Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss
Abstract
:1. Introduction
2. hiPSC-Based Cultures to Model Inner Ear Development
3. hiPSCs to Generate Genetic Models of HL
4. hiPSC-Based Drug Screening Systems
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowl, M.; Simon, M.M.; Ingham, N.J.; Greenaway, S.; Santos, L.; Cater, H.; Taylor, S.; Mason, J.; Kurbatova, N.; Pearson, S.; et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat. Commun. 2017, 8, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, N.J.; Pearson, S.A.; Vancollie, V.E.; Rook, V.; Lewis, M.A.; Chen, J.; Buniello, A.; Martelletti, E.; Preite, L.; Lam, C.C.; et al. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biol. 2019, 17, e3000194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, M.; García-Mateo, N.; Čusak, A.; López-Hernández, I.; Fernández-Martínez, M.; Müller, M.; Rüttiger, L.; Singer, W.; Löwenheim, H.; Kosec, G.; et al. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci. Rep. 2019, 9, 2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmaghani, S.; El-Amraoui, A. Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J. Clin. Med. 2020, 9, 2309. [Google Scholar] [CrossRef]
- Lee, M.P.; Waldhaus, J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol. Cell. Neurosci. 2022, 120, 103736. [Google Scholar] [CrossRef]
- Lin, X.; Luo, J.; Tan, J.; Yang, L.; Wang, M.; Li, P. Experimental animal models of drug-induced sensorineural hearing loss: A narrative review. Ann. Transl. Med. 2021, 9, 1393. [Google Scholar] [CrossRef]
- Holmes, A.; Bonner, F.; Jones, D. Assessing drug safety in human tissues—What are the barriers? Nat. Rev. Drug Discov. 2015, 14, 585–587. [Google Scholar] [CrossRef] [Green Version]
- Ohlemiller, K.K.; Jones, S.M.; Johnson, K.R. Application of Mouse Models to Research in Hearing and Balance. J. Assoc. Res. Otolaryngol. 2016, 17, 493–523. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, M.; Akiyama, T.; Hosoya, M.; Kikuchi, K.; Fujiki, Y.; Saito, Y.; Yoshihama, K.; Ozawa, H.; Tsukada, K.; Nishio, S.-Y.; et al. A phase I/IIa double blind single institute trial of low dose sirolimus for Pendred syndrome/DFNB4. Medicine 2020, 99, e19763. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Wu, C.-C.; Yang, T.-H.; Lin, Y.-H.; Yu, I.-S.; Lin, S.-W.; Chang, Q.; Lin, X.; Wong, J.-M.; Hsu, C.-J. Differences in the Pathogenicity of the p.H723R Mutation of the Common Deafness-Associated SLC26A4 Gene in Humans and Mice. PLoS ONE 2013, 8, e64906. [Google Scholar] [CrossRef]
- Plum, A.; Winterhager, E.; Pesch, J.; Lautermann, J.; Hallas, G.; Rosentreter, B.; Traub, O.; Herberhold, C.; Willecke, K. Connexin31-Deficiency in Mice Causes Transient Placental Dysmorphogenesis but Does Not Impair Hearing and Skin Differentiation. Dev. Biol. 2001, 231, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Murillo-Cuesta, S.; Contreras, J.; Cediel, R.; Varela-Nieto, I. Comparison of different aminoglycoside antibiotic treatments to refine ototoxicity studies in adult mice. Lab. Anim. 2010, 44, 124–131. [Google Scholar] [CrossRef]
- Poirrier, A.; Ackerveken, P.V.D.; Kim, T.; Vandenbosch, R.; Nguyen, L.; Lefebvre, P.; Malgrange, B. Ototoxic drugs: Difference in sensitivity between mice and guinea pigs. Toxicol. Lett. 2010, 193, 41–49. [Google Scholar] [CrossRef]
- Owens, K.N.; Santos, F.; Roberts, B.; Linbo, T.; Coffin, A.B.; Knisely, A.J.; Simon, J.A.; Rubel, E.W.; Raible, D.W. Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. PLoS Genet. 2008, 4, e1000020. [Google Scholar] [CrossRef] [Green Version]
- Nicolson, T. The genetics of hair-cell function in zebrafish. J. Neurogenet. 2017, 31, 102–112. [Google Scholar] [CrossRef]
- Sheets, L.; Holmgren, M.; Kindt, K.S. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J. Assoc. Res. Otolaryngol. 2021, 22, 215–235. [Google Scholar] [CrossRef]
- Chiu, L.L.; Cunningham, L.L.; Raible, D.W.; Rubel, E.W.; Ou, H.C. Using the Zebrafish Lateral Line to Screen for Ototoxicity. J. Assoc. Res. Otolaryngol. 2008, 9, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Owens, K.N.; Herr, R.J.; Jiang, Q.; Chen, X.; Johnson, G.; Groppi, V.E.; Raible, D.W.; Rubel, E.W.; Simon, J.A. Phenotypic Optimization of Urea–Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. J. Med. Chem. 2018, 61, 84–97. [Google Scholar] [CrossRef]
- Bergman, J.E.; Davies, C.; Denton, A.J.; Ashman, P.E.; Mittal, R.; Eshraghi, A.A. Advancements in Stem Cell Technology and Organoids for the Restoration of Sensorineural Hearing Loss. J. Am. Acad. Audiol. 2021, 32, 636–645. [Google Scholar] [CrossRef]
- Romano, D.R.; Hashino, E.; Nelson, R.F. Deafness-in-a-dish: Modeling hereditary deafness with inner ear organoids. Hum. Genet. 2022, 141, 347–362. [Google Scholar] [CrossRef]
- Hosoya, M.; Fujioka, M.; Murayama, A.Y.; Okano, H.; Ogawa, K. The common marmoset as suitable nonhuman alternative for the analysis of primate cochlear development. FEBS J. 2021, 288, 325–353. [Google Scholar] [CrossRef]
- Hosoya, M.; Fujioka, M.; Murayama, A.Y.; Ozawa, H.; Okano, H.; Ogawa, K. Neuronal development in the cochlea of a nonhuman primate model, the common marmoset. Dev. Neurobiol. 2021, 81, 905–938. [Google Scholar] [CrossRef]
- Kurihara, S.; Fujioka, M.; Hata, J.; Yosihda, T.; Hirabayashi, M.; Yamamoto, Y.; Ogawa, K.; Kojima, H.; Okano, H.J. Anatomical and surgical evaluation of the common marmoset as an animal model in hearing research Front. Neuroanat. 2019, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, M.; Fujioka, M.; Okahara, J.; Yoshimatsu, S.; Okano, H.; Ozawa, H. Early development of the cochlea of the common marmoset, a non-human primate model. Neural Dev. 2022, 17, 6. [Google Scholar] [CrossRef]
- Hosoya, M.; Fujioka, M.; Ogawa, K.; Okano, H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci. Rep. 2016, 6, 22250. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, S.; Hosoya, M.; Okano, H.; Fujioka, M.; Ogawa, K. Expression pattern of EYA4 in the common marmoset (Callithrix jacchus) cochlea. Neurosci. Lett. 2018, 662, 185–188. [Google Scholar] [CrossRef]
- Park, J.E.; Silva, A.C. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am. J. Primatol. 2019, 81, e22931. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, E.; Suemizu, H.; Shimada, A.; Hanazawa, K.; Oiwa, R.; Kamioka, M.; Tomioka, I.; Sotomaru, Y.; Hirakawa, R.; Eto, T.; et al. Generation of transgenic non-human primates with germline transmission. Nature 2009, 459, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, M.; Han, D.; Jeong, M.; Stojkovic, P.; Stankovic, K.M. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. Stem Cells 2021, 39, 673–696. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jongkamonwiwat, N.; Abbas, L.; Eshtan, S.J.; Johnson, S.L.; Kuhn, S.; Milo, M.; Thurlow, J.K.; Andrews, P.W.; Marcotti, W.; et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 2012, 490, 278–282. [Google Scholar] [CrossRef]
