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Abstract: Environmental abiotic stresses challenge food security by depressing crop yields often
exceeding 50% of their annual production. Different methods, including conventional as well as
genomic-assisted breeding, mutagenesis, and genetic engineering have been utilized to enhance
stress resilience in several crop species. Plant breeding has been partly successful in developing crop
varieties against abiotic stresses owning to the complex genetics of the traits as well as the narrow
genetic base in the germplasm. Irrespective of the fact that genetic engineering can transfer gene(s)
from any organism(s), transgenic crops have become controversial mainly due to the potential risk of
transgene-outcrossing. Consequently, the cultivation of transgenic crops is banned in certain countries,
particularly in European countries. In this scenario, the discovery of the CRISPR tool provides a
platform for producing transgene-free genetically edited plants—similar to the mutagenized crops
that are not extensively regulated such as genetically modified organisms (GMOs). Thus, the genome-
edited plants without a transgene would likely go into the field without any restriction. Here, we
focused on the deployment of CRISPR for the successful development of abiotic stress-tolerant crop
plants for sustaining crop productivity under changing environments.
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1. Introduction

The process of crop domestication, which started at the dawn of human civilization,
has led to the development of high-yielding crop varieties. These crop varieties have played
a significant role in the transformation of every aspect of human society. However, these
crops cannot withstand the changing environmental conditions and therefore these crops
are undergoing significant yield losses. This phenomenon has recently been witnessed
in Pakistan where the early onset of high-temperature regimes followed by heavy rains
have almost entirely damaged the crops, especially rice and cotton. The rainfall has not
only affected the standing crops but its knockdown effects are also extending this cropping
season as well. For instance, it is feared that the next crop—wheat, a staple food crop in the
country—would not be sown in many flooded regions in this growing season. The other
abiotic stresses including drought, salinity, temperature, and heavy metal toxicity [1] are
also gradually converting the cultivated lands into barren soils. Thus, all abiotic stresses
in the face of changing climatic conditions are threatening global food security and are
a major obstacle in realizing the UN’s target of a 70–100% increase in crop productivity
by 2050.

Abiotic stresses can result in significant yield losses. For instance, drought alone can
cause a 50–70% reduction in crop yield for different crops [2]. For example, due to drought
stress, 40% yield losses were reported in maize [3], 21% in wheat [3], 50% in rice [4], 27–40%
in chickpea [5], 42% in soybean [6], and 68% in cowpea [7]. Salinity stress is the second
most devastating menace that not only reduces crop productivity but also deteriorates
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fertile lands [8]. About one-fifth of the agricultural irrigated land is affected by excessive
salts [9,10]. Poor quality irrigation water together with changing climatic conditions and
the excessive use of chemicals including fertilizers and pesticides continue to add new
acreage under salinity stress. It was estimated that the excessive use of chemicals including
fertilizers and pesticides will cause 50% of the cultivated lands to be saline by 2050 [11]. The
third most important factor is the increase in temperature that may depress crop production
substantially. For example, every 1 ◦C increase in atmospheric temperature reduces wheat
yield by 6% [12], rice yield by 10–20% [13], and 21–31% corn yield [14]. This means that
developing stress-tolerant crops could increase the crop yield. It has been a widely accepted
fact that developing resilient crop varieties that can withstand the impact of abiotic stresses
including changing climatic conditions is the only option for harvesting sustainable crop
productions.

Although conventional breeding as well as molecular techniques and genetic engineer-
ing contributed significantly to producing biotic stress-resilient crop varieties [15], however,
limited success was achieved in addressing abiotic stresses owing to the complex genetics
involved in resistance mechanisms. New genetic tools including genome editing are being
used extensively for developing resilient crops but stringent regulations for cultivating such
crops remained a major hurdle in the spread of genome-edited crops [16,17]. Improvements
in the genome editing assay including clustered regularly interspaced short palindromic
repeat (CRISPR) have caused it to be possible to edit the genome very precisely [18–20].
Genome editing can be used for studying novel traits and targeting the improvement of
traits for mitigating the impact of abiotic stresses [21,22]. In this review, we will discuss the
role of CRISPR-Cas9 in the development of stress-resilient crops for addressing nutrient
use efficiency, drought, salinity, temperature, tolerance to environmental pollutants, and
heavy metal toxicity.

