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Abstract: Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-
associated inflammation contributes to tumor initiation and progression. However, it remains unclear
whether a collapse of the balance between the antitumor immune response via the immunological
surveillance system and protumor immunity due to cancer-related inflammation is responsible for
cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal
transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation
in malignant cancer cells mediates extremely widespread functions, including cell growth, survival,
angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis.
In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor
immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and
tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by
oncogenic mutations but has important oncogenic and malignant transformation-associated functions
in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of
studies aiming towards understanding the molecular mechanisms underlying the proliferation of
various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that
modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein
5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant
mesenchymal tumors. In this review, we summarize recent advances in our understanding of
the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of
cancer development and malignant transformation involving STAT3 activation that we have identified
to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway
to augment STAT3 activity.

Keywords: STAT3; tumorigenesis; immune evasion; STAP-2; ARID5A

1. Introduction

The importance of chronic inflammation in the mechanism of cancer has been well-
established [1]. Inflammation plays a crucial role in almost all aspects of the tumorigenic
process [2]. The role of inflammation in tumorigenesis has been extensively investigated,
and recent lines of evidence provide a possible links between inflammation and tumor
recurrence and metastasis [2,3]. However, the effects of inflammatory signaling on tumori-
genesis remain elusive.
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In 1994, signal transducer and activation of transcription 3 (STAT3) was discovered
as a transcription factor involved in interleukin-6 (IL-6)-induced hepatic acute phase re-
sponses by Kishimoto and Akira’s group and Darnell’s group [4,5]. IL-6, the best-known
protumor cytokine, and its family of cytokines, including IL-11, IL-27, IL-31, cardiotrophin-
1, ciliary neurotrophic factor, leukemia inhibitory factor (LIF), and oncostatin M (OSM),
are involved in crucial physiological and/or pathological processes, such as cell growth,
survival, differentiation, energy metabolism, angiogenesis, migration, invasion, metastasis,
inflammation, and autoimmune diseases [6–10]. The IL-6 family cytokines, excluding IL-31,
can transduce intracellular signals linking with the Janus kinase (JAK)-STAT3 pathway,
the Src homology 2 (SH2)-containing protein tyrosine phosphatase-2 (SHIP2)-Ras-Raf-MEK-
extracellular signal-regulated kinase (ERK) pathway, and the phosphoinositide 3-kinase
(PI3K)-Akt pathway mediated by the activation of shared signal-transducing receptor
component glycoprotein 130 (gp130, IL6ST) [6–10]. In these signaling pathways, STAT3
is considered to be a key signaling molecule of the IL-6-gp130 pathway because it acts as
an oncogenic driver and plays an important role in mediating tumor-promoting inflam-
mation [6,7,9,11,12]. Importantly, suppressor of cytokine signaling 3 (SOCS3) is induced
by STAT3 and is postulated to modulate the primary negative regulation of the gp130-
mediated signaling pathway [13,14].

Besides the IL-6 family, activation of cellular STAT3 is also triggered by hepatocyte
growth factor receptor, c-MET, epidermal growth factor (EGF) receptor (EGFR) [15,16],
and Src family kinases [11,12]. Furthermore, it has been reported that G-protein-coupled
receptors, such as sphingosine-1-phosphate receptor 1, stimulate STAT3 via JAK and Src
family kinases [17,18] and that Toll-like receptors (TLRs), such as TLR9 and TLR4, are
considered to play crucial roles in inflammation via the activation of the JAK-STAT3
pathway [19–21]. MicroRNAs (miRNAs) such as miR-17-5p, miR-20a, miR-124, and miR-
551b-3p have emerged as key modulators of cancer biology, and some of these miRNAs have
been shown to be pivotal in the regulation of the JAK-STAT3 pathway [22–26] (Figure 1).

Moreover, STAT3 not only contributes functionally to promoting tumor cell prolif-
eration, survival, invasion, angiogenesis, and immune evasion, but it has been recently
indicated to play crucial roles in the inflammation associated with tumorigenesis, obesity
and metabolic syndrome, the cancer stemness pathway, and premetastatic niche forma-
tion [11,12,27–32]. Furthermore, STAT3 has been shown to be involved in the formation of
immunosuppressive tumor microenvironments (TMEs) via regulating not only immune
cells but also cancer-associated fibroblasts (CAFs) and endothelial cells.

We previously performed a series of studies analyzing the roles of signal-transducing
adaptor protein-2 (STAP-2) in the proliferation of several types of cancer cells via acting as
an adaptor molecule that modulates STAT3 activity [33] and recently found that AT-rich
interactive domain-containing protein 5A (ARID5A) functions as an RNA-binding molecule
that stabilizes mRNAs such as those of indoleamine 2,3-dioxygenase 1 (IDO1), C-C motif
chemokine ligand 2 (CCL2), and STAT3, resulting in the induction of an immunosuppres-
sive TME in malignant tumors [34]. In this review, we provide an overview of the recent
findings regarding the intrinsic and extrinsic roles of STAT3 during tumor progression.
We further introduce the novel molecular mechanisms that we have identified to date
involving STAT3 activation, cancer development, and malignant transformation. Finally,
we address the potential therapeutic strategies against malignant tumors by targeting
the signaling pathway to augment STAT3 activity.
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Figure 1. Multifaceted roles of STAT3 in physiological and pathological processes, and inhibitors
targeting STAT3 signaling. STAT3 is activated by specific cytokines, growth factors, etc., and con-
tributes to multiple physiological functions by regulating its target genes as a transcription factor.
Representative STAT3 inhibitors are classified as those that target STAT3 directly (e.g., SH2 domain
and DNA-binding domain inhibitors) and indirectly (e.g., JAK kinase and IL-6 inhibitors).