- Koehler, K.R.; Nie, J.; Longworth-Mills, E.; Liu, X.-P.; Lee, J.; Holt, J.R.; Hashino, E. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat. Biotechnol. 2017, 35, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.C.; Tsai, C.L. Differentiation of inner ear cell types from human-induced pluripotent stem cells for the therapeutic application in sensorineural hearing loss. In Recent Advances in iPSC-Derived Cell Types; Academic Press: Cambridge, MA, USA, 2021; Volume 4, pp. 97–119. [Google Scholar] [CrossRef]
- Van der Valk, W.H.; Steinhart, M.R.; Zhang, J.; Koehler, K.R. Building inner ears: Recent advances and future challenges for in vitro organoid systems. Cell Death Differ. 2020, 28, 24–34. [Google Scholar] [CrossRef]
- Wu, M.; Xia, M.; Li, W.; Li, H. Single-Cell Sequencing Applications in the Inner Ear. Front. Cell Dev. Biol. 2021, 9, 637779. [Google Scholar] [CrossRef]
- Kolla, L.; Kelly, M.C.; Mann, Z.F.; Anaya-Rocha, A.; Ellis, K.; Lemons, A.; Palermo, A.T.; So, K.S.; Mays, J.C.; Orvis, J.; et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat. Commun. 2020, 11, 2389. [Google Scholar] [CrossRef]
- Hosoya, M.; Fujioka, M.; Sone, T.; Okamoto, S.; Akamatsu, W.; Ukai, H.; Ueda, H.R.; Ogawa, K.; Matsunaga, T.; Okano, H. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017, 18, 68–81. [Google Scholar] [CrossRef]
- Fukunaga, I.; Oe, Y.; Danzaki, K.; Ohta, S.; Chen, C.; Shirai, K.; Kawano, A.; Ikeda, K.; Kamiya, K. Modeling gap junction beta 2 gene-related deafness with human iPSC. Hum. Mol. Genet. 2021, 30, 1429–1442. [Google Scholar] [CrossRef]
- Li, H.; Roblin, G.; Liu, H.; Heller, S. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. USA 2003, 100, 13495–13500. [Google Scholar] [CrossRef] [Green Version]
- Roccio, M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2021, 39, 375–388. [Google Scholar] [CrossRef]
- Alonso, M.B.D. Stem cell-based approaches: Possible route to hearing restoration? World J. Stem Cells 2020, 12, 422–437. [Google Scholar] [CrossRef]
- Czajkowski, A.; Mounier, A.; Delacroix, L.; Malgrange, B. Pluripotent stem cell-derived cochlear cells: A challenge in constant progress. Cell. Mol. Life Sci. 2019, 76, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Boddy, S.L.; Romero-Guevara, R.; Ji, A.-R.; Unger, C.; Corns, L.; Marcotti, W.; Rivolta, M.N. Generation of Otic Lineages from Integration-Free Human-Induced Pluripotent Stem Cells Reprogrammed by mRNAs. Stem Cells Int. 2020, 2020, 3692937. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Tsai, C.-L.; Wei, Y.-H.; Wu, Y.-T.; Hsu, W.-T.; Lin, H.-C.; Hsu, Y.-C. ATOH1/RFX1/RFX3 transcription factors facilitate the differentiation and characterisation of inner ear hair cell-like cells from patient-specific induced pluripotent stem cells harbouring A8344G mutation of mitochondrial DNA. Cell Death Dis. 2018, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, H.; Skerleva, D.; Kitajiri, S.-I.; Sakamoto, T.; Yamamoto, N.; Ito, J.; Nakagawa, T. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method. Neurosci. Lett. 2015, 599, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Lahlou, H.; Lopez-Juarez, A.; Fontbonne, A.; Nivet, E.; Zine, A. Modeling human early otic sensory cell development with induced pluripotent stem cells. PLoS ONE 2018, 13, e0198954. [Google Scholar] [CrossRef] [Green Version]
- Lahlou, H.; Nivet, E.; Lopez-Juarez, A.; Fontbonne, A.; Assou, S.; Zine, A. Enriched Differentiation of Human Otic Sensory Progenitor Cells Derived From Induced Pluripotent Stem Cells. Front. Mol. Neurosci. 2018, 11, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunewardene, N.; Van Bergen, N.; Crombie, D.; Needham, K.; Dottori, M.; Nayagam, B.A. Directing Human Induced Pluripotent Stem Cells into a Neurosensory Lineage for Auditory Neuron Replacement. BioResearch Open Access 2014, 3, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunewardene, N.; Crombie, D.; Dottori, M.; Nayagam, B.A. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro. Stem Cells Int. 2016, 2016, 1781202. [Google Scholar] [CrossRef] [Green Version]
- Ealy, M.; Ellwanger, D.C.; Kosaric, N.; Stapper, A.P.; Heller, S. Single-cell analysis delineates a trajectory toward the human early otic lineage. Proc. Natl. Acad. Sci. USA 2016, 113, 8508–8513. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, S.; Fujioka, M.; Hirabayashi, M.; Yoshida, T.; Hosoya, M.; Nagase, M.; Kato, F.; Ogawa, K.; Okano, H.; Kojima, H.; et al. Otic Organoids Containing Spiral Ganglion Neuron-like Cells Derived from Human-induced Pluripotent Stem Cells as a Model of Drug-induced Neuropathy. Stem Cells Transl. Med. 2022, 11, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Mattei, C.; Lim, R.; Drury, H.; Nasr, B.; Li, Z.; Tadros, M.A.; D’Abaco, G.M.; Stok, K.S.; Nayagam, B.A.; Dottori, M. Generation of Vestibular Tissue-Like Organoids From Human Pluripotent Stem Cells Using the Rotary Cell Culture System. Front. Cell Dev. Biol. 2019, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, M.; O’Reilly, M.; Kirkwood, N.K.; Al-Aama, J.; Lako, M.; Kros, C.J.; Armstrong, L. Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells. Cell Death Dis. 2018, 9, 922. [Google Scholar] [CrossRef] [Green Version]
- Oshima, K.; Shin, K.; Diensthuber, M.; Peng, A.W.; Ricci, A.J.; Heller, S. Mechanosensitive Hair Cell-like Cells from Embryonic and Induced Pluripotent Stem Cells. Cell 2010, 141, 704–716. [Google Scholar] [CrossRef] [Green Version]
- Ronaghi, M.; Nasr, M.; Ealy, M.; Durruthy-Durruthy, R.; Waldhaus, J.; Diaz, G.H.; Joubert, L.-M.; Oshima, K.; Heller, S. Inner Ear Hair Cell-Like Cells from Human Embryonic Stem Cells. Stem Cells Dev. 2014, 23, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Taura, A.; Ohnishi, H.; Ochi, S.; Ebisu, F.; Nakagawa, T.; Ito, J. Effects of mouse utricle stromal tissues on hair cell induction from induced pluripotent stem cells. BMC Neurosci. 2014, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Saeki, T.; Yoshimatsu, S.; Ishikawa, M.; Hon, C.-C.; Koya, I.; Shibata, S.; Hosoya, M.; Saegusa, C.; Ogawa, K.; Shin, J.W.; et al. Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish. Regen. Ther. 2022, 20, 165–186. [Google Scholar] [CrossRef]