2. Genome Editing Machinery

Genome editing tools use a special class of nucleases that can modify a specific nu-
cleotide(s) in the genome(s) by introducing target-specific double-stranded breaks. Four dif-
ferent types of nucleases including meganucleases (MegNs), zinc finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs), and clustered regularly inter-
spaced short palindromic repeats (CRISPR)/associated proteins (Cas) [23] have been re-
ported [1]. Meganucleases, ZFNs, and TALENs can induce DSBs at the target site by
DNA-protein interaction. However, their utility in genome editing is relatively labori-
ous and time-consuming [24]. On the other hand, the deployment of CRISPR for editing
genomes is relatively easy, efficient, and economical [25]. CRISPR-Cas9 was derived from
the bacterial immune defense that targets the invading viruses [26,27]. Being a single
effector molecule system, CRISPR/Cas9 belongs to class 2-type II and is by far the most
widely used system for editing genomes precisely [28,29].

The CRISPR/Cas9 comprises Cas9 and single guide RNA (sgRNA). The sgRNA is
categorized into two components viz. CRISPR-RNA (crRNA) and trans-activating RNA
(tracrRNA). The crRNA is a 20-nucleotide-long complementary sequence to target the
sequence of interest, pre-crRNA, which joins with tracrRNA to produce a double-stranded
RNA [30]. The RNase III activates the pre-crRNA for converting to mature crRNA [31].
The Cas9 nuclease has six domains: two recognition domains (REC I and REC II) essential
for binding sgRNA and DNA, two nuclease domains (HNH and RuvC) for the cleavage of
the complementary and non-complementary strands at the target region, the protospacer
adjacent motif (PAM) interaction (PI) domain, and the bridge helix domain for the initiation
of nuclease activity (Figure 1) [32,33].

The Cas enzymes had many orthologues that recognize different and specific PAM
sequences (Table 1). For example, Streptococcus pyogene Cas9 (spCas9) recognizes the NGG
sequence where N could be any nucleotide [30,34–36]. Different Cas proteins require the
PAM position at the different directions of the target sequence. Certain Cas proteins require
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PAM at 5′ (such as Cas12), while the majority of the Cas require PAM at the 3′ site of the
target DNA.
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Table 1. Different CRISPR/Cas systems, classes, and types.

Name Cas Organism Type PAM * PAM Location References

SpCas9 Cas9 Streptococcus pyogenes Type II NGG 3′ [30]
SaCas9 Cas9 Streptococcus aureus Type II NNGRRT 3′ [37–39]
FnCas9 Cas9 Francisella Novicida Type II NGG 3′ [40]

NmCas9 Cas9 Neisseria meningitidis Type II NNNNGATT 3′ [41]
CjCas9 Cas9 Campylobacter jejuni Type II NNNNRYAC and NNNNACAC 3′ [42]
St1Cas9 Cas9 Streptococcus thermophilus Type II NNAGAAW 3′ [38,43]
St3Cas9 Cas9 Streptococcus thermophilus Type II NGGNG 3′ [29]

AsCas12a Cas12a(cpf1) Acidaminococcus sp. Type V TTTV 5′ [44,45]
LbCas12a Cas12a(cpf1) Lachnospiraceae bacterium Type V TTTV 5′ [45,46]
FnCas12a Cas12a(cpf1) Francisella Novicida Type V TTTN or YTN 5′ [45]

LsCas13 ** Cas13(C2c2) Leptotrichia shahii Type VI Non g nucleotide at the 3′ protospacer
flanking site 3′ [47]