2. STAT3 Signal in Cancer Cells

IL-6 is a well-established tumor-promoting cytokine among the IL-6 family of cy-
tokines, which activates multiple STAT3-mediated tumor initiation and progression path-
ways [11,12,35,36]. For example, the IL-6/STAT3 axis enhances the transcriptional activa-
tion of various molecular targets that are crucial for cell cycle progression and survival
(e.g., cyclin D1, myc, Bcl2-like 1, survivin, and miR-21) and angiogenesis (e.g., hypoxia-
inducible factor 1α, vascular endothelial growth factor (VEGF), and matrix metallopro-
teinases (MMPs, e.g., MMP2, MMP7, and MMP9)) [37–39]. In the late stages of cancer,
IL-6/STAT3 may promote the gain of invasive activity and the metastatic dissemination
of cancer cells by inducing epithelial–mesenchymal transition (EMT) transcription factors
(EMT-TFs), such as SNAI1 and TWIST [40]. Notably, the EMT program in cancer biology
has been implicated to facilitate not only cell motility and invasiveness but to also possibly
be involved in cancer stem cell (CSC) status and the resistance to anticancer drugs via
epithelial–mesenchymal plasticity [41–43]. Consistently, IL-6/STAT3 signaling in cancerous
EMT also results in the acquisition of cancer stemness in cancer cells; the self-renewal and
population expansion of CSCs requires STAT3 in cooperation with stem-cell-associated
transcription factors, such as NANOG [44]. In addition, IL-6/STAT3 signaling is cru-
cial for the shift from non-CSCs to CSCs by upregulating the expression of Oct4 [45].
These functions of IL-6/STAT3 signaling ultimately lead to the development of several
multidrug-resistant and malignant phenotypes [44,45] (Figure 1).
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2.1. Pancreatic Cancer

High serum levels of IL-6 have been associated with poor overall survival prognosis
in patients with highly malignant pancreatic cancer [46], and increased activity of IL-
6/STAT3-mediated signaling has been reported to be associated with poor prognosis in pa-
tients with pancreatic ductal adenocarcinoma (PDAC) after resection [47]. The activation of
STAT3 in PDAC has been reported in patient-derived clinical specimens and pancreatic
cancer cells [48] and is a prognostic risk factor [49]. IL-6 also induces a mesenchymal
phenotype in human pancreatic cancer cells via STAT3 activation and SNAI1 induction [50].
Interestingly, in a mouse model, STAT3 is involved in the reprogramming of acinar-to-ductal
metaplasia (ADM), which is triggered by the sustained exocrine-tissue-specific expression
of pancreatic and duodenal homeobox 1 (Pdx1), which is a pancreatic-progenitor-specific
transcription factor [51]. ADM transdifferentiation occurs in chronic pancreatitis via STAT3
and is associated with pancreatic intraepithelial neoplasia (PanIN), which is a necessary
step for the generation of neoplastic precursor lesions [52,53]. In a PDAC mouse model
driven by KRAS [52,53], for instance, it has been reported that pancreatic epithelial cells
bearing the constitutively active KRAS mutation KRASG12D trigger inflammation activation
by recruiting immune cells, particularly myeloid cells, that facilitate the production of IL-6
and soluble IL6R (sIL6R) and, in turn, activate STAT3 via IL-6 trans-signaling through
the binding of IL-6 to the soluble form of IL6R and the subsequent binding of IL-6 and
sIL6R complexes to gp130-expressing cells [52]. Dysregulated STAT3 activation due to
the homozygous loss of SOCS3 in the pancreas leads to the accelerated progression of
PanIN and the onset of PDAC [52]. It has also been shown that the activation of KRAS
increases cytokine levels, such as IL-6 and IL-11 in epithelial cells, which subsequently
drives STAT3 activation in an autocrine manner, and that STAT3-triggerd MMP7 is neces-
sary for tumor progression but not for tumor onset, which might be regulated by other
STAT3 targets [53].

Because of the TME of PDAC, in which the low vascular density results in severe hy-
poxia and limited nutrient utilization, PDAC cells are known to have increased autophagy
to rewire their metabolism to survive and maintain metabolic homeostasis in harsh environ-
ments [54,55]. In the mouse model of PDAC caused by KRAS mutations, increased levels
of autophagy are required for IL-6-induced STAT3 activation. Mechanistically, the receptor
for advanced glycation products promotes the IL-6-driven activation of STAT3 signaling
in mitochondria, providing a bridge between autophagy and the IL-6-STAT3 signaling
pathway [56].

2.2. Colorectal Cancer

Increased levels of IL-6 and sIL6R in the circulating blood and intestine in patients
with inflammatory bowel disease are primary risk factors for colitis-associated cancer
(CAC) [57]. The serum levels of IL-6 in patients with colorectal cancer (CRC) are correlated
with the malignant tumor grade, and high IL-6 levels (≥10 pg/mL) are an independent
indicator of poor prognosis [58]. Controversially, although it has also been shown that
the IL-6 levels in the serum correlate with disease progression in CRC patients, the IL-6 level
is not an independent prognostic marker [59]. On the other hand, the activation of STAT3
has been reported to associate with poor outcomes in CRC patients [60–62]. The expression
of both IL6R and gp130 have been observed in epithelial cells of the intestine and in immune
cells, and the release of membrane-bound IL6R has been detected in the serum with
the progression of CAC [63]. sIL6R released within the TME can induce STAT3 activation
in gp130-expressing cells by trans-signaling [64].

Compositional changes in the microbiota are associated with a predisposition to
the development of colorectal tumors. It has been demonstrated that a high intake of dietary
fat and meat is associated with a high risk of colorectal cancer, which may result from diet-
induced differences in the microbiota composition and metabolic activities [65]. It has also
been shown, using a CAC mouse model created by the injection of azoxymethane (AOM)
followed by treatment with dextran sulfate sodium salt (DSS), that apoptosis-associated
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speck-like protein containing a caspase recruitment domain or NOD-like receptor family
pyrin domain containing 6 performs important functions in CAC progression. Furthermore,
an interesting finding has been observed in that wild-type mice cohabitating with mice
lacking these inflammasome genes are more vulnerable to the initiation of CAC [66].
Mechanistically, IL-18-induced changes in the microbiota induce CC-chemokine ligand
5-driven inflammation, which accelerates epithelial cell proliferation through the regional
activation of the IL-6/STAT3 pathway, eventually resulting in cancer formation [66].

Although the signal transduction of IL-6 is crucial for STAT3 activation in CRC ini-
tiation and development [63,67–69], the ablation of STAT3 in intestinal enterocytes has
more significant effects on mucosal damage and regeneration, tumor growth, and prolifer-
ation than the lack of IL-6 in the CAC model induced by AOM and DSS [68], indicating
that other cytokines involved in STAT3 activation, such as EGF family growth factors,
IL-11, and IL-22, as well as hormones, such as leptin, may drive the activation of STAT3
in inflammation-induced CRC cells.