- Costa, A.; Sanchez-Guardado, L.; Juniat, S.; Gale, J.; Daudet, N.; Henrique, D. Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development 2015, 142, 1948–1959. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Johnson, S.L.; Marcotti, W.; Andrews, P.W.; Moore, H.D.; Rivolta, M.N. Human Fetal Auditory Stem Cells Can Be Expanded In Vitro and Differentiate Into Functional Auditory Neurons and Hair Cell-Like Cells. Stem Cells 2009, 27, 1196–1204. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Chen, J.-R.; Zheng, J.; Shi, H.-S.; Ding, J.; Qian, X.-D.; Zhang, C.; Chen, J.-L.; Wang, C.-C.; Li, L.; et al. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl. Med. 2016, 5, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-R.; Tang, Z.-H.; Zheng, J.; Shi, H.-S.; Ding, J.; Qian, X.-D.; Zhang, C.; Chen, J.L.; Wang, C.-C.; Li, L.; et al. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ. 2016, 23, 1347–1357. [Google Scholar] [CrossRef]
- Margriet, A.H. Neural crest stem cells and their potential application in a therapy for deafness. Front. Biosci. 2012, 4, 121–132. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, J.; Zhao, Q.; Chen, J.-R.; Liu, H.; Peng, G.; Wu, Y.; Chen, C.; He, Q.; Shi, H.; et al. Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight 2020, 5, e136046. [Google Scholar] [CrossRef]
- DeJonge, R.E.; Liu, X.-P.; Deig, C.R.; Heller, S.; Koehler, K.R.; Hashino, E. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture. PLoS ONE 2016, 11, e0162508. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-P.; Koehler, K.; Mikosz, A.; Hashino, E.; Holt, J.R. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat. Commun. 2016, 7, 11508. [Google Scholar] [CrossRef] [Green Version]
- Koehler, K.R.; Hashino, E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat. Protoc. 2014, 9, 1229–1244. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.-C.; Alex, A.L.; Nie, J.; Lee, J.; Roth, A.A.; Booth, K.T.; Koehler, K.R.; Hashino, E.; Nelson, R.F. Defective Tmprss3-Associated Hair Cell Degeneration in Inner Ear Organoids. Stem Cell Rep. 2019, 13, 147–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, S.C.; Sliedregt, K.; Van Benthem, P.P.G.; Rivolta, M.N.; Huisman, M.A. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures—Toward 3D Inner Ear Biotechnology. Anat. Rec. 2020, 303, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, I.; Oe, Y.; Danzaki, K.; Ohta, S.; Chen, C.; Iizumi, M.; Shiga, T.; Matsuoka, R.; Anzai, T.; Hibiya-Motegi, R.; et al. Generation of two iPSC lines from siblings of a homozygous patient with hearing loss and a heterozygous carrier with normal hearing carrying p.G45E/Y136X mutation in GJB2. Stem Cell Res. 2021, 53, 102290. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Song, J.; Bai, Y.; Liu, Y.; Cai, X.; Mei, L.; Ma, L.; He, C.; Feng, Y. A Model of Waardenburg Syndrome Using Patient-Derived iPSCs With a SOX10 Mutation Displays Compromised Maturation and Function of the Neural Crest That Involves Inner Ear Development. Front. Cell Dev. Biol. 2021, 9, 720858. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Ocwieja, K.E.; Han, D.; Wackym, P.A.; Zhang, Y.; Brown, A.; Moncada, C.; Vambutas, A.; Kanne, T.; Crain, R.; et al. Direct SARS-CoV-2 infection of the human inner ear may underlie COVID-19-associated audiovestibular dysfunction. Commun. Med. 2021, 1, 44. [Google Scholar] [CrossRef] [PubMed]
- Wakizono, T.; Nakashima, H.; Yasui, T.; Noda, T.; Aoyagi, K.; Okada, K.; Yamada, Y.; Nakagawa, T.; Nakashima, K. Growth factors with valproic acid restore injury-impaired hearing by promoting neuronal regeneration. JCI Insight 2021, 6, e139171. [Google Scholar] [CrossRef] [PubMed]
- Ritter, K.E.; Martin, D.M. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear. Res. 2018, 376, 22–32. [Google Scholar] [CrossRef]
- Sliwinska-Kowalska, M.; Pawelczyk, M. Contribution of genetic factors to noise-induced hearing loss: A human studies review. Mutat. Res. Mutat. Res. 2013, 752, 61–65. [Google Scholar] [CrossRef]
- Newman, D.L.; Fisher, L.M.; Ohmen, J.; Parody, R.; Fong, C.-T.; Frisina, S.T.; Mapes, F.; Eddins, D.A.; Frisina, D.R.; Frisina, R.D.; et al. GRM7 variants associated with age-related hearing loss based on auditory perception. Hear. Res. 2012, 294, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Kremer, H. Hereditary hearing loss; about the known and the unknown. Hear. Res. 2019, 376, 58–68. [Google Scholar] [CrossRef]
- Nishio, S.-Y.; Hattori, M.; Moteki, H.; Tsukada, K.; Miyagawa, M.; Naito, T.; Yoshimura, H.; Iwasa, Y.-I.; Mori, K.; Shima, Y.; et al. Gene Expression Profiles of the Cochlea and Vestibular Endorgans: Localization and function of genes causing deafness. Ann. Otol. Rhinol. Laryngol. 2015, 124, 6S–48S. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, H.; Nishio, S.; Usami, S. Milestones toward cochlear gene therapy for patients with hereditary hearing loss. Laryngoscope 2021, 6, 958–967. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Lin, X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear. Res. 2020, 394, 107858. [Google Scholar] [CrossRef]
- Rohacek, A.M.; Bebee, T.W.; Tilton, R.K.; Radens, C.M.; McDermott-Roe, C.; Peart, N.; Kaur, M.; Zaykaner, M.; Cieply, B.; Musunuru, K.; et al. ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev. Cell 2017, 43, 318–331.e5. [Google Scholar] [CrossRef] [Green Version]
- Atik, T.; Bademci, G.; Diaz-Horta, O.; Blanton, S.H.; Tekin, M. Whole-exome sequencing and its impact in hereditary hearing loss. Genet. Res. 2015, 97, e4. [Google Scholar] [CrossRef]
- Del Castillo, F.J.; del Castillo, I. DFNB1 non-syndromic hearing impairment: Diversity of mutations and associated phenotypes. Front. Mol. Neurosci. 2017, 10, 428. [Google Scholar] [CrossRef] [Green Version]
- Bademci, G.; Abad, C.; Cengiz, F.B.; Seyhan, S.; Incesulu, A.; Guo, S.; Fitoz, S.; Atli, E.I.; Gosstola, N.C.; Demir, S.; et al. Long-range cis-regulatory elements controlling GDF6 expression are essential for ear development. J. Clin. Investig. 2020, 130, 4213–4217. [Google Scholar] [CrossRef]
- Stemerdink, M.; García-Bohórquez, B.; Schellens, R.; Garcia-Garcia, G.; Van Wijk, E.; Millan, J.M. Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Human Genet. 2021, 141, 737–758. [Google Scholar] [CrossRef]
- Nist-Lund, C.; Pan, B.; Patterson, A.; Asai, Y.; Chen, T.; Zhou, W.; Zhu, H.; Romero, S.; Resnik, J.; Polley, D.B.; et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat. Commun. 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Yeh, W.-H.; Shubina-Oleinik, O.; Levy, J.M.; Pan, B.; Newby, G.A.; Wornow, M.; Burt, R.; Chen, J.C.; Holt, J.R.; Liu, D.R. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 2020, 12, eaay9101. [Google Scholar] [CrossRef]
