues. They are involved in tumor
progression [37], tumor metastasis, and drug resistance through paracrine factors [38]. sEVs
promote tumor progression and metastasis through dynamic crosstalk between CAFs and
cancer cells, thus inducing the effectiveness of anti-tumor therapy [39]. Importantly, CAFs
can deposit ECM proteins and secrete growth factors, as well as contract and remodel the
ECM through growth factors, chemokines, miRNAs, and other components carried by
sEVs, ultimately leading to fibrosis development [40,41]. Tumor-cell-derived sEVs play a
crucial role in remodeling the ECM. For instance, Mercedes Herrera et al. demonstrated,
using bioinformatic analysis of sEVs loaded with ncRNA regulatory elements, that CAF-
derived sEVs can mediate specific crosstalk between CAFs, colorectal cancer cells, and
other stromal cells [42]. Jing Ren et al. also found that CAF-derived sEVs can recruit H19,
which is highly expressed in CAFs, to activate the β-linked protein pathway by acting as
a competitive endogenous RNA sponge for miR-141 in CRC. miR-141 can significantly
inhibit the stemness of CRC cells. Therefore, H19 can enhance the stemness of colorectal
cancer cells by blocking miR-141 [43]. Yang et al. recently showed that CAFs can promote
the growth and metastasis of CRC by inducing the exosome circEIF3K [44]. Furthermore,
the exosome miR-590-3p from CAFs can enhance the resistance of CRC cells to radiation



Cells 2022, 11, 1780 4 of 17

therapy through the CLCA4/PI3K/Akt axis, thus providing immunosuppression against
tumor therapy [39]. The lncRNA LINC00659 can be transferred from CAFs to CRC cells
via sEVs, thus promoting CRC development through ANXA2 upregulation [45]. Similarly,
the CAFs-derived sEV microRNA-24-3p can enhance the resistance of colorectal cancer
cells to MTX by downregulating the CDX2/HEPH axis [46]. Notably, specific exosomal
integrins can interact with the extracellular matrix of deposited laminin and fibronectin,
thus leading to increased adhesion to the extracellular matrix and the colonization of
circulating tumor cells [47]. sEVs induce CAFs to remodel the ECM and form an immune-
cell-permeable barrier by building a link between CAFs and cancer cells, thus providing a
suitable environment for the survival of CRC tumor cells (Figure 2).
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Figure 1. sEVs promote the formation of an immunosuppressive environment. sEVs form an immu-
nosuppressive environment by inhibiting immune cells, recruiting immunosuppressive cells, and 
combining with TAMs. sEVs inhibit immune cells by PD-L1 causing immune cells to lose the ability 
to recognize and clear tumor cells, interfering with monocyte differentiation, and inhibiting NK2D 
expression in normal NK cells. KRAS mutation leads to increased IL-8 production, neutrophil re-
cruitment, and the formation of neutrophil extracellular traps (NET). CONDE-h promotes Th17 cell 
differentiation. The methods by which sEVs recruit immunosuppressive cells include: HSP72 in-
duces STAT3-dependent immunosuppressive functions of MDSC, and S100A9 promotes G-MDSC 
proliferation. The methods by which sEVs combine with TAMs are as follows: miR-25-3p, miR-130b-
3p, and miR-425-5p induce the M2 polarization of macrophages by activating the PI3K/AK signaling 
pathway, thereby promoting the CXCL12/CXCR4-induced liver metastasis of colorectal cancer 
(CRLM). Mir-934 induces the polarization of M2 macrophages by down-regulating PTEN expres-
sion and activating the PI3K/AKT signaling pathway; thus, it forms a positive feedback loop of 
CXCL13/CXCR5/NFκB/P65/Mir-934 to promote CRLM. Explanation: MDSC: Myeloid-derived sup-
pressor cells, PD-L1: Programmed death-ligand 1.
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can deposit ECM proteins and secrete growth factors, as well as contract and remodel the 
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Figure 1. sEVs promote the formation of an immunosuppressive environment. sEVs form an
immunosuppressive environment by inhibiting immune cells, recruiting immunosuppressive cells,
and combining with TAMs. sEVs inhibit immune cells by PD-L1 causing immune cells to lose the
ability to recognize and clear tumor cells, interfering with monocyte differentiation, and inhibiting
NK2D expression in normal NK cells. KRAS mutation leads to increased IL-8 production, neutrophil
recruitment, and the formation of neutrophil extracellular traps (NET). CONDE-h promotes Th17
cell differentiation. The methods by which sEVs recruit immunosuppressive cells include: HSP72
induces STAT3-dependent immunosuppressive functions of MDSC, and S100A9 promotes G-MDSC
proliferation. The methods by which sEVs combine with TAMs are as follows: miR-25-3p, miR-
130b-3p, and miR-425-5p induce the M2 polarization of macrophages by activating the PI3K/AK
signaling pathway, thereby promoting the CXCL12/CXCR4-induced liver metastasis of colorectal
cancer (CRLM). Mir-934 induces the polarization of M2 macrophages by down-regulating PTEN
expression and activating the PI3K/AKT signaling pathway; thus, it forms a positive feedback loop
of CXCL13/CXCR5/NFκB/P65/Mir-934 to promote CRLM. Explanation: MDSC: Myeloid-derived
suppressor cells, PD-L1: Programmed death-ligand 1.
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Figure 2. sEV mechanisms of remodeling the extracellular matrix. After NF activation into CAFs,
CAF−derived sEVs can regulate tumor cell proliferation and enhance the viability and drug resistance
of colorectal cancer cells. Additionally, miRNA carried by sEVs can enhance resistance to radiotherapy
via the CLCA4/PI3K/Akt axis. In addition, lncRNA LINC00659 can promote the TME development
of CRC by transferring from CAFs to CRC cells through sEVs and upregulating ANXA2 expression.
sEVs can reshape the extracellular matrix through these pathways. Explanation: NFs: normal blasts,
CAFs: cancer−associated blasts, ECM: Extracellular matrix. “(+)”: promote, “(—)”: inhibit.