Sporadic CRC in colorectal adenomatosis Apc (Min/+) mice, a commonly used an-
imal model bearing numerous adenomatous polyps reflecting familial adenomatosis of
the colon based on heterozygosity for Apc truncation mutations, is also essential for IL-6
signaling [70,71]. Apc (Min/+) mice lacking STAT3 had a reduced occurrence of and sup-
pressed the growth of early adenomas [72]. However, STAT3 deficiency promoted late
tumor progression and led to the formation of invasive and metastatic carcinomas via
the enhancement of carcinoembryonic antigen-related cellular adhesion molecule 1, which
is involved in intercellular adhesion [72]. Conversely, it has also been suggested that STAT3
does not affect tumorigenesis, but the downregulation of Snail1 inhibits the transition from
adenoma to cancer in Apc (Min/+) mice [73]. Additionally, IL-11 has been shown to corre-
late more strongly than IL-6 with increased STAT3 activation in human CRC specimens [70].
Subsequently, it has been demonstrated that IL-11/STAT3-mediated signaling functions
as a stronger promoter of the progression of sporadic and inflammation-associated CRC
than IL-6/STAT3 signaling in the progression of sporadic and inflammation-associated
CRC progression, suggesting that IL-11/STAT3 signaling is a promising therapeutic target
for the cure of CRCs [70,74]. Notably, the results of the possible tumor-suppressive roles
of STAT3 in a CRC mouse model require further investigation regarding the underlying
molecular mechanisms and consistency with clinical observations.

IL-6, together with transforming growth factor beta (TGF-β), induces the generation
of Th17 cells, and Th17 cells and other cells producing IL-17A trigger sporadic CRC in mice
and humans [75–77]. The “Th17 gene expression profiling” in stage I to II CRCs is correlated
with a significant reduction in disease-free survival [77]. The product of human colonic
bacterium, enterotoxigenic bacteroides fragilis, substantially induced CRC onset via STAT3
activation in Th17 cells [78]. In inflammation-associated colon cancer, increased TLR4
expression in intestinal epithelial cells leads to the activation of STAT3, which promotes
the growth of CRC in vivo [21]. Furthermore, TLR4/STAT3 signaling has been shown to
correlate with the clinical stage in human colorectal adenocarcinoma [21].

2.3. Prostate Cancer

The IL-6 levels in serum are increased in patients with castration-resistant or untreated
metastatic prostate cancer and are associated with poor outcomes and resistance to treat-
ment with chemotherapy [79]. Serum sIL6R levels have also been shown to be associated
with the progression and metastasis of prostate cancer [79]. Serum IL-11 is a potential
tumor biomarker for advanced prostate cancer [80]. The augmented expression of IL-11R
and the activation of STAT3 have been observed in human prostate cancer [81,82], indi-
cating IL-11R as a promising therapeutic target against human androgen-resistant and
advanced prostate cancer [82]. However, the activation status of STAT3 has been reported
to be inversely associated with the progression of distant metastases in prostate cancer [83],
whereas conflicting reports suggest that it is an effective prognostic marker for prostate can-
cer [84]. Therefore, further evaluation is warranted. Furthermore, IL-6/STAT3 signaling has
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been implicated in the conversion from androgen-sensitive to androgen-resistant prostate
cancer via the recruitment of myeloid-derived suppressor cells (MDSCs) [85,86]. Using
a mouse model of prostate cancer, androgen deprivation has been shown to activate nuclear
factor-κB (NF-κB) and STAT3 signaling in prostate cancer cells via leukocyte infiltration,
which triggers androgen-dependent tumor cell death and consequently promotes androgen-
independent survival. However, cytokines that exclusively activate STAT3 signaling in this
environment have not yet been identified [87]. NF-κB activation in prostate cancer cell lines
leads to the increased production of IL-6, which contributes to docetaxel resistance [88].
Thus, treatment by the simultaneous inhibition of NF-κB and IL-6/STAT3 signaling is
a possible therapeutic strategy to improve the response to chemotherapy and radiation
in prostate cancer. STAT3 has been demonstrated to directly bind to androgen receptors
and to transcriptionally augment androgen-receptor-targeted genes, even upon a lack of
high doses of androgen [89]. In contrast, the silencing of androgen receptor expression
enhances CSC-like traits in prostate cancer via IL-6/STAT3 signaling [32]. In addition,
blocking the JAK-STAT3 axis suppresses tumor onset and the self-renewal of prostate
CSC-like cells [90].

2.4. Breast Cancer

Serum IL-6 levels in breast cancer patients have been reported to correlate with a poor
prognosis and metastasis [91,92]. In contrast, local intratumoral autocrine/paracrine IL-6
signaling is crucial for regulating breast cancer cell proliferation, metastasis, and cancer
stem cell self-renewal [93,94]. Augmentation of the IL-6-meditaed inflammatory loop
induces resistance to trastuzumab, a HER2-targeted therapy used for HER2-positive breast
cancer, by expanding the CSC population [95]. IL-6/STAT3 signaling is required for
the maintenance of breast CSCs and tumor growth [31]. In particular, the IL-6/STAT3
pathway was found to be preferentially active in CD44+CD24− breast cancer cells, which
have stem-cell-like characteristics, compared with other tumor cell types, and the inhibition
of JAK2 decreased their number and blocked the growth of xenografts [31]. In addition,
high levels of IL-6 were associated with resistance to paclitaxel in patients with malignant
breast cancer [96]. However, the activation of STAT3 does not appear to be an independent
marker of breast cancer prognosis [97,98]. Notably, the upregulated expression of IL-11
and the gp130-STAT3 pathway are implicated in the bone metastasis of breast cancer [99].
Although the activation of the IL-6/STAT3 signal has been primarily identified as being
necessary for the proliferation of several types of CSCs, tumor-derived erythropoietin,
mainly released under hypoxic conditions, also activates the JAK2–STAT3 axis in breast
CSCs and promotes self-renewal [100].

2.5. Head and Neck Cancer

Increased expression levels of IL-6 and its receptor have been shown to contribute to
poor prognosis in patients with head and neck cancer (HNSCC) [101,102]. Consistent with
these findings, STAT3 signaling was found to be hyperactivated in HNSCC and to lead
to poor outcomes, but STAT3 mutations are rarely detected [35,103]. Mutations in protein
tyrosine phosphatase receptors (PTPRs), such as PTPRT and PTPRD, appear to frequently
occur in HNSCC, indicating one cause of the STAT3 hyperactivation in HNSCC [104,105].
STAT3 signaling is a crucial pathway for the regulation of gene expression that promotes
cell proliferation and survival as well as for the expression of growth factors and cytokines
(such as IL-6, IL-10, VEGF, and TGFβ) that drive immune suppression [35].