- Bommakanti, K.; Iyer, J.S.; Stankovic, K.M. Cochlear histopathology in human genetic hearing loss: State of the science and future prospects. Hear. Res. 2019, 382, 107785. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-J.; Lu, Y.-C.; Yang, T.-H.; Chan, Y.-H.; Tsai, C.-Y.; Yu, I.-S.; Lin, S.-W.; Liu, T.-C.; Cheng, Y.-F.; Wu, C.-C.; et al. Toward the Pathogenicity of the SLC26A4 p.C565Y Variant Using a Genetically Driven Mouse Model. Int. J. Mol. Sci. 2021, 22, 2789. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Peng, T.; Wu, W.; Tan, D.; Liu, X.; Xie, D. Efficient introduction of an isogenic homozygous mutation to induced pluripotent stem cells from a hereditary hearing loss family using CRISPR/Cas9 and single-stranded donor oligonucleotides. J. Int. Med Res. 2019, 47, 1717–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colbert, B.M.; Gosstola, N.C.; Dykxhoorn, D.M.; Liu, X.Z. Generation of hiPSC line UMi030-A from an individual with the hearing loss-related GJB2 mutation c.109G > A. Stem Cell Res. 2022, 58, 102599. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Li, J.; Guan, J.; Yang, S.; Wang, Q. Generation of a gene corrected human isogenic iPSC line (CPGHi001-A-1) from a hearing loss patient with the TMC1 p.M418K mutation using CRISPR/Cas9. Stem Cell Res. 2022, 60, 102736. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Tsai, Y.-H.; Lu, Y.-C.; Chan, Y.-H.; Hsu, C.-J.; Chiou, S.-H.; Wu, C.-C.; Cheng, Y.-F. Establishment of an induced pluripotent stem cell (iPSC) line from a 7-year-old male patient with profound hearing loss carrying c.235delC in GJB2 gene. Stem Cell Res. 2020, 45, 101795. [Google Scholar] [CrossRef]
- Dykxhoorn, D.M.; Tong, X.; Gosstola, N.C.; Liu, X.Z. Derivation of iPSC line UMi029-A bearing a hearing-loss associated variant in the SMPX gene. Stem Cell Res. 2021, 54, 102405. [Google Scholar] [CrossRef]
- Hsu, Y.-H.; Wu, Y.-T.; Huang, C.-Y.; Ho, M.-C.; Cheng, Y.-C.; Syu, S.-H.; Lu, H.-E.; Chen, Y.-C.; Tsai, C.-L.; Lin, H.-C.; et al. Generation of an induced pluripotent stem cell line from a 39-year-old female patient with severe-to-profound non-syndromic sensorineural hearing loss and a A1555G mutation in the mitochondrial MTRNR1 gene. Stem Cell Res. 2017, 25, 245–249. [Google Scholar] [CrossRef]
- Liu, X.; Lillywhite, J.; Zhu, W.; Huang, Z.; Clark, A.; Gosstola, N.; Maguire, C.; Dykxhoorn, D.; Chen, Z.-Y.; Yang, J. Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes 2021, 12, 805. [Google Scholar] [CrossRef]
- Wang, H.; Wu, K.; Guan, J.; Wang, Q. Generation of a human induced pluripotent stem cell line (CPGHi001-A) from a hearing loss patient with the TMC1 p.M418K mutation. Stem Cell Res. 2020, 49, 101982. [Google Scholar] [CrossRef]
- Vreugde, S.; Erven, A.; Kros, C.J.; Marcotti, W.; Fuchs, H.; Kurima, K.; Wilcox, E.R.; Friedman, T.B.; Griffith, A.J.; Balling, R.; et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat. Genet. 2002, 30, 257–258. [Google Scholar] [CrossRef]
- Gao, X.; Tao, Y.; Lamas, V.; Huang, M.; Yeh, W.-H.; Pan, B.; Hu, Y.-J.; Hu, J.H.; Thompson, D.B.; Shu, Y.; et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 2018, 553, 217–221. [Google Scholar] [CrossRef]
- György, B.; Nist-Lund, C.; Pan, B.; Asai, Y.; Karavitaki, K.D.; Kleinstiver, B.P.; Garcia, S.; Zaborowski, M.; Solanes, P.; Spataro, S.; et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat. Med. 2019, 25, 1123–1130. [Google Scholar] [CrossRef]
- Tu, H.; Zhang, A.; Fu, X.; Xu, S.; Bai, X.; Wang, H.; Gao, J. SMPX Deficiency Causes Stereocilia Degeneration and Progressive Hearing Loss in CBA/CaJ Mice. Front. Cell Dev. Biol. 2021, 9, 750023. [Google Scholar] [CrossRef]
- Liang, L.; Xue, Y.; Su, C.; Wang, J.; Chen, L.; Su, T.; Ke, J.; Xie, L.; Cui, Z.; Yu, Q.; et al. Establishment of iPS cell line (KLRMMEi002-A) by reprogramming peripheral blood mononuclear cells from a patient with USH2A-associated Usher syndrome. Stem Cell Res. 2022, 60, 102699. [Google Scholar] [CrossRef]
- Sanjurjo-Soriano, C.; Erkilic, N.; Manes, G.; Dubois, G.; Hamel, C.P.; Meunier, I.; Kalatzis, V. Generation of a human iPSC line, INMi002-A, carrying the most prevalent USH2A variant associated with Usher syndrome type 2. Stem Cell Res. 2018, 33, 247–250. [Google Scholar] [CrossRef]
- Sanjurjo-Soriano, C.; Erkilic, N.; Baux, D.; Mamaeva, D.; Hamel, C.P.; Meunier, I.; Roux, A.-F.; Kalatzis, V. Genome Editing in Patient iPSCs Corrects the Most Prevalent USH2A Mutations and Reveals Intriguing Mutant mRNA Expression Profiles. Mol. Ther. Methods Clin. Dev. 2020, 17, 156–173. [Google Scholar] [CrossRef] [Green Version]
- Whatley, M.; Francis, A.; Ng, Z.Y.; Khoh, X.E.; Atlas, M.D.; Dilley, R.J.; Wong, E.Y.M. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front. Genet. 2020, 11, 565216. [Google Scholar] [CrossRef]
- Wen, J.; He, C.; Feng, Y.; Song, J.; Liu, J.; Liu, X.; Mei, L.; Ling, J.; Chen, H.; Liu, Y. Establishment of an iPSC line (CSUXHi004-A) from a patient with Waardenburg syndrome type I caused by a PAX3 splice mutation. Stem Cell Res. 2021, 53, 102300. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Hu, S.; Xu, H.; Zhang, Q.; Tang, W. Establishment of an induced pluripotent stem cell line (ZZUPMCi001-A) derived from peripheral blood mononuclear cells in a patient with type 1 Waardenburg syndrome. Stem Cell Res. 2021, 57, 102606. [Google Scholar] [CrossRef]
- Li, J.; Wu, K.; Guan, J.; Wang, Q.; Wang, H. Generation of a human induced pluripotent stem cell line (CPGHi003-A) from an auditory neuropathy patient with AIFM1 p.R422Q mutation. Stem Cell Res. 2021, 53, 102376. [Google Scholar] [CrossRef]
- Zong, L.; Guan, J.; Ealy, M.; Zhang, Q.; Wang, D.; Wang, H.; Zhao, Y.; Sheng, Z.; Campbell, C.A.; Wang, F.; et al. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J. Med. Genet. 2015, 52, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, I.; Shirai, K.; Oe, Y.; Danzaki, K.; Ohta, S.; Shiga, T.; Chen, C.; Ikeda, K.; Akamatsu, W.; Kawano, A.; et al. Generation of two induced pluripotent stem cell lines from PBMCs of siblings carrying c.235delC mutation in the GJB2 gene associated with sensorineural hearing loss. Stem Cell Res. 2020, 47, 101910. [Google Scholar] [CrossRef]
- Yang, X.; Liu, N.; Mu, H.; Lv, Y.; Zhang, H.; Li, Y.; Guan, J.; Gai, Z.; Liu, Y. Reprogramming of human peripheral blood mononuclear cell (PBMC) from a patient suffering from hearing loss into iPSC line (SDQLCHi035-A) maintaining compound heterozygous variations in GJB2 gene. Stem Cell Res. 2021, 51, 102188. [Google Scholar] [CrossRef]
- Kamiya, K.; Yum, S.W.; Kurebayashi, N.; Muraki, M.; Ogawa, K.; Karasawa, K.; Miwa, A.; Guo, X.; Gotoh, S.; Sugitani, Y.; et al. Assembly of the cochlear gap junction macromolecular complex requires connexin 26. J. Clin. Investig. 2014, 124, 1598–1607. [Google Scholar] [CrossRef]