Cas14 *** Cas14 Archea Type V Thymine rich PAM sequences 3′ [48]
FnCas9 variant Cas9 Modified FnCas9 Type II YG 3′ [49]
SpCas9-VQR Cas9 Engineered SpCas9 Type II NGA 3′ [50–52]
SpCas9-EQR Cas9 Engineered SpCas9 Type II NGAG 3′ [50–52]
SpCas9-NG Cas9 Engineered SpCas9 Type II NG 3′ [53–55]

SpCas9-VRER Cas9 Engineered SpCas9 Type II NGCG 3′ [52]

GeoCas9 Geobacillus
stearothermophilus Type II NNNNCRAA 3′ [48]

SaCas9-KKH Cas9 Engineered SaCas9 Type II NNNRRT 3′ [56]
SpCas9-HF Cas9 Engineered SpCas9 Type II NGG 3′ [57,58]

eSpCas9 Cas9 Engineered SpCas9 Type II NGG 3′ [57,58]
xCas9 Cas9 Engineered SpCas9 Type II NG, GAA and GAT 3′ [54]

Sniper-Cas9 Cas9 Engineered SpCas9 Type II NGG 3′ [59]
evoCas9 Cas9 Mutated SpCas9 Type II NGG 3′ [60]

HypaCas9 Cas9 Mutated SPCas9-HF Type II NGG 3′ [61]
Cas9-NRNH Cas9 Engineered SpCas9 Type II NRNH 3′ [62]

SpG Cas9 Engineered SpCas9 Type II NGN 3′ [63]
SpRY Cas9 Engineered SpCas9 Type II NRN or NYN 3′ [62,64]

ScCas9 Cas9 Streptococcus canis Type II NNG 3′ [65]
LbCas12a-RR Cas12 Engineered LbCas12a Type V TYCV, CCCC 5′ [66,67]
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Table 1. Cont.

Name Cas Organism Type PAM * PAM Location References

LbCas12a-RVR Cas12 Engineered LbCas12a Type V TATV 5′ [66,67]
FnCas12a-RVR Cas12 Engineered FnCas12a Type V TATG 5′ [66]

enLbCas12a Cas12 Engineered LbCas12a Type V TTTV 5′ [46]
ttLbCas12a Cas12 Engineered LbCas12a Type V TTTV 5′ [46,68]

AacCas12b Cas12 Alicyclobacillus
acidoterrestris Type V VTTV 5′ [65,69]

AaCas12b Cas12 Acidaminococcus sp. Type V VTTV 5′ [69]
BthCas12b Cas12 Bacillus thermoamylovorans Type V ATTN 5′ [69]

BhCas12b v4 Cas12 Bacillus hisashii Type V ATTN 5′ [70]
BvCas12b Cas12 Engineered Cas12a Type V ATTN 5′ [71]
Lb5Cas12a Cas12 Engineered LbCas12a Type V TTTV 5′ [72]
BsCas12a Cas12 Engineered Cas12a Type V TTTV 5′ [72]

Mb2Cas12a Cas12 Engineered Cas12a Type V TTV 5′ [72]
TsCas12a Cas12 Thiomicrospira sp. Type V TTTV 5′ [72]
MCas12a Cas12 Engineered Cas12a Type V TTTV 5′ [72]
BoCas12a Cas12 Engineered Cas12a Type V TTTV 5′ [72]
MbCas12a Cas12 Engineered Cas12a Type V TTTV 5′ [72]

Mb2Cas12a-RVR Cas12 Engineered Cas12a Type V TATV 5′ [72]

Mb2Cas12a-RVR Cas12 Engineered Cas12a Type V TTTTV, TTV, TATV, TYCV, CCCV,
CTCV 5′ [72]

* “N” represents any nucleotide. “R” represents A or G. “H” represents A, C, or T. “Y” represents C or T. “W”
represents A or T in PAM sequence. ** Cas13 targets RNA sequences. *** Cas14 targets the single stranded DNA
sequence that is why it does not require PAM.