EGFR, which acts upstream of the STAT3 signaling pathway, is overexpressed in 80% to
90% of HNSCC tumors and is linked to an overall decrease in survival and progression-free
survival [106,107]. This finding led to the approval of the anti-EGFR monoclonal antibody
cetuximab for the treatment of HNSCC. In addition, other receptor tyrosine kinases, such as
HER2 and MET, are overexpressed in HNSCCs, and their overexpression may be associated
with the resistance of HNSCCs to EGFR-targeted drugs that act via the activation of STAT3
and its gene targets [108–110].
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To date, it has been well-documented that EMT is commonly involved in the acqui-
sition of invasiveness and metastatic potential in malignant HNSCC tumors [111,112].
Mechanistically, IL-6 induces EMT changes in HNSCC cells via the activation of STAT3
signaling [113]. Additionally, cytokines and growth factors in the TME, particularly IL-6,
EGF, and hepatocyte growth factor, suppress anoikis by activating tumor cell signaling path-
ways, including the RAS-MAPK, PI3K-mechanistic target of rapamycin kinase, and STAT3
pathways [114–116]. Notably, anoikis suppressors in the TME are produced by infiltrat-
ing immune cells, CAFs, endothelial cells, and tumor cells themselves [114], suggesting
highly complicated crosstalk between the various cell types that contribute to metastasis
in HNSCC.

2.6. Lung Cancer

Lung cancer is the leading cause of cancer-associated deaths worldwide, and the most
common type of lung cancer is non-small-cell lung cancer (NSCLC), accounting for 85% of
all lung cancer cases [117]. The STAT3-activating cytokine IL-6 is upregulated in the serum
and exhaled breath condensate of NSCLC patients and correlates with a higher risk of
metastasis and chemotherapy resistance [118–125]. Increased IL-11 expression has also
been detected in the serum, tumors, and exhaled breath condensate of NSCLC patients
and is associated with a higher risk of metastasis [126,127]. A high expression level of
OSM is associated with poor outcomes in patients with NSCLC and enhances the EMT of
NSCLC cells [128]. In addition, a sustained activation of STAT3 occurs in more than 50% of
NSCLC patients [129,130], and its increased expression leads to low-grade tumor differen-
tiation, lymph node metastasis, clinical stage progression, and drug resistance [131–133].
Mutations in receptor tyrosine kinases, such as EGFR, and Src family proteins have been
associated with the constitutive activation of STAT3 in NSCLC [133,134], and STAT3 activa-
tion has been associated with lymph node metastasis and clinical stage progression and
is an independent prognostic factor of NSCLC [135,136]. To date, the tumor-promoting
functions mediated by STAT3 signaling in NSCLC have been well-documented to pro-
mote cell survival, angiogenesis, drug resistance, cancer cell stemness, and cancer immune
evasion [117]. As a result, highly increased STAT3 expression enhanced the proliferation,
survival, and radioresistance of NSCLC cells [132], whereas dominant-negative STAT3
resulted in the suppression of human lung cancer cell proliferation and invasive poten-
tial [137].

JAK-STAT3 signaling occurs during the early adaptive response to EGFR-tyrosine
kinase inhibitor (TKI) therapy in EGFR-mutant NSCLC and may occur together with
the downstream signaling of NF-κB activation [138]. In preclinical NSCLC models, such as
patient-derived tumor xenograft models and cell lines, response rates to EGFR TKI therapy
were improved by the addition of JAK or STAT3 inhibitors [138–141]. IL-6 autocrine
signaling by tumor cells enhanced the activation of the JAK-STAT3 signaling pathway,
whereas the addition of neutralizing anti-IL-6 antibodies reduced tumor growth in a mouse
model [134,142]. Nevertheless, early clinical trials showed only a 5% response rate to
treatment with the JAK inhibitor ruxolitinib in combination with erlotinib in patients
who showed cancer progression during their prior treatment with erlotinib, suggesting
that treatment with these drug combinations is not able to reverse previously established
drug resistance [143]. Because early adaptive activation of JAK-STAT3 signaling was
observed in preclinical models in response to EGFR TKI treatment [134,141], a combination
of a JAK and/or STAT3 inhibitor and an EGFR TKI may be necessary for therapeutic
efficacy [133,137]. Therefore, the JAK inhibitor INCB39110 has been investigated for its use
as a treatment in combination with the third-generation EGFR KI osimertinib in patients
with the EGFR-T790M mutation, which is a secondary site mutation in which methionine
is substituted for threonine at position 790 that is found in more than 50% of patients with
acquired resistance to EGFR TKIs, such as erlotinib and gefitinib. [144]. The coactivation of
STAT3 and Yes1 associated transcriptional regulator (YAP1) has also been associated with
the promotion of tumor cell survival after EGFR TKI treatment, and the co-inhibition of
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EGFR, STAT3, and Src-YAP1 signaling demonstrates a more effective synergistic effect than
the single use of an EGFR TKI [139].

3. STAT3 in Cells of the TME

The TME of most cancers is rich in immune cells, immunosuppressive, and often
affected by the complex immunomodulatory actions of IL-6 family cytokines. IL-6/STAT3
signaling in Th1 cells has the most obvious effect on the TME by suppressing cell-mediated
antitumor immunity, whereas chronic inflammation contributes to the promotion of tumor
progression and the dysregulation of angiogenesis and affects the recruitment, retention,
and infiltration of leukocytes as well as immune responses via the activation of IL-6/STAT3
signaling in multifaceted innate and adaptive immune cells and nonimmune cells, such
as cancer-associated fibroblasts and endothelial cells. In particular, during tumor initia-
tion, the IL-6/STAT3 signal promotes the generation of pathogenic Th17 cells and MDSCs,
suppressing antigen-presenting dendritic cells and antitumor cytotoxic CD8+ T cells and
promoting regulatory T (Treg)-cell activity and tumor-associated macrophage phenotype
switching from tumorigenic M1-type traits to immunosuppressive M2-type traits. Similarly,
IL-11/STAT3 signaling facilitates inflammation-associated tumorigenesis in the gastroin-
testinal tract and polarizes T cells and macrophages to a more immunosuppressive pheno-
type [11,145–147]. In addition to its effects on tumor-associated immune cells, the enhanced
activity of STAT3 via IL-6 family cytokines on CAFs is of great interest regarding its indirect
tumor-promoting effects (Figure 1).