- Tang, P.-C.; Roche, M.V.; Um, S.Y.; Gosstola, N.C.; Kim, M.Y.; Choi, B.Y.; Dykxhoorn, D.M.; Liu, X.Z. Characterization of an induced pluripotent stem cell line (UMi040-A) bearing an auditory neuropathy spectrum disorder-associated variant in TMEM43. Stem Cell Res. 2022, 61, 102758. [Google Scholar] [CrossRef]
- Jang, M.W.; Oh, D.-Y.; Yi, E.; Liu, X.; Ling, J.; Kim, N.; Sharma, K.; Kim, T.Y.; Lee, S.; Kim, A.-R.; et al. A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder. Proc. Natl. Acad. Sci. USA 2021, 118, e2019681118. [Google Scholar] [CrossRef] [PubMed]
- Everett, L.A.; Belyantseva, I.A.; Noben-Trauth, K.; Cantos, R.; Chen, A.; Thakkar, S.I.; Hoogstraten-Miller, S.L.; Kachar, B.; Wu, D.K.; Green, E.D. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum. Mol. Genet. 2001, 10, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Yang, Y.; Luo, L.; Xu, L.; Liu, B.; Jiang, G.; Hu, X.; Zeng, Y.; Wang, Z. An iPSC line (TYWHSTi002-A) derived from a patient with Pendred syndrome caused by compound heterozygous mutations in the SLC26A4 gene. Stem Cell Res. 2020, 47, 101919. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-F.; Chan, Y.-H.; Hu, C.-J.; Lu, Y.-C.; Saeki, T.; Hosoya, M.; Saegusa, C.; Fujioka, M.; Okano, H.; Weng, S.-M.; et al. Generation of a human iPS cell line (CGMH.SLC26A4919-2) from a Pendred syndrome patient carrying SLC26A4 c.919-2A>G splice-site mutation. Stem Cell Res. 2019, 40, 101524. [Google Scholar] [CrossRef]
- Liu, H.; Han, Y.; Wang, S.; Wang, H. Association between the mitochondrial DNA 4977 common deletion in the hair shaft and hearing loss in presbycusis. Mol. Med. Rep. 2015, 11, 1127–1131. [Google Scholar] [CrossRef]
- Ivarsdottir, E.V.; Holm, H.; Benonisdottir, S.; Olafsdottir, T.; Sveinbjornsson, G.; Thorleifsson, G.; Eggertsson, H.P.; Halldorsson, G.H.; Hjorleifsson, K.E.; Melsted, P.; et al. The genetic architecture of age-related hearing impairment revealed by genome-wide association analysis. Commun. Biol. 2021, 4, 706. [Google Scholar] [CrossRef]
- Falah, M.; Farhadi, M.; Kamrava, S.K.; Mahmoudian, S.; Daneshi, A.; Balali, M.; Asghari, A.; Houshmand, M. Association of genetic variations in the mitochondrial DNA control region with presbycusis. Clin. Interv. Aging 2017, 12, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Guan, M.-X. Genetic correction of TRMU allele restored the mitochondrial dysfunction-induced deficiencies in iPSCs-derived hair cells of hearing-impaired patients. Hum. Mol. Genet. 2022, 31, 3068–3082. [Google Scholar] [CrossRef]
- Barbarino, J.M.; McGregor, T.L.; Altman, R.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for MT-RNR1. Pharmacogenetics Genom. 2016, 26, 558–567. [Google Scholar] [CrossRef]
- McDermott, J.H.; Wolf, J.; Hoshitsuki, K.; Huddart, R.; Caudle, K.E.; Whirl-Carrillo, M.; Steyger, P.S.; Smith, R.J.H.; Cody, N.; Rodriguez-Antona, C.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for the Use of Aminoglycosides Based on MT-RNR1 Genotype. Clin. Pharmacol. Ther. 2022, 111, 366–372. [Google Scholar] [CrossRef]
- He, Z.; Sun, S.; Waqas, M.; Zhang, X.; Qian, F.; Cheng, C.; Zhang, M.; Zhang, S.; Wang, Y.; Tang, M.; et al. Reduced TRMU expression increases the sensitivity of hair-cell-like HEI-OC-1 cells to neomycin damage in vitro. Sci. Rep. 2016, 6, 29621. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, X.; Huang, S.; Han, M.; Kang, D.; Yang, J.; Wu, X.; Zheng, Q.; Yuan, Y.; Dai, P.; et al. Establishment of an iPSC line (CPGHi005-A) from a patient with Waardenburg syndrome carrying a heterozygous SVA-F retrotransposon insertion into SOX10. Stem Cell Res. 2022, 62, 102831. [Google Scholar] [CrossRef]
- Gao, X.; Qiu, S.; Wang, W.-Q.; Kang, D.-Y.; Su, N.; Dai, P.; Yuan, Y. Generation of a gene corrected human isogenic iPSC line (CPGHi002-A-1) from a DDOD patient with heterozygous c.1516 C>T mutation in the ATP6V1B2 gene. Stem Cell Res. 2021, 53, 102271. [Google Scholar] [CrossRef]
- Gao, X.; Qiu, S.; Feng, M.-L.; Huang, S.-S.; Kang, D.-Y.; Han, M.-Y.; Dai, P.; Yuan, Y. Establishment of human induced pluripotent stem cell line (CPGHi002-A) from a 10-month-old female patient with DDOD syndrome carrying a heterozygous c.1516 C > T mutation in ATP6V1B2. Stem Cell Res. 2020, 48, 101986. [Google Scholar] [CrossRef]
- La Spada, A.; Ntai, A.; Genovese, S.; Rondinelli, M.; De Blasio, P.; Biunno, I. Generation of Human-Induced Pluripotent Stem Cells from Wolfram Syndrome Type 2 Patients Bearing the c.103 + 1G>A CISD2 Mutation for Disease Modeling. Stem Cells Dev. 2018, 27, 287–295. [Google Scholar] [CrossRef]
- Lu, H.-E.; Tsai, C.-L.; Chiu, I.-M.; Pan, Y.-L.; Lin, Y.-F.; Lin, H.-C.; Hsu, Y.-C. Generation of induced pluripotent stem cells MMCi001-A from a Taiwanese hearing loss patient carrying GJB2 pV37I mutation. Stem Cell Res. 2020, 42, 101692. [Google Scholar] [CrossRef]
- Chan, Y.-H.; Cheng, Y.-F.; Chen, Y.-T.; Huang, C.-Y.; Lin, C.-H.; Hu, C.-J.; Lu, Y.-C.; Wu, C.-C.; Hsu, C.-J. Generation of induced pluripotent stem cells from a patient with hearing loss carrying GJB2 p.V37I mutation. Stem Cell Res. 2018, 33, 51–55. [Google Scholar] [CrossRef]
- Hosoya, M.; Saeki, T.; Saegusa, C.; Matsunaga, T.; Okano, H.; Fujioka, M.; Ogawa, K. Estimating the concentration of therapeutic range using disease-specific iPS cells: Low-dose rapamycin therapy for Pendred syndrome. Regen. Ther. 2019, 10, 54–63. [Google Scholar] [CrossRef]
- Kalinec, G.; Thein, P.; Park, C.; Kalinec, F. HEI-OC1 cells as a model for investigating drug cytotoxicity. Hear. Res. 2016, 335, 105–117. [Google Scholar] [CrossRef]
- Teitz, T.; Goktug, A.N.; Chen, T.; Zuo, J. Development of Cell-Based High-Throughput Chemical Screens for Protection Against Cisplatin-Induced Ototoxicity. Methods Mol. Biol. 2016, 1427, 419–430. [Google Scholar] [CrossRef]
- O’Sullivan, M.E.; Song, Y.; Greenhouse, R.; Lin, R.; Perez, A.; Atkinson, P.J.; MacDonald, J.P.; Siddiqui, Z.; Lagasca, D.; Comstock, K.; et al. Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes. Proc. Natl. Acad. Sci. USA 2020, 117, 32423–32432. [Google Scholar] [CrossRef]
- Oishi, N.; Kendall, A.; Schacht, J. Metformin protects against gentamicin-induced hair cell death in vitro but not ototoxicity in vivo. Neurosci. Lett. 2014, 583, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Schomann, T.; Ramekers, D.; De Groot, J.C.M.J.; Van Der Ploeg, C.H.; Hendriksen, F.G.J.; Böhringer, S.; Klis, S.F.L.; Frijns, J.H.M.; Huisman, M.A. Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs. BioMed Res. Int. 2018, 2018, 1568414. [Google Scholar] [CrossRef]