The Cas9 endonuclease is activated upon binding with mature gRNA that induces
conformational changes to it. Upon binding with target DNA, Cas induces double-stranded
break 3 nucleotide upstream to the PAM sequence (5′ NGG 3′). These breaks will be repaired
either through non-homologous end joining (NHEJ) or the homologous directed repair
(HDR) pathway [73], depending on the presence of the DNA template with homology to
the flanking position of the DSB. During the cut and repair mechanism, some nucleotides
are removed or added to the original sequence, which may alter the protein structure or
completely abolish its function [74]. Genome editing can knock out or overexpress an
individual gene based on different repair mechanisms (Figure 2) [75–78]. Several studies
have shown the utility of genome editing assays especially CRISPR/Cas9 for improving
tolerance to various stresses including drought, salinity, heat, heavy metals, etc. (Table 2).
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Table 2. Crop improvement with tolerance to abiotic stress by using CRISPR genome editing.

Crop Species Targeted Gene Function Phenotype References

Rice DERF1, PMS3, MSH1, MYB5, SPP Amino acid synthesis and drought tolerance DT [79]
Rice SRL1, SRL2 Regulate leaf rolling DT [80]
Rice ERA1 Regulates ABA signaling and dehydration response DT [81]

Tomato GID1a Gibberellin (GA) receptor DT [82]
Tomato LBD40 Involved in jasmonic acid (JA)-mediated stress response DT [83]
Maize ARGOS8 Involved in ethylene response DT [84]
Maize abh2 Abscisic acid 8′-hydroxylase mediates stomatal opening DT [85]

Rapeseed A6.RGA DELLA protein, negative regulator of gibberellin signaling DT [86]
Maize STL1 Dirigent protein localized to the Casparian strip ST [87]

Tomato ABIG1 Homeodomain-leucine Zipper (HD-ZIP) TF ST [88]
Tomato HyPRP1 Negative regulator of salt stress ST [89]
Soybean AITR Regulation of ABA signaling ST [90]

Rice SPL10 Regulate trichome development ST [91]
Rice RAV2 Function in the regulation of developmental processes ST [92]
Rice RR9, RR10 Negatively regulate cytokinin signaling ST [93]
Rice DST Involved in stomata development ST [94]
Rice SOS1 Na+/H+ antiporter mediating Na+ transport ST [95]
Rice GI Circadian clock component ST [96]
Rice bHLH024 Basic helix–loop–helix TF involved in growth and stress responses ST [97]
Rice RR22 Involved in cytokinin signaling ST [98]
Rice PQT3 E3 ubiquitin ligase ST [99]
Rice miR535 Involved in Salinity stress regulation ST [100]
Rice HSA1 Chloroplast development and protection HT [101]

Tomato MAPK3 Negative regulator of heat stress HT [102]

Rice
PYL1
PYL4
PYL6

Regulatory component of Abscisic acid HT [103]

Tomato AGL6 Involved in fruit development HT [21]
Rice MYB30 Negative regulator of cold stress CT [104]
Rice Nramp5 Role in Cadmium translocation HMT [105]
Rice HAK1 Transportation of Cesium HMT [106]
Rice ARM1 Regulation of Arsenic response HMT [107]
Rice ALS Involved in herbicide tolerance HerT [108–110]

Watermelon ALS Involved in herbicide tolerance HerT [111]

Maize ALS1
ALS2 Involved in herbicide tolerance HerT [112]

“DT” Drought tolerance, “ST” Salinity tolerance, “HT” Heat tolerance, “CT” Cold tolerance, “HMT” Heavy metal
tolerance, “HerT” Herbicide Tolerance.

3. CRISPR for Improving Drought Tolerance in Crop Plants

Drought, aggravated by climate change effects such as uneven rainfall patterns and
increasing temperature, is becoming a threat to sustainable agriculture in many parts of
the world. Tolerance to drought stress is a complex quantitative trait that is attributed to
multiple physiological and biochemical processes [113]. Many efforts were performed to
tailor these genes as well as to add new genes by adopting transgenic approaches. The
transgenic crops were not commercialized due to the marginal impact of the transgene(