3.1. Immune Cells

STAT3 promotes immunosuppressive effects on the functions of CD8+ effector cells.
The ablation of STAT3 in hematopoietic cell lineages facilitates antitumor immunity to
inhibit tumor proliferation and metastasis via enhancing the functions of CD8+ T cells,
natural killer (NK) cells, dendritic cells, and neutrophils in a murine model of melanoma,
suggesting that STAT3 signaling may suppress tumor immune surveillance systems [148].
In addition, in a mouse transplant model, a loss of STAT3 signaling in the hematopoietic
compartment facilitated the recruitment of tumor-infiltrating effector T cells and attenuated
the infiltration of Treg cells. Consistently, the activation of STAT3 has been shown to be
crucial for restricting the recruitment and activation of CD8+ T cells that are required to
prevent the progression of melanoma [149,150]. Similarly, constitutively active STAT3
in human CD4+ T cells suppresses antitumor immunity by blocking the production of
granzyme B, tumor necrosis factor (TNF), interferon gamma (IFNγ), IL-13, and other
inflammatory cytokines [151].

IL-6/STAT3 signaling in CD4+ T cells is crucial for the differentiation of Th17 cells
via the expression of RAR-related orphan receptor gamma [152–154]. Th17 cells comprise
approximately 5% of the CD4+ T cells in PDACs. The role of Th17 cells in the TME is also
context-dependent. In PDAC, IL-17 secretion from γδ T cells and Th17 cells may enhance
antitumor immunity [155]. However, early in PDAC carcinogenesis, IL-17 has a direct
mitogenic effect on KRAS-mutation-induced PanIN cells expressing IL-17R [156]. Although
the effects of distinct T-cell subsets depend on the underlying immune context of the tumor
due to various physiological conditions and environments and may be altered during
the tumor progression of PDAC, the regulation of the differentiation and function of T cells
in PDAC TMEs plays a crucial role in tumor immunity.

STAT3 has been demonstrated to be a transcriptional activator of the immune check-
point molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA4), programmed cell
death 1 (PDCD1, also known as PD-1), and CD274 (also known as PD-L1) in T cells. Con-
sistently, the promoter region of the PD-1 gene contains STAT3 binding sites, and PD-1
expression is promoted in response to signaling via the T-cell receptor/nuclear factor of ac-
tivated T cells, IL-6/STAT3, and IL-12/STAT4 [157]. Notably, it has been demonstrated that
PD-1 signaling is activated via STAT3 on CD4+ T cells and promotes collagen production



Cells 2022, 11, 2618 9 of 25

by fibroblasts in pulmonary fibrosis, indicating the role of STAT3 in immunosuppression
and tumor-promoting responses in the TME [158].

It has been well-documented that IL-6 inhibits the TGF-β-induced generation of Treg
cells [159] via the IL-6/STAT3-mediated direct suppression of forkhead box P3 (FOXP3),
which is a key transcriptional regulator of Treg cell differentiation on naive T cells [160].
Importantly, these inhibitory effects of IL-6/STAT3 signaling are restricted to inducible Treg
cells and have no effects on the differentiation and function of natural Treg cells [161]. In-
terestingly, in the TME, IL-10-mediated STAT3 activation promotes Treg cell differentiation
and enhances CTLA4 expression [162]. STAT3 can also activate FOXP3 gene expression,
resulting in the promotion of Treg differentiation [163,164]. Therefore, STAT3 can regulate
the peripheral immunity and tolerance of effector T cells in the TME, indicating that STAT3
is a potential therapeutic target to suppress the formation of an immunosuppressive TME.

The existence of M2 macrophages in the TME has been shown to be associated with
poor outcomes in patients with most types of solid tumors [165]. Excess STAT3 activa-
tion promotes the polarization of M2 macrophages and increases the expression levels of
arginase-1 (ARG-1), Fos-related antigen 1, TGF-β, IL-10, and VEGF-a, which are M2-associated
markers [166]. M2-polarized macrophages have been implicated in the promotion of tumor
growth of melanoma and Lewis lung cancer [166]. M2 macrophages can also facilitate
STAT3 signaling in breast cancer cells to promote tumor proliferation [167], and STAT3
activation in M2-polarized macrophages can activate STAT3 signaling in ovarian cancer
cells to promote their growth via the production of IL-6 and IL-10 [168]. In the TME, the Th2
cell cytokine IL-4 can also be activated by macrophages to promote their growth and induce
STAT3-dependent cathepsin secretion by macrophages, supporting the development of
pancreatic neuroendocrine tumors [169]. The TLR-induced increase in the activation of
STAT3 has been shown to increase PD-L1 levels in M2 macrophages [170].

MDSCs, which are derived from pathologically activated neutrophils and monocytes,
have been implicated in the promotion of immunosuppressive effects on antitumor im-
mune cells in the TME [171]. STAT3 promotes the differentiation and expansion of MDSCs,
thereby enhancing their ability to suppress effector T cells and promote the differentiation
of Treg cells, which enable the augmentation of tumor formation [172]. The knockdown of
STAT3 in MDSCs derived from patients with prostate cancer reduced the immunosuppres-
sive functions of MDSCs against effector T cells by STAT3 [173]. Notably, a mouse model of
acute colitis bearing the Y757F point mutation in murine gp130 (gp130Y757F/Y757F), which
abrogates the SOCS3- and/or SHIP2-mediated negative feedback loop of the IL-6/STAT3
signal, resulting in the hyperactivation of STAT3 and has been shown to be resistant to
colorectal damage and weight loss. This effect was shown to be produced by a small num-
ber of STAT3-induced granulocytic MDSCs (gMDSCs; also known as polymorphonuclear
MDSCs [171]) with high expression of Arg1 and anti-inflammatory Th2 cytokines, such
as IL-10 and TGF-β, [174], indicating that STAT3 promotes a precancerous host defense
response during ulcerative colitis. In addition, gMDSCs are enriched by the local presence
of IL-11, which activates STAT3 in CRC [175].

To limit the destructive responses of neutrophils, STAT3 necessarily acts as a negative
regulator of neutrophil functions, suppresses the production of antitumor Th1 cytokines,
such as IL-1, TNF, and IFNγ [176], and causes the unresponsiveness of neutrophils to
chemotaxis by CXC-chemokine receptor 2 ligands [177,178]. Although neutrophils are
necessary to limit the destructive inflammatory effects on the host, they may also facilitate
tumorigenesis. In fact, the abrogation of STAT3 in neutrophils enhanced the cytolytic activ-
ity of neutrophils and induced tumor regression [148]. Similarly, STAT3 deletion in NK cells
increased the expression of cytotoxic factors, such as perforin and granzyme B, and the acti-
vation of the NK cell marker CD226 [179]. On the other hand, the mutation-driven excessive
STAT3 activity in NK cells from patients with chronic lymphoproliferative disorders of
NK cells, T-cell large granular lymphocytic leukemias [180], and NK/T-cell lymphomas of
the nasal type [181] promotes lymphomagenesis and provides a tumor-promoting TME.
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Thus, it is clear that the dysregulation of STAT3 in innate immune cells augments cancer
cell proliferation and inhibits antitumor responses via the immunosurveillance system.