- Thomas, A.; Wu, P.; Raible, D.W.; Rubel, E.W.; Simon, J.A.; Ou, H.C. Identification of Small Molecule Inhibitors of Cisplatin-Induced Hair Cell Death: Results of a 10,000 compound screen in the zebrafish lateral line. Otol. Neurotol. 2015, 36, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Teitz, T.; Fang, J.; Goktug, A.N.; Bonga, J.D.; Diao, S.; Hazlitt, R.A.; Iconaru, L.; Morfouace, M.; Currier, D.; Zhou, Y.; et al. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J. Exp. Med. 2018, 215, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Roccio, M.; Senn, P.; Heller, S. Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear. Res. 2020, 397, 107859. [Google Scholar] [CrossRef]
- Whitlon, D.S.; Grover, M.; Dunne, S.F.; Richter, S.; Luan, C.-H.; Richter, C.-P. Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons. Sci. Rep. 2015, 5, 15960. [Google Scholar] [CrossRef] [Green Version]
- Daniszewski, M.; Crombie, D.E.; Henderson, R.; Liang, H.H.; Wong, R.C.B.; Hewitt, A.W.; Pébay, A. Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technol. 2018, 23, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Eglen, R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. 2017, 22, 456–472. [Google Scholar] [CrossRef]
- Paull, D.; Sevilla, A.; Zhou, H.; Hahn, A.K.; Kim, H.; Napolitano, C.; Tsankov, A.M.; Shang, L.; Krumholz, K.; Jagadeesan, P.; et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat. Methods 2015, 12, 885–892. [Google Scholar] [CrossRef]
- Menendez, L.; Trecek, T.; Gopalakrishnan, S.; Tao, L.; Markowitz, A.L.; Yu, H.; Wang, X.; Llamas, J.; Huang, C.; Lee, J.; et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. eLife 2020, 9, e55249. [Google Scholar] [CrossRef]
- Crombie, D.E.; Daniszewski, M.; Liang, H.H.; Kulkarni, T.; Li, F.; Lidgerwood, G.E.; Conquest, A.; Hernández, D.; Hung, S.S.; Gill, K.P.; et al. Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells. SLAS Discov. 2017, 22, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Kusumoto, D.; Yuasa, S.; Fukuda, K. Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence. Pharmaceuticals 2022, 15, 562. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.-T.; Mao, J.; Shen, C.; Xie, R.-L.; Mu, B. Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach. Toxicol. Vitr. 2020, 65, 104812. [Google Scholar] [CrossRef]
- Huang, X.; Tang, F.; Hua, Y.; Li, X. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods. Chem. Biol. Drug Des. 2021, 98, 248–257. [Google Scholar] [CrossRef]
- Luni, C.; Gagliano, O.; Elvassore, N. Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annu. Rev. Biomed. Eng. 2022, 24, 231–248. [Google Scholar] [CrossRef]
- Chadly, D.M.; Oleksijew, A.M.; Coots, K.S.; Fernandez, J.J.; Kobayashi, S.; Kessler, J.A.; Matsuoka, A.J. Full Factorial Microfluidic Designs and Devices for Parallelizing Human Pluripotent Stem Cell Differentiation. SLAS Technol. 2019, 24, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, A.J.; Morrissey, Z.D.; Zhang, C.; Homma, K.; Belmadani, A.; Miller, C.A.; Chadly, D.M.; Kobayashi, S.; Edelbrock, A.N.; Tanaka-Matakatsu, M.; et al. Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons. Stem Cells Transl. Med. 2017, 6, 923–936. [Google Scholar] [CrossRef]
- Kim, J.A.; Hong, S.; Rhee, W.J. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J. Stem Cells 2019, 11, 803–816. [Google Scholar] [CrossRef]
- Elitt, M.; Barbar, L.; Tesar, P.J. Drug screening for human genetic diseases using iPSC models. Hum. Mol. Genet. 2018, 27, R89–R98. [Google Scholar] [CrossRef] [Green Version]
- Atkins, J.T.; George, G.C.; Hess, K.; Marcelo-Lewis, K.L.; Yuan, Y.; Borthakur, G.; Khozin, S.; LoRusso, P.; Hong, D.S. Pre-clinical animal models are poor predictors of human toxicities in phase 1 oncology clinical trials. Br. J. Cancer 2020, 123, 1496–1501. [Google Scholar] [CrossRef]
- Meigs, L.; Smirnova, L.; Rovida, C.; Leist, M.; Hartung, T. Animal testing and its alternatives—The most important omics is economics. ALTEX 2018, 35, 275–305. [Google Scholar] [CrossRef] [Green Version]
- Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015, 14, 475–486. [Google Scholar] [CrossRef]
- Ruiz, S.; Diep, D.; Gore, A.; Panopoulos, A.D.; Montserrat, N.; Plongthongkum, N.; Kumar, S.; Fung, H.-L.; Giorgetti, A.; Bilic, J.; et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2012, 109, 16196–16201. [Google Scholar] [CrossRef] [Green Version]
- Poetsch, M.S.; Strano, A.; Guan, K. Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine. Stem Cells 2022, 40, 546–555. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Grzybek, M.; Golonko, A.; Walczak, M.; Lisowski, P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol. Dis. 2017, 99, 84–120. [Google Scholar] [CrossRef]
- Miller, J.D.; Ganat, Y.M.; Kishinevsky, S.; Bowman, R.L.; Liu, B.; Tu, E.Y.; Mandal, P.K.; Vera, E.; Shim, J.-W.; Kriks, S.; et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 2013, 13, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Chacko, L.J.; Lahlou, H.; Steinacher, C.; Assou, S.; Messat, Y.; Dudás, J.; Edge, A.; Crespo, B.; Crosier, M.; Sergi, C.; et al. Transcriptome-Wide Analysis Reveals a Role for Extracellular Matrix and Integrin Receptor Genes in Otic Neurosensory Differentiation from Human iPSCs. Int. J. Mol. Sci. 2021, 22, 10849. [Google Scholar] [CrossRef]
- Bardhan, T.; Jeng, J.; Waldmann, M.; Ceriani, F.; Johnson, S.L.; Olt, J.; Rüttiger, L.; Marcotti, W.; Holley, M.C. Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea. J. Physiol. 2019, 597, 3389–3406. [Google Scholar] [CrossRef] [Green Version]
- Carpena, N.T.; Chang, S.-Y.; Choi, J.-E.; Jung, J.Y.; Lee, M.Y. Wnt Modulation Enhances Otic Differentiation by Facilitating the Enucleation Process but Develops Unnecessary Cardiac Structures. Int. J. Mol. Sci. 2021, 22, 10306. [Google Scholar] [CrossRef] [PubMed]
- Grafton, F.; Ho, J.; Ranjbarvaziri, S.; Farshidfar, F.; Budan, A.; Steltzer, S.; Maddah, M.; Loewke, K.E.; Green, K.; Patel, S.; et al. Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. eLife 2021, 10, e68714. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Nakagawa, T.; Sakamoto, T.; Ito, J. Fates of Murine Pluripotent Stem Cell-Derived Neural Progenitors following Transplantation into Mouse Cochleae. Cell Transplant. 2012, 21, 763–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-H.; Wilson, K.F.; Ueda, Y.; Wong, H.T.; Beyer, L.A.; Swiderski, D.L.; Dolan, D.F.; Raphael, Y. Conditioning the Cochlea to Facilitate Survival and Integration of Exogenous Cells into the Auditory Epithelium. Mol. Ther. 2014, 22, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.M.; Fowler, J.L.; Cromer, M.K.; Lesch, B.J.; Ponce, E.; Uchida, N.; Nishimura, T.; Porteus, M.H.; Loh, K.M. Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nat. Commun. 2020, 11, 2713. [Google Scholar] [CrossRef]