2.3. Tumor-Derived sEVs Promote the Metabolism of Promoted Tumor Cells

The increased bioenergetic and biosynthetic demands of tumor cells depend on vari-
ous metabolic pathways autonomously altering their fluxes [48]. sEVs can access metabolic
information from adjacent or distant cells to facilitate the release of bioactive molecules such
as vascular endothelial growth factor (VEGF), lipids, and lactate [49,50]. First, angiogenesis
is a key factor promoting the proliferation and development of CRC tumor cells. Although
normal angiogenesis is essential for development and tissue growth, tumor-induced angio-
genesis provides the oxygen and nutrients necessary for the growth and spread of cancer.
Tumor-induced angiogenesis also removes waste products [51]. Angiogenesis in colorectal
cancer is characterized by a high density of microvessels that accumulate in a well-defined
area of the primary tumor close to the intestinal lumen [52,53]. sEVs can regulate endothe-
lial cell properties by transporting many pro-angiogenic biomolecules, such as vascular
endothelial growth factor (VEGF), matrix metalloproteinases (MMP), and microRNAs,
thus promoting angiogenesis during cancer progression, particularly under hypoxic condi-
tions [48,54]. The miR-25-3p secreted by CRC can be transferred to human umbilical vein
endothelial cells (HUVECs) to regulate vascular permeability and angiogenesis by silencing
KLF2 and KLF4. This process requires exosomal involvement [55]. Tumor-cell-derived
exosomes carrying MiR-21-5p can inhibit the interaction between Krev and capture protein
1 (KRIT1) in HUVECs and activate the β-linked protein signaling pathway by increasing
the downstream targets VEGFa and CCND1, thereby promoting angiogenesis and vascular
permeability in CRC [56]. CRC-cell-derived sEVs can promote the proliferation, invasion,
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and tube formation capacity of HMEC-1 cells by abnormally increasing miR-183-5p levels,
thus inducing angiogenesis through FOXO1 downregulation [57]. Huang et al. found that
exosome-mediated Wnt/β-linked protein signaling can tightly link endothelial cells and
CRC cells under hypoxia, thereby promoting angiogenesis [58]. Several studies have also
found that sEVs are closely associated with other bioactive factors and, thus, can promote
cellular metabolism around tumor tissue by interacting with these bioactive factors. Wei
Wang et al. demonstrated that sEVs carrying miRNAs can prevent ribonucleases from
attacking and thus crosstalking with lipids and their modifying proteins, enzymes, and
miRNAs [49]. Glycolysis enables rapid fluctuations in energy demand, thereby promoting
tumor cell proliferation and metastasis. Exosome-transported cyclic RNA-122 (ciRS-122)
derived from oxaliplatin-resistant CRC can promote glycolysis and drug resistance by
upregulating pyruvate kinase M2 (PKM2) expression in sensitive cells [59]. Lactate creates
an acidic environment, essential for tumor cell metastasis, angiogenesis, and resistance to
treatment. Ma et al. found that U251-cell-derived sEVs can induce lactate production by
upregulating Glut-1, HK-2, and PKM-2 levels [60]. The hypoxic TME induces a glycolytic
phenotype in many cancer cells and characterizes colorectal cancer development. Recent