3.2. Non-Immune Cells

Fibroblasts exist in every solid organ to maintain their morphology and function by
depositing extracellular matrix proteins and secreting soluble factors [182]. Histological
similarities, such as mesenchymal morphology, are maintained among fibroblasts in various
organs, but their genomic landscapes differ depending on the organs in which they are
located [183]. It has been demonstrated that some fibroblasts contribute to tumor initiation,
progression, and metastasis [184]. STAT3 signaling in CAFs [185] and tumor cells [185,186]
may induce stromal remodeling of the TME characterized by fibrogenesis, a dysregulated
organization of the ECM, and fibroblast contractility, which promote tumor cell motility,
invasive activity, and resistance to chemical and immunological therapies [187]. However,
the constitutive activation of STAT3 via the Y757F point mutation in pg130 in a mouse
pulmonary fibrosis model not only promotes fibrosis in the absence of the TGF-β signaling
molecule SMAD3, which is well-known to be crucial in the pathogenesis of lung fibro-
sis [188], but also results in desmoplasia formation and epithelial stiffness, which enhance
tumorigenesis in PDAC mouse models [186]. CAFs assist tumor growth and dissemination
through the production of factors such as EGF, IL-6, TGF-β, and VEGF, which promote
tumor cell proliferation and angiogenesis [189,190]. The protumorigenic characteristics
of these fibroblasts are partially modulated by STAT3 activity via the induction of vari-
ous cytokines, including LIF [191]. For example, STAT3 acts as a downstream signaling
molecule of the focal adhesion kinase-Src-JAK2 axis in CAFs, leading to the expression
of CCL2 and immunosuppression. Mechanistic studies have shown that CAFs promote
the growth of murine hepatocellular carcinomas by resulting in the mobilization of MD-
SCs [192]. Factors produced by CAFs can promote STAT3 signaling in other cell types,
support intercellular communication between immune cells within the TME, and induce
immunosuppression [193,194].

4. Promising Target Molecules in STAT3-Associated Tumors
4.1. STAP-2

Signal-transducing adaptor protein-2 (STAP-2) was originally identified as a
c-Fms/macrophage colony-stimulating factor receptor-binding protein containing pleckstrin-
homology (PH), SH2, and proline-rich domains. Interestingly, STAP-2 levels were strongly
induced in the liver by lipopolysaccharide (LPS) stimulation and in isolated hepatocytes by
IL-6 stimulation. Consistently, in STAP-2-deleted hepatocytes, the acute phase responses
induced by IL-6 and the tyrosine phosphorylation levels of STAT3 were significantly de-
creased. Moreover, STAP-2 binds to activated STAT3 via a YXXQ motif in the C-terminal
region, indicating that STAP-2 is an adaptor molecule that modulates STAT3 activity [195].

Breast tumor kinase (BRK, also known as protein tyrosine kinase 6), which is related to
the Src family of tyrosine kinases, is overexpressed in approximately 85% of invasive ductal
carcinomas [196]. STAP-2, which was the first BRK substrate to be identified [33], binds
to BRK via its PH domain and contributes to the activation of STAT3 [197], and as the PH
domain of STAP-2 is essential for the translocation of STAP-2 to the plasma membrane
after EGF treatment, the binding ability of the PH domain of STAP-2 to BRK is considered
to be an important biological characteristic [33]. Thus, the PH domain of STAP-2 may
have a biological function in altering the subcellular localization of BRK and promoting
its activation; STAP-2 acts as a scaffold protein that facilitates the interaction between
BRK and STAT3. Taken together, the experiments using deletion mutants suggest that
STAP-2 modulates multiple events, i.e., the binding of STAP-2 to BRK, the activation of
BRK, and the subsequent promotion of the tyrosine phosphorylation of STAT3. Thus,
STAP-2 functions in concert with BRK to promote breast cancer cell proliferation. As both
BRK and STAP-2 expression are high in breast cancer cells, their coupling may promote
the abnormal activation of STAT3. These data may provide insights into the molecular
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mechanisms and implications of the BRK/STAP-2/STAT3 interaction and may provide
clues for the development of novel therapies for breast cancer.

STAP-2 enhances signaling via EGFR through its protein stabilization, leading to
higher tumorigenesis in prostate cancer cells [198]. STAP-2 promotes EGFR signaling
through a two-step process: the stabilization of EGFR and the subsequent activation of
STAT3 through their direct interaction. In addition to EGFR, IL-6 signaling also activates
STAT3, and IL6R blockade significantly inhibits tumor progression [199]. A knockdown
of STAP-2 may inhibit prostate cancer cell growth by synergistically inhibiting EGFR
and IL6R signaling. As described above, STAP-2 can bind to BRK and contributes to
promoting the BRK-modulated activation of STAT3 and STAT5 [197,200]. In particular,
BRK augments EGFR signaling by decreasing the casitas B-lineage lymphoma (CBL)-
enhanced ubiquitination of EGFR [201]. The expression of cell-surface EGFR is important
for the activation of RAS and ERK, and STAP-2 prevents the reduction in surface expression
levels of EGFR, even after EGF treatment. Another biological mechanism of STAP-2
in prostate cancer cells is to inhibit the CBL-enhanced ubiquitination of EGFR and to restore
EGFR [198]. A knockdown of STAP-2 inhibits the cell growth of prostate cancer cells [198].
STAP-2 is also a potent regulator of EGFR activation in prostate cancer cells. STAP-2 does
not bind to EGFR K721A, a dimer-formation-deficient mutant, suggesting that STAP-2
interacts with EGFR after dimer formation [198]. Furthermore, STAP-2 acts to stabilize
wild-type EGFR after EGF stimulation but not inactive EGFR mutants [198]. Indeed,
the inhibition of tumor cell growth by STAP-2 knockdown occurs under EGFR-activated
conditions but not under EGFR-inactivated conditions [198]. Notably, gefitinib treatment
fails to further inhibit the cell proliferation of STAP-2-silenced prostate cancer cells [198].
The distinct regulatory mechanisms for EGFR surface expression in gefitinib-treated and
STAP-2 knockdown cells demonstrates that the inhibition of STAP-2 function can destabilize
both wild-type EGFR and gefitinib-resistant self-activated EGFR [198]. Therefore, STAP-2
inhibitors may have the potential to be effective anticancer agents against gefitinib-resistant
prostate cancer (Figure 2).
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Figure 2. Functional roles of STAP-2 as a promising target molecule in STAT3-associated tumors.
Stimulation by EGF or other molecules induces the phosphorylation of STAT3 and BRK, and STAP-2
is also phosphorylated and interacts with STAT3 and BRK as a scaffold protein. Subsequently, STAT3
translocates to the nucleus, where it regulates target genes and contributes to proliferation, etc.
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4.2. ARID5A