- Itakura, G.; Kawabata, S.; Ando, M.; Nishiyama, Y.; Sugai, K.; Ozaki, M.; Iida, T.; Ookubo, T.; Kojima, K.; Kashiwagi, R.; et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Rep. 2017, 8, 673–684. [Google Scholar] [CrossRef]
- Okano, T.; Nakagawa, T.; Endo, T.; Kim, T.-S.; Kita, T.; Tamura, T.; Matsumoto, M.; Ohno, T.; Sakamoto, T.; Iguchi, F.; et al. Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. NeuroReport 2005, 16, 1919–1922. [Google Scholar] [CrossRef]
- Lopez-Juarez, A.; Lahlou, H.; Ripoll, C.; Cazals, Y.; Brezun, J.M.; Wang, Q.; Edge, A.; Zine, A. Engraftment of Human Stem Cell-Derived Otic Progenitors in the Damaged Cochlea. Mol. Ther. 2019, 27, 1101–1113. [Google Scholar] [CrossRef] [Green Version]
- Chacko, L.J.; Sergi, C.; Eberharter, T.; Dudas, J.; Rask-Andersen, H.; Hoermann, R.; Fritsch, H.; Fischer, N.; Glueckert, R.; Schrott-Fischer, A. Early appearance of key transcription factors influence the spatiotemporal development of the human inner ear. Cell Tissue Res. 2020, 379, 459–471. [Google Scholar] [CrossRef]
- Roccio, M.; Perny, M.; Ealy, M.; Widmer, H.R.; Heller, S.; Senn, P. Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nat. Commun. 2018, 9, 4027. [Google Scholar] [CrossRef] [Green Version]
- Massucci-Bissoli, M.; Lezirovitz, K.; Oiticica, J.; Bento, R.F. Evidence of progenitor cells in the adult human cochlea: Sphere formation and identification of ABCG2. Clinics 2017, 72, 714–717. [Google Scholar] [CrossRef]
- Erni, S.T.; Gill, J.C.; Palaferri, C.; Fernandes, G.; Buri, M.; Lazarides, K.; Grandgirard, D.; Edge, A.S.B.; Leib, S.L.; Roccio, M. Hair Cell Generation in Cochlear Culture Models Mediated by Novel γ-Secretase Inhibitors. Front. Cell Dev. Biol. 2021, 9, 710159. [Google Scholar] [CrossRef]
- Xia, M.; Chen, Y.; He, Y.; Li, H.; Li, W. Activation of the RhoA-YAP-β-catenin signaling axis promotes the expansion of inner ear progenitor cells in 3D culture. Stem Cells 2020, 38, 860–874. [Google Scholar] [CrossRef] [Green Version]
- Cortina, C.; Turon, G.; Stork, D.; Hernando-Momblona, X.; Sevillano, M.; Aguilera, M.; Tosi, S.; Merlos-Suárez, A.; Attolini, C.S.-O.; Sancho, E.; et al. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol. Med. 2017, 9, 869–879. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, L.; Zhu, M.-S.; Wan, G. High-throughput screening on cochlear organoids identifies VEGFR-MEK-TGFB1 signaling promoting hair cell reprogramming. Stem Cell Rep. 2021, 16, 2257–2273. [Google Scholar] [CrossRef]
- He, Z.-H.; Zou, S.-Y.; Li, M.; Liao, F.-L.; Wu, X.; Sun, H.-Y.; Zhao, X.-Y.; Hu, Y.-J.; Li, D.; Xu, X.-X.; et al. The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol. 2019, 28, 101364. [Google Scholar] [CrossRef]
HC-like Cells | ||
---|---|---|
Differentiation Method | Main Outcomes | Reference |
LV-and mRNA-reprogrammed hiPSC lines Monolayer cultures EGF and RA treatment of hiPSC-derived OEPs | OEPs give rise to HC-like cells (ATOH1, POU4F3) Electrophysiological recordings point to similarities to vestibular sensory cell types Comparable results for LV-and mRNA-reprogrammed hiPSCs | [42] |
Two methods: As in Ronaghi et al. (2014), (EBs + attachment + factors) ATOH1/RFX1/RFX3 overexpression in OPs | Improved differentiation to a HC-like cell phenotype in cultures transduced with ATOH1/RFX1/RFX3 viruses. Overexpression of these 3 genes results in HC-like cells with more differentiated morphology (HC bundle-like protrusions) and increased expression of genes involved in stereociliary bundle formation | [43] |
Prolonged bFGF treatment to differentiate PPE cells towards an otic placode GF withdrawal to induce differentiation towards HC-like cells | Simple induction method. Culture in serum-free medium very efficiently induces spontaneous differentiation to PPE. Nearly all cells express the PPE markers SIX1 and ECAD Very low otic placode induction rates Very low HC induction rates. Stereocilia-like protrusions in some of the cells. No kinocilia-like structures observed | [44] |
Differentiation of Otic/placodal progenitors: FGF + WNT EGF/RA vs. Notch inhibition | EGF/RA-treatment promotes ATOH1 expression. A very low proportion of cells express MYO7A protein Notch inhibition is a stronger promoter of differentiation towards a HC-like phenotype (ATOH1, MYO7A, POU4F3 expression) than EGF/RA-treatment The generated HC-like cells lack stereociliary formations | [45,46] |
SGN-like Cells | ||
Differentiation Method | Main Outcomes | Reference |
LV-and mRNA-reprogrammed hiPSC lines Monolayer cultures bFGF, SHH, NT3 and BDNF treatment of hiPSC-derived ONPs | ONPs give rise to sensory neuron-like cells Comparable results for LV-and mRNA-reprogrammed hiPSCs | [42] |
Neurospheres + Attachment on human fibroblast feeders SFM + EGF + bFGF and posterior GF withdrawal | Bipolar neurons that express sensory neuron markers ISL1, BRN3A, NEUROD1, GATA3, VGLUT1 Functionally active hiPSC-derived neurons establish contact with IHCs and OHCs in cochlear explants. Synapsin 1 expression. Number of synapses dependent on differentiation stage of the neurons Compared to hESCs, higher variability in marker expression and lower potential of hiPSC-derived neurons to establish contact with denervated HCs in vitro | [47,48] |
SC-like Cells | ||
Differentiation Method | Main Outcomes | Reference |
SFEBq aggregates + BMP and/or Insulin Culture of CX26+ vesicles on cochlear feeder cells | Numbers of CX26-expressing cells promoted by insulin treatment and reduced when the TGFβ pathway is inhibited The CX26-expressing cells grown on feeder cells are proliferative, form gap junctions at cell-cell borders and express markers of cochlear SCs | [37] |
Monolayer OPs: transient BMP signalling + continued FGF activation OSC: NaHCO3 | Highly efficient method to obtain OPs and OSCs that display a mature OSC phenotype, with Pendrin expression and anion exchange activity | [36] |
OTHERS | ||
Differentiation Method | Main Outcomes | Reference |
LV-and mRNA-reprogrammed hiPSC lines Monolayer cultures FGF3 + FGF10 treatment | Two types of OPs (PAX8, PAX2, SOX2, FOXG1): OEPs and ONPs. These can be maintained in a proliferative state. OEPs give rise to HC-like cells ONPs give rise to SGN-like cells Comparable results for LV- and mRNA-reprogrammed hiPSCs | [42] |
Monolayer + Signalling modulation + Single-cell gene expression analysis Panel of 90 genes analysed Comparisons to native otic cells from mouse otocyst | Conditions established for the stepwise induction of NNE/PPE/early otic lineage.