studies have found that miR-410-3p-rich sEVs can crosstalk with the hypoxic microenviron-
ment of CRC with aerobic cells to enhance tumor progression [61]. Similarly, hypoxia can
also upregulate the expression of CRC-derived exosomal miR-361-3p, thereby promoting
CRC cell proliferation and inhibiting apoptosis [62]. These results indicate that tumor-cell-
derived sEVs promote the release of bioactive factors (VEGF, lipids, and lactate) and the
formation of a hypoxic microenvironment that accelerates the cellular metabolism around
tumor tissue and the development and metastasis of CRC (Figure 3).
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glut-1, HK-2, and PKM-2 levels. In addition, miR-410-3p can promote the formation of an anoxic
microenvironment. Ultimately, these cells metabolize and promote tumor proliferation. Explanation:
VEGF: Vascular endothelial growth factor, HUVECs: human umbilical vein endothelial cells.
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3. Other Cell-Derived sEVs Promote the Development and Metastasis of CRC

Besides tumor-cell-derived sEVs, M2 macrophage-derived sEVs and fibroblast-derived
sEVs also play key roles in the development and metastasis of colorectal cancer. (1) M2
macrophage-derived sEVs can promote the development and metastasis of CRC cells in
various ways, including remodeling the ECM and inducing the expression of immunophe-
notypic antigens in CRC cells. Cathepsin B, D, K, L, and S, as well as MMP-8, MMP-12,
MMP-13, and integrin β1, α4 are highly expressed on M2 macrophage-derived sEVs. These
bioinformatic molecules play crucial roles in remodeling the TME, indirectly suggesting
that M2 macrophage-derived sEVs play a key role in CRC remodeling [63]. M2 macrophage-
derived sEVs can also promote CRC invasion by inducing the epithelial-to-mesenchymal
transition (EMT) of CRC cells. M2 macrophage-derived sEVs with a high expression of
glypican-1 can induce EMT in patients with CRC by suppressing E-cadherin expression
and promoting the expression of vimentin and snail [64]. M2 macrophage-derived sEVs can
promote EMT formation by activating the Wnt/β-catenin axis. M2 macrophage-derived
sEVs carry CD14, CD68, MAC387, CD163, and DAP12 phenotypic antigens that can be de-
tected in CRC. These immunophenotypic antigens promote the complete immune evasion
of tumor cells [65]. Moreover, M2 macrophage-derived sEVs carry miRNAs (miR-21-5p
and miR-155-5p) that promote CRC progression and invasion by suppressing BRG1 expres-
sion [66]. (2) CAF-derived sEVs also promote CRC proliferation and invasion. CAF-derived
sEVs can promote drug resistance and immune evasion in CRC by promoting the formation
of fibrous networks in the ECM through growth factors and proteolytic enzymes [67].
CAF-derived sEVs inhibit mitochondrial apoptosis by promoting EMT in CRC cells and
promoting the expression of miR-92a-3p in CRC cells, thereby activating the Wnt/β-linked
protein pathway and promoting CRC metastasis [68]. Some cells (mesenchymal stem cells)
derived from sEVs can promote the function of immune cells, reduce immunogenicity, and
inhibit the development and metastasis of CRC. However, these should be further explored
in future.