Recent studies have demonstrated the crucial roles of Arid5a in inflammation, autoim-
munity, and cancer [34,202]. Arid5a was identified as an RNA-binding protein that directly
binds to a stem–loop element in the 3′-untranslated regions (UTRs) of IL-6 to stabilize IL-6
mRNA and augments IL-6 expression. Stimulation with LPS, IL-1β, or IL-6 leads to its ex-
pression in macrophages and embryonic fibroblasts. Arid5a has been shown to exacerbate
symptoms in LPS-treated mice and experimental autoimmune encephalomyelitis (EAE)
mice, accompanied with an increase in IL-6 levels [203]. The binding element of Arid5a
in the IL-6 3′ UTR coincides with that of Regnase-1, resulting in Arid5a counteracting
the destabilizing function of Regnase-1 on Il6 mRNA. Notably, in untreated rheumatoid
arthritis (RA) patients, the expression of ARID5a in CD4+ T cells is enhanced, whereas
treatment with the anti-IL6R antibody tocilizumab results in a decrease in the expression of
Arid5a [204], indicating that the IL-6-ARID5A axis may be involved in the pathogenesis of
RA. Importantly, Arid5a is deeply involved in the Th17-polarized differentiation of naïve
CD4+ T cells via the stabilization of STAT3 mRNA, resulting in the development of EAE
in mice [205].

Recently, the expression levels of Arid5a have been reported to be significantly in-
creased in mesenchymal tumor subtypes of PDAC and CRC, such as the quasi-mesenchymal
and consensus molecular subtype 4 subtypes, respectively [206]. In cells derived from
the PDAC mouse model KPC (Pdx1-cre, KRASG12D, and p53R172H), the abrogation of
Arid5a was shown to significantly downregulate EMT-TFs and EMT markers, such as Zeb1,
Zeb2, Snai1, Snai2, Twist2, Acta2, and Itgb1, compared with WT KPC cells, whereas the ex-
pression of the representative epithelial marker E-cadherin (Cdh1 gene) was substantially
increased [206]. Additionally, an ingenuity pathway analysis demonstrated that signaling
pathways linked to EMT and metastasis, including the regulation of EMT by growth fac-
tors/development, IL-8, OSM, and stemness signals, were diminished upon the loss of
Arid5a. In addition, the signaling pathways of IL-6, STAT3, and JAK/STAT were down-
regulated in Arid5a-deficient KPC cells [206]. Moreover, Arid5a expression was enhanced
in in vitro EMT models induced by IL-6 and TGF-β stimulation [206], indicating the in-
volvement of Arid5a in inducing the mesenchymal cell properties of PDAC. In agreement
with these findings, a recent report indicated that the IL-6-Arid5a axis enhances the invasive
and metastatic activities of breast cancer cells. Mechanistically, the Arid5a induced by IL-6
functions as a transcription factor, increasing the expression levels of the long non-coding
RNA AU021063. Subsequently, AU021063 functions to activate breast cancer cell invasion
and metastasis through the stabilization of tribbles homolog 3 mRNA and the activation of
the Mek/Erk signaling pathway [207].

It has been shown that Arid5a enables mesenchymal tumor models of PDAC and
CRC to facilitate immune evasiveness via promoting the tumor infiltration of immuno-
suppressive granulocytic MDSCs and Tregs and reducing the recruitment and activation
of antitumor effector T cells [206]. Mechanistically, Arid5a functions as a dual regulator,
leading to the formation of immunosuppressive TMEs in malignant tumors and triggering
the metabolic reprograming and recruitment of suppressive immune cells. First, Arid5a
promotes the inhibitory effect of Ido1 on effector CD4+/CD8+ T cells via the stabilization
of Ido1 mRNA by binding to its 3′-UTR and by reducing the intratumoral tryptophan
concentration [208,209]. Additionally, Ido1 expression in tumor tissues promotes Treg dif-
ferentiation/activation by catabolizing tryptophan to produce kynurenine and ultimately
activating aryl hydrocarbon receptors (AhR) [210,211]. AhR activation results in the exten-
sive infiltration of gMDSCs to the TME [212]. Second, Arid5a upregulates chemokine Ccl2
expression in the TME via the stabilization of its mRNA and then Ccl2 enhances the infil-
tration of immunosuppressor cells, such as Tregs and gMDSCs [213–216], to the TME [206]
(Figure 3).
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Figure 3. Arid5a mediates immune evasion. Arid5a is induced by LPS, IL-1β, or IL-6, directly
binds to a stem–loop element in the 3′-untranslated regions of target genes to stabilize their mRNA,
and augments their expression. Arid5a induces immune evasion by contributing to metabolic repro-
gramming, the upregulation of immunosuppressive chemokines, and the induction of mesenchymal
properties through RNA stabilization.

5. Perspectives

In tumorigenesis, chronic inflammation and metabolic changes associated with genetic
mutations in normal cells enable transformed cells to escape the immunological defense
mechanisms of the tissue and to reprogram the functions of endogenous signaling mech-
anisms and cell populations in surrounding tissues, thereby disrupting the homeostatic
balance of the entire organism and creating neoplasms within the organism. STAT3 plays
a central role in this entire process. To date, a large amount of effort has been put into
developing STAT3 inhibitors that both directly and indirectly target STAT3, including SH2
domain inhibitors and DNA-binding domain inhibitors, and JAK kinase inhibitors and Src
inhibitors, respectively, and integrating STAT3-based combination immunotherapies [12,35]
(Figure 1, Tables 1 and 2). In particular, since its approval in 2009, tocilizumab has been
used to inhibit IL-6/STAT3 signaling in autoimmune diseases, such as rheumatoid arthritis,
caused by the overexpression of IL-6 and acute inflammatory diseases caused by cytokine
storms associated with chimeric antigen receptor T-cell therapy and SARS-CoV-2 infection,
and it has shown high therapeutic efficacy against various immune diseases. On the other
hand, few effective therapies that target STAT3 signaling for the treatment of cancer in clini-
cal practice have been developed [6–10] (Tables 1 and 2). As mentioned above, cancer is
a complex interplay of diverse cell populations that result in malignant transformation.
Therefore, whereas analyses of the expression and function of molecules associated with
STAT3 activation can assess the local and steady-state malignant potential of a cancer, they
are insufficient to predict the stage or detailed course of a cancer. Furthermore, it is clear
that in addition to STAT3 signaling various groups of molecules are involved in cancer
development. The mode of interaction between these molecules also needs further study.
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In the future, it will be essential to perform spatiotemporal gene expression analyses to
analyze multiple cell populations, improve technologies for the detection of aging and
inflammation using artificial intelligence, and introduce mathematical analysis technology
to integrate these technologies. Furthermore, it is also necessary to enhance the convergence
of life science, physical science, engineering science, and computational science to create
the next generation of cancer therapeutics.