Comparison to mouse otocyst: hESC-and hiPSC-derived cultures exhibit the closest resemblance to native mouse otocyst cells at day 12 Single-cell analyses to identify factors that lead to an optimization of the culture conditions to differentiate stem cells to otic cell types | [49] |
Monolayer + FGF signalling ± TGFβ and WNT inhibition | Rapid method to generate otic/placodal progenitors. Simultaneous FGF activation and TGFβ and WNT inhibition leads to higher rates of PAX2-positive cells and OP marker expression, as compared to FGF-only activation | [45,46] |
ORGANOIDS | ||
Differentiation Method | Main Outcomes | Reference |
2D culture and 3D culture systems Modulation by GFs in medium Hypoxia/Normoxia | Highly efficient method to generate homogenous OP cultures: 2D monolayers and controlled medium conditions SGN-like cells in the surface of otic organoids SGN-like cells with morphology, protein expression patterns and electrophysiological characteristics similar to primary SGNs. Presence of HC-like cells in the otic organoids | [50] |
Rotary cell culture system | Highly robust and efficient protocol Large numbers of vestibular HC-like cells that resemble human foetal vestibular HCs. Heterogeneous HC-like cell population Otoconia-like structures Neuronal-like cells present in the cultures | [51] |
Modifications to the method by Koehler et al., 2018: MEF feeders, cell number, low-adhesion plates, concentration and application times of mercaptoethanol, Matrigel | Vestibular and cochlear HC-like phenotypes. Immature types Electrophysiologically active HC-like cells Bipolar sensory neurons Possible synaptic contacts sensory neuron-/HC-like cells | [52] |
Sequential treatment of aggregates BMP/TGFβ inh: NNE FGF/BMP Inh: Posterior placode, OEPD Self-guided differentiation in minimal medium + Matrigel (+Wnt) | Vestibular HC-like cells. Electrophysiologically active Unipolar and bipolar neurons Possible synaptic contacts sensory neuron-/HC-like cells Keratinocytes, putative Schwann cells, mesenchymal cells, chondrocytes present in the cultures | [31] |
Gene | Disorder | Donor Cell Type | Otic Cell Type | Mutated Phenotype | Corrected Phenotype | Ref. |
---|---|---|---|---|---|---|
MYO7A Compound heterozygous C.1184G > A and C.4118C > T | Deafness | Urinary cells | OEPs ONPs HC-like cells | -Disarrayed, curved stereocilia with no links between them -MET channel dysfunction -Abnormal electrophysiological activity | -Organized and rigid stereocilia-like protrusions with links between them -Restored electrophysiological functions | [59] |
MYO15A Compound heterozygous C.4642G > A and C.8374G > A | Profound HL | Dermal fibroblasts | OP-like cells HC-like cells | -F-actin disorganization, shorter stereocilia and dysfunction of HC-like cells. Syncytia formation and some cell death during differentiation | -Rescue of F-actin organization, normal stereocilia length -Functional HC-like cells -No syncytia formation | [60] |
TMC1 Heterozygous dominant C.1253T > A | Dominant non-syndromic HL | Urine cells | [90,95] | |||
SMPX C.133–1G > A | X-linked Deafness 4 (DFNX4) | PBMCs | [92] | |||
USH2 USH2A mutation C.8559–2A > G | Usher syndrome type 2 | PBMCs | [100] | |||
USH2 USH2A Compound heterozygous C.2299DELG and C.1256G > T | Usher syndrome type 2 | PBMCs | [94] | |||
USH2 USH2A Homozygous C.2299DELG Compound heterozygous C.2299DELG and C.2276G > T | Usher syndrome type 2 | PBMCs | [101,102] | |||
PAX3 Autosomal dominant heterozygous splice site mutation C.452–2A > G | Waardenburg syndrome | Immortalized B lymphocytes | [104] | |||
PAX3 Autosomal dominant heterozygous frameshift mutation C.123DEL | Waardenburg syndrome | PBMCs | [105] | |||
SOX10 Autosomal dominant heterozygous mutation C.336G > A | Waardenburg syndrome | Dermal fibroblasts | NCCs | [69] | ||
SOX10 SINE-VNTR-ALU retrotransposon insertion into intron 2 G.37982884_37982885 INS (3002) | Waardenburg syndrome | PBMCs | [123] | |||
ATP6V1B2 Dominant heterozygous mutation C.1516C > T | Dominant deafness-onychodystrophy syndrome | PBMCs | [124,125] | |||
CISD2 C.103 + 1G > A | Wolfram syndrome | Fibroblasts | [126] | |||
MAP1B C.4198A > G | Profound non-syndromic HL | PBMCs | Otic sensory neuron-like cells | -Altered dynamics of microtubules and axonal elongation -Deficient electrophysiological activity | [62] | |
AIFM1 C.1265G > A | X-linked late-onset auditory neuropathy | PBMCs | [106] | |||
GJB2 Homozygous C.235DELC | Non-syndromic HL | PBMCs | Connexin 26 gap junction-forming cells with characteristics of SCs | -Shortened gap junction plaque lengths -Deficient gap junction intercellular communication | [37,108] | |
GJB2 C.109G > A | Non-syndromic HL | PBMCs | [89] | |||
GJB2 Homozygous P.G45E/Y136X | Non-syndromic HL | PBMCs | [68] | |||
GJB2 Compound heterozygous C.235DELC AND C.299–300DEL | Non-syndromic HL | PBMCs | [109] | |||
GJB2 Homozygous mutation C.235DEL C | Non-syndromic HL | PBMCs | [91] | |||
GJB2 Homozygous mutation C.109G > A | Non-syndromic HL | PBMCs | [127] | |||
GJB2 Homozygous mutation C.109G > A | Non-syndromic HL | PBMCs | [128] | |||
SLC26A4 Homozygous mutation C.1229C > T Homozygous mutation C.2168A > G Compound heterozygous C.439A > G and C.2168A > G | Pendred Disease | Monocytes | OP-like cells OSC-like cells | -Anion exchange activity -Pendrin aggregates in the cytoplasm -Decreased clearance of mutant protein -High death rates following proteasome inhibition | -Anion exchange activity -Reduced numbers of cells containing pendrin aggregates -Cells less susceptible to cellular stress | [36,129] |
SLC26A4 Homozygous mutation C.919–2A > G | Pendred Disease | PBMCs | [115] | |||
SLC26A4 Compound heterozygous C.919–2A > G AND C.1614 + 1G > A | Pendred Disease | PBMCs | [114] | |||
TMEM43 Heterozygous dominant C.1114C > T | Late-onset auditory neuropathy spectrum disorder | Lymphoblastoid cell line | [111] | |||
ESRP1 Compound heterozygous C.665_683 DEL AND C.775C > G | Profound HL | Lymphoblastoid cell lines | [79] | |||
P2RX2 Heterozygous (and ho-mozygous) mutation C.178G > T | Autosomal dominant progressive HL | Renal epithelial cells | [88] | |||
GDF6 Deletion in 3′ end of GDF6 | Non-syndromic HL associated with cochlear aplasia | Fibroblasts | Non-neuronal ectoderm and preplacodal ectoderm | [82] | ||
MT-RNR1 Mitochondrial A1555A > G | Severe-to-profound non-syndromic HL | PBMCs | [93] | |||
MT-RNR1/TRMU Mitochondrial A1555A > G ± C.28G > T | Phenotypic variability | Lymphoblastoid cell lines | Otic epithelial progenitors HC-like cell | -Deficient differentiation to otic epithelial progenitors -HC-like cells exhibit morphological and electrophysiological deficits | [119] | |
MTDNA A8344G | Myoclonus epilepsy associated with ragged-red fibres (syndromic HL) | Fibroblasts | HC-like cells | -Increased intracellular ROS and impaired ROS scavenging capacities of hiPSCs and hiPSC-derived HC-like cells -Defects in stereociliary bundles | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Alonso, M.B.; Petković, H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022, 11, 3331. https://doi.org/10.3390/cells11203331
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells. 2022; 11(20):3331. https://doi.org/10.3390/cells11203331
Chicago/Turabian StyleDurán-Alonso, María Beatriz, and Hrvoje Petković. 2022. "Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss" Cells 11, no. 20: 3331. https://doi.org/10.3390/cells11203331
APA StyleDurán-Alonso, M. B., & Petković, H. (2022). Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells, 11(20), 3331. https://doi.org/10.3390/cells11203331