4. Intestinal Microbial-Derived sEVs Promote CRC Development and Metastasis

Many gastrointestinal-associated malignancies (gastric, pancreatic, and colorectal
cancers) occur and progress without microbial ecological dysregulation [69]. Dysbiosis
of the intestinal microbial ecology may trigger the release of sEVs. sEVs derived from
intestinal microbiota are divided into outer membrane vesicles (OMVs) from Gram-negative
bacteria and membrane vesicles (MVs) from Gram-positive bacteria, parasites, fungi, and
mycobacteria, which have similar sizes, structures, and biological functions to sEVs from
mammalian cells [70–72].

The sEVs derived from intestinal microbiota assume bacteria secretion and transport
systems that can be linked through their cargo (DNA and RNA, proteins, lipids, and
other bioactive molecules) to eukaryotic cells; they establish close links [73]. This study
shows that intestinal-microbial-derived sEVs are strongly related to CRC development and
metastasis. The highly permeable intestinal mucosal barrier is connected by tight junc-
tions, avoiding direct contact between the intestinal microbiota and immune cells [74,75].
Intestinal-microbial-derived sEVs can achieve the invasion of parental pathogens into
the intestinal epithelium and subsequently trigger inflammation by altering the compo-
sition of the tight junctions [76]. For instance, the vesicles of Campylobacter jejuni can
enhance the invasion ability of Chlamydomonas jejuni by disassembling linker proteins,
including E-calmodulin and occludin [77]. The development of intestinal inflammation can
significantly promote CRC development. Intestinal-microbial-derived sEVs may initiate
pro-inflammatory signaling and participate in the formation of pre-metastatic ecological
niches for future tumor colonization by interacting with distant organ receptor cells via
systemic circulation. Hickey et al. demonstrated that certain pro-inflammatory cytokines,
such as TNF-α and IL-1β, can cause an inflammatory response through the induction by
sEVs of the symbiotic bacterium θotaomicron, thereby promoting colitis development in
genetically susceptible mice [78]. Cañas et al. also reported that sEVs of the symbiotic
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intestinal microbiota bacterium ECOR12 can modulate the intestinal immune response by
enhancing the secretion of the pro-inflammatory cytokines IL-6 and IL-8 in Caco-2 cells [79].
Additionally, Patten et al. showed that sEVs derived from the symbiotic bacterium E. coli
C25 can drive inflammatory responses in intestinal epithelial cells in vitro by secreting
IL-8 [80]. Pathogens can suppress the host immune system through sEVs derived from
intestinal microbiota to exacerbate infection or trigger an overextended immune response,
leading to sepsis and cancer [81–83]. For example, sEVs released by Lactobacillus and
Bifidobacterium spp. can activate the TLR 2/6 response [84]. In conclusion, sEVs from
the intestinal microbiota play a key role in the development and metastasis of CRC by
participating in the development of local inflammatory responses in the intestine and the
formation of an immunosuppressive microenvironment at local tissue sites.