Table 1. Preclinical studies on STAT3 inhibitors.

Action Inhibitor/
Compound Mechanism of Action Cancer Type Ref.

Direct
inhibitors

LL1 SH2 domain inhibitor CRC, NSCLC [217]
LLL12B SH2 domain inhibitor Medulloblastoma [218]
S3I-201 SH2 domain inhibitor Breast cancer, liver cancer [219]

S3I-M2001 SH2 domain inhibitor Breast cancer [220]
S31-1757 SH2 domain inhibitor Breast cancer, lung cancer [221]
STX-0119 SH2 domain inhibitor Glioblastoma [222]
STA-21 SH2 domain inhibitor Breast cancer [223]
Stattic SH2 domain inhibitor Breast cancer, HNSCC [224]

YHO-1701 SH2 domain inhibitor HNSCC, NSCLC [225]
PY*LKTK SH2 domain inhibitor NIH3T3/v-Src or v-Ras [226]

CPA-1 DNA-binding domain
inhibitor

Breast cancer, colon cancer,
melanoma [227]

CPA-7 DNA-binding domain
inhibitor

Prostate cancer, breast cancer,
colon cancer, melanoma [227,228]

inS3-54A18 DNA-binding domain
inhibitor NSCLC [229]

DBD-1 DNA-binding domain
inhibitor Melanoma, myeloma [230]

Indirect
inhibitors

AG490 JAK inhibitor Ovarian cancer, pancreatic
cancer [231]

AZD1480 JAK inhibitor Lymphoma, lung cancer [232,233]
Ruxolitinib JAK inhibitor Hepatocellular carcinom [234]
TG101209 JAK2 inhibitor Leukemia [235]
WP1066 JAK inhibitor Renal cell carcinoma [236]

KDI1 RTK inhibitor Vulval and breast cancer [237]
PD153035 RTK inhibitor Oral squamous carcinoma [238]

Dasatinib Src inhibitor
Synovial sarcoma,

hepatocellular carcinoma,
glioma, prostate cancer

[239]

Abbreviations: CRC—colorectal cancer; HNSCC—head and neck squamous cell carcinoma; NSCLC—non-small
cell lung carcinoma.

Table 2. STAT3 inhibitors being tested in clinical trials.

Action Inhibitor/Compound Type Cancer Type Phase NCT Number

Direct
inhibitors BBI608 (FDA approved) Small molecules Advanced malignancies I/II NCT01775423

CRC III NCT01830621

C188-9 Small molecules BC, CRC, HNSCC, HCC, NSCLC,
GAC, melanoma, advanced cancer I NCT03195699

OPB-31121 Small molecules advanced cancer, solid tumorS I NCT00955812
HCC I/II NCT01406574

OPB-51602 Small molecules Malignant solid tumors I NCT01184807
Hematological malignancies I NCT01344876
Nasopharyngeal carcinoma I NCT02058017

OPB-111077 Small molecules Acute myeloid leukemia I NCT03197714
Advanced HCC I NCT01942083

AZD-9150 Oligonucleotides Lymphoma I/II NCT01563302
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Table 2. Cont.

Action Inhibitor/Compound Type Cancer Type Phase NCT Number

Indirect
inhibitors AZD-1480 JAK1/2 Solid tumors I NCT01112397

CYT387 JAK1/2 Myelofibrosis I/II NCT02101268
PMF, post-PV, post-ET MF III NCT03427866

Ruxolitinib (FDA approved) JAK1/2 Myelofibrosis III NCT03427866
LY2784544 JAK2 Myeloproliferative neoplasms II NCT01594723

SB1518 JAK2 Myelofibrosis III NCT02055781
Siltuximab (FDA approved) IL-6R Multiple myeloma II NCT03315026

Tocilitizumab (FDA approved) IL-6R HCC I/II NCT02997956

Combinations AZD9150, durvalumab
(anti-PD-L1)

Direct inhibitors and
ICB NSCLC II NCT03334617

PC, CRC, NSCLC II NCT02983578
Advanced solid tumors, metastatic

HNSCC I/II NCT02499328

Diffuse large B-cell lymphoma I NCT02549651

BBI608, nivolumab (anti-PD-1) Direct inhibitors and
ICB Metastatic CRC II NCT03647839

BBI608, pembrolizumab
(anti-PD-1)

Direct inhibitors and
ICB Metastatic CRC I/II NCT02851004

Apatinib, SHR-1210 (anti-PD-1) Indirect inhibitors
and ICB Melanoma II NCT03955354

Bevacizumab, atezolizumab
(anti-PD-L1)

Indirect inhibitors
and ICB Unresectable HCC III NCT03434379

Dasatinib, Ipilimumab
(anti-CTLA-4)

Indirect inhibitors
and ICB GIST, stage III/IV soft tissue sarcoma I NCT01643278

Dasatinib, nivolumab
(anti-PD-1)

Indirect inhibitors
and ICB

Philadelphia chromosome positive
ALL I NCT02819804

Ruxolitinib, pembrolizumab
(anti-PD-1)

Indirect inhibitors
and ICB Hematological malignancies II NCT04016116

Metastatic stage IV TNBC I NCT03012230

Abbreviations: ALL—acute lymphoblastic leukemie; BC—breast cancer; CRC—colorectal cancer; GAC—gastric
adenocarcinoma; GIST—gastrointestinal stromal tumor; HCC—hepatocellular carcinoma; HNSCC—head and
neck squamous cell carcinoma; NSCLC—non-small cell lung carcinoma; PC—pancreatic cancer; PMF—primary
myelofibrosis; Post-PV—post polycythemia vera; Post-ET MF—post-essential thrombocythemia myelofibrosis;
TNBC—triple negative breast cancer.
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