5. Application of sEVs in the Diagnosis and Treatment of CRC
5.1. sEVs as Early Markers for Colorectal Cancer Diagnosis

sEVs contain unique molecules, including DNA, RNA, microRNA, lncRNA, pro-
teins, and lipids. As a result, they can be used as biomarkers for cancer diagnosis and
to show specific gene expression profiles [85]. Biomarkers may be molecules secreted
by tumors or specific responses of the body due to the presence of cancer. Plasma and
other systems are widespread in the body, making sEVs mobile; thus, they can play a
crucial role in identifying and predicting biomarkers of human cancers. For example,
high levels of expression of highly enriched miRNA in colorectal cancer sEVs, such as
plasma exosomal miR-125a-3p and miR-6803-5p, can increase diagnostic power and act as
a biomarker for analysis in the initial stages of CRC [86,87]. Plasma sEV miR-92b is barely
expressed in patients with CRC and highly expressed in healthy individuals and can be
used as a biomarker for the diagnosis of CRC [88]. Plasma sEV miR-27a and miR-130a
can be used as non-invasive biomarkers for the early detection and prognosis prediction
of CRC [89,90]. A recent raw letter study conducted by screening key pathways and GO
terms regarding up- and down-regulated transcripts identified the following diagnostic
CRC biomarkers: lncRNA BLACAT1 and four down-regulated lncRNAs (LOC344887,
LINC00675, DPP10-AS, and HAGLR) [91]. Another study showed that three exosomal
lncRNA in plasma (LNCV6_116109, LNCV6_98390, and LNCV6_84003) are expressed
completely differently in patients with CRC and healthy individuals and can be used as
diagnostic biomarkers [92]. Liu et al. showed that exosomal lncRNA CRNDE-h expression
is higher in the serum of patients with colonic adenomas than in normal subjects and thus
could be used as a biomarker for CRC diagnosis [93]. Some sEVs carry the highly ex-
pressed lncRNA CCAT2 that promotes CRC metastasis and progression, while the lncRNA
GAS5, when highly expressed, inhibits CRC tumor cell proliferation and invasion. Both
are expressed dramatically differently in patients with CRC and healthy individuals and
can be used as diagnostic and prognostic biomarkers for CRC [94,95]. Furthermore, Paul
et al. demonstrated that the surface density of hyaluronic acid (HA) is significantly higher
in sEVs from colorectal cancer cells than in normal cells, using high-resolution atomic
force microscopy (AFM) and spectroscopy (AFS) techniques [96]. This suggests that sEVs
from colorectal cancer cells are different from colonic epithelial cells at the level of single
vesicles and thus could be used as a potential biomarker for CRC diagnosis. Tian et al. also
analyzed blood samples using HSFCM and found that the level of CD147 positivity in sEVs
was significantly higher in colorectal cancer patients than in healthy controls [97]. As a
platform for the analysis and quantification of surface proteins in individual EVs, HSFCM
has greatly enhanced the understanding of exosome-mediated intercellular communication
and the development of advanced diagnostic strategies. A study showed that 36 proteins
are upregulated and involved in the regulation of the metastatic microenvironment, while
22 proteins are downregulated and involved in tumor cell production and development
in the serum sEVs of patients with CRC [98]. Another study indicated that heat shock
protein 60 (Hsp60) from plasma sEVs can be used for CRC diagnosis [99]. The sEV-derived
protein GPC1 is abundantly expressed in patients with CRC with high sensitivity, while
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sEV CPNE3 is abundantly expressed in CRC tissues and less expressed in other cancers
with relatively high specificity. Based on the biological properties of both, they can be used
as biomarkers for the diagnosis of CRC [100,101]. Some sEVs carry the protein SPARC, and
its high expression often suggests a poor prognosis for CRC [102]. Plasma-sEV-derived
CEA has high sensitivity and specificity in CRC diagnosis and can be used as an early
biomarker for the diagnosis of CRC [103]. Herein, we summarize the value of different
sEVs in the diagnosis of colorectal cancer. (Table 1).

Table 1. Mechanisms of different exosomes in the diagnosis of CRC.

Category Name Expression Use in Colorectal Cancer References

miRNA
lncRNA

miR-92b Downward adjustment Distinguishing CRC from CA [88]
miR-125a-3p Upward adjustment Inhibition of migration and invasion [86]
miR-6803-5p

miR-27a
miR-130a

Upward adjustment
Upward adjustment
Upward adjustment

Suggests poor prognosis
Differentiating CRC patients
Differentiating CRC patients

[81]
[83]
[84]

LOC344887
LINC00675
DPP10-AS
HAGLR

GAS5

Upward adjustment
Upward adjustment
Upward adjustment
Upward adjustment
Upward adjustment

Differentiating between CRC patients
Differentiating between CRC patients
Differentiating between CRC patients
Differentiating between CRC patients

Inhibits cell proliferation, migration, and invasion

[85]
[85]
[85]
[85]
[94]

CCAT2 Upward adjustment Enhanced invasion and metastasis [95]

CRNDE-h Upward adjustment Differentiating between patients with CRC and
those with benign colorectal disease [93]

Protein

LNCV6_116109 Upward adjustment Differentiating between CRC patients [92]
LNCV6_98390 Upward adjustment Differentiating between CRC patients [92]
LNCV6_84003 Upward adjustment Differentiating between CRC patients [92]

CD147
Hsp60

Upward adjustment
Upward adjustment

Differentiating between CRC patients
Induced anti-tumor response

[91]
[99]

GPC1 Upward adjustment Differentiating between CRC patients [100]
CPNE3 Upward adjustment Differentiating colorectal cancer from other tumors [101]
SPARC Upward adjustment Promotes invasion and induces angiogenesis [102]

CEA Upward adjustment Monitoring for CRC recurrence [103]

5.2. The Value of sEVs in CRC Treatment

sEVs can act as carriers for the transfer of drugs to target cells due to their small size
(nanoscale dimension); thus, they could play a crucial role in CRC therapy. For example,
sEVs containing azithromycin prevent the growth of CRC cells in specific cases by deliver-
ing drugs to the target organ [104]. sEV miRNA-375 can prevent the spread of tumor cells
by blocking Bcl-2 in CRC, suggesting that engineered sEVs may be a possible therapeutic
target for CRC by significantly reducing cancer progression [105]. Furthermore, miRNA-
contained sEVs can be used to overcome drug resistance arising from cancer therapy. For
instance, miR-214 enhances the radiosensitivity of CRC by inhibiting autophagy in CRC
cells [106]. In summary, sEVs are crucial for CRC treatment.

Intestinal-microbiota-derived sEVs are useful in CRC treatment due to their inher-
ent properties, such as size, antigenic stability, high immunogenicity, accurate host cell
targeting, capacity for specific cargo delivery, and host immune response [107–109]. A
recent study also demonstrated that intestinal-microbial-derived sEVs have potential in
cancer immunotherapy. For instance, Kim et al. selectively and thermally targeted tu-
mor tissue and induced a long-term anti-tumor immune response through the production
of the cytokines CXCL10 and interferon-gamma by intravenously and systemically ad-
ministering sEVs of Gram-negative bacteria from genetically modified E. coli msbB, thus
completely eradicating the established tumor without significant adverse effects. Sim-
ilar anti-tumor effects have been observed for sEVs from Lactobacillus acidophilus and
Staphylococcus aureus [110]. sEVs derived from intestinal microbiota can also be used to
prevent or treat inflammatory diseases due to their anti-inflammatory properties, thereby
reducing the likelihood of CRC. For example, sEVs derived from Bacteroides fragilis promote



Cells 2022, 11, 1780 10 of 17

the secretion of anti-inflammatory cytokines and inhibit the secretion of pro-inflammatory
cytokines [111]. Intestinal-microbial-derived sEVs, genetically engineered to modify bacte-
ria and subsequently purified and recombinant, are potential cancer vaccines. Intestinal-
microbial-derived sEVs can trigger powerful and durable anti-tumor immune responses,
even in combination with CTLA-4 and anti-PD1 immunotherapies based on surface deco-
ration with multiple heterologous tumor antigens and immunostimulatory bacterial DNA
(CpG motifs) [112]. sEVs can prevent and treat inflammatory, autoimmune, and metabolic
diseases associated with CRC development by transporting miRNAs and regulating the
intestinal microbiota [113–115]. miR-1226-5p and miR-515-5p can reshape the intestinal
microbiota by promoting the growth of Escherichia coli and Clostridium perfringens nuclei,
respectively, thereby avoiding microbiota dysbiosis and CRC development [116]. Despite
sEVs’ potential to play a crucial role in CRC treatment, sEVs are associated with some prob-
lems, possibly related to targeting and purification methods. Therefore, relevant clinical
trials should be refined and improved. This study summarizes the current clinical trials on
the use of sEVs in the diagnosis and treatment of CRC, providing insights for future work
(Table 2).

Table 2. Clinical trials related to the use of sEVs for the diagnosis and treatment of CRC.

NCT Number Title Status Study Results Interventions Characteristics

NCT04523389

Contents of Circulating
Extracellular Vesicles:

Biomarkers in Colorectal
Cancer Patients

Recruiting No Results Available

• Biological: analysis (protein,
lipid, RNA . . . ) of circulating
exosomes, size, and number

• Other: Gathering additional
information about the
patient’s cancer

• Diagnostic Test: Diagnostic test

NCT04298398

Impact of Group
Psychological

Interventions on
Extracellular Vesicles in
People Who Had Cancer

Not yet recruiting No Results Available

• Behavioral: Mindfulness
Based-Cognitive
Therapy (MBCT)

• Behavioral: Emotion-Focused
Therapy Group for Cancer
Recovery (EFT-CR)

• Other: Treatment as usual
(no intervention)

Phase:
Not Applicable

NCT04394572

Identification of New
Diagnostic Protein

Markers for
Colorectal Cancer

Recruiting No Results Available • Biological: Blood sample

NCT01294072

Study Investigating the
Ability of Plant Exosomes

to Deliver Curcumin to
Normal and Colon

Cancer Tissue

Recruiting No Results Available

• Dietary Supplement:
curcumin

• Dietary Supplement:
Curcumin conjugated with
plant exosomes

• Other: No intervention

Phase:
Phase 1

NCT04852653

A Prospective Feasibility
Study Evaluating

Extracellular Vesicles
Obtained by Liquid

Biopsy for Neoadjuvant
Treatment Response

Assessment in
Rectal Cancer

Not yet recruiting No Results Available

• Procedure: Supplementary
blood samples collection
during the normal follow up
of the patients

5.3. Clinical Implications of sEVs as Markers and Drug Carriers in CRC Screening, Diagnosis,
Treatment, and Prognosis

sEVs have very obvious advantages as biomarkers for the early diagnosis, diagnostic
staging, efficacy monitoring, and prognostic assessment of CRC. (1) sEVs have a very high
clinical value in the early screening of CRC. Ren et al. found that sEV-derived miR-196b-5p
was highly differentially expressed in healthy individuals and patients with CRC, where
sEV-derived miR-196b-5p was highly expressed in patients with CRC, but hardly expressed
in healthy individuals, and its accuracy in screening for CRC was 0.88 [117]. (2) sEVs
showed advantages far beyond other biomarkers for the diagnosis of CRC. Donatella et al.
found that sEVs were more sensitive than circulating tumor DNA (ctDNA) and circulating
tumor cells (CTC) for the diagnosis of CRC, with higher sensitivity and specificity [118].
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Furthermore, human plasma sEV-derived miRNAs had higher specificity than total plasma
miRNAs in the early diagnosis of colon cancer. Li et al. found that plasma sEV miRNA
(Let-7b-3p, miR-130-3P, miR-145-3P, and miR-139-3p) were much more accurate than total
plasma miRNAs for the early diagnosis of patients with CRC. The area under the curve
(AUC) for the four markers combined was 0.932 [119]. Another study showed that the
sensitivity of sEV-derived miR-1246 and miR-23a in CRC diagnosis was 92% and 95.5%,
respectively [120]. (3) sEVs have great potential as biomarkers for CRC prognostic analysis.
Tan et al. found that reduced expression of serum sEV miRNA-199ashowed a positive
correlation with poor CRC prognosis, and affected patients tended to have lower survival
rates [121]. Another similar study showed that the sEV-carrying lncRNA MALAT1, at
high levels of expression, showed a significant correlation with poor patient prognosis;
in addition, its high expression was strongly associated with poor quality of life and
resistance to chemotherapeutic agents (oxaliplatin) in patients with advanced CRC [122].
In patients with CRC, increased levels of sEV miR-429 expression were significantly and
positively correlated with lower OS and poor prognosis [89]. (4) sEVs can be used as drug
carriers and ribonucleic acid therapeutic agents for the treatment of CRC. sEVs, as a special
targeted drug delivery system, can facilitate more drug flow to tumor cells, avoiding
phagocytosis by macrophages and cleavage by some special enzymes. In treatments
to prevent the development of CRC, the use of the targeted delivery of sEVs carrying
adriamycin to the target organ can have significant preventive effects, and the incidence of
CRC is greatly reduced [104]. When loaded with paclitaxel on milk-derived sEVs, modified
by relevant techniques, and then infused back into humans, the tumor-suppressive ability
of paclitaxel was significantly enhanced and produced fewer side effects [123]. sEVs
delivering small molecule RNAs have shown great value in CRC therapy. sEVs rely on
small molecule RNA therapies such as small interfering (siRNA) and miRNA therapies.
sEVs are used as nano-delivery systems loaded with siRNAs for targeted delivery to
target cells. The sEV-based delivery systems are far superior to other delivery systems
in inhibiting tumor growth [124]. Loading miRNA-21 and chemotherapeutic drugs (5-
fluorouracil (5-FU)) onto sEVs significantly enhanced the anti-tumor effect of 5-FU on
CRC [125]. Through nanoengineering techniques, sEVs carrying miR-214 could significantly
enhance the sensitivity of radiotherapy and inhibit the growth of CRC [106]. sEVs loaded
with miR-25-3p inhibitors could significantly inhibit the vascular permeability of CRC
tumor tissues and suppress tumor growth and metastasis in patients with CRC [55]. There
are already a large number of clinical trials investigating the clinical role of sEVs in the
early detection, diagnosis, efficacy monitoring, and assessment of the prognosis of CRC.
For example, in a search through Clinicaltrials.gov, one finds NCT04523389, NCT04394572,
NCT01294072, and other relevant clinical trials that focus on the clinical feasibility of
applying sEVs for CRC diagnosis and prognosis and as drug carriers for treatment. Of
course, sEVs currently have some uncertain risk factors, such as the question of whether
they will continue to be efficacious and safe for long-term application. The purification
and isolation of sEVs are also big challenges at present, and these limitations deserve to be
explored in future research.

6. Conclusions

In this review, we summarized the role of sEVs as a key force promoting CRC onset,
progression, and metastasis. Tumor-derived sEVs mediate intercellular communication
and shape the microenvironment surrounding colorectal cancer in various ways, includ-
ing shaping the immunosuppressive environment and remodeling the ECM and cellular
metabolism. Intestinal-microbiota-derived sEVs drive CRC development by promoting
inflammation and immunosuppression. Finally, we summarized the potential use of sEVs
as biomarkers for the early diagnosis of colorectal cancer and the use of sEVs in combina-
tion with other therapeutic approaches to treating colorectal cancer based on TME-based
research. Therefore, future sEV research may provide further insights into the mechanisms
of CRC development and improve the diagnosis and treatment of CRC.
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miRNA/miR microRNA
IECs Intestinal epithelial cells
CDT Cytolethal distending toxin
TME Tumor microenvironment
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PD-L1 Programmed death-ligand 1
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TGF-β Transforming growth factor-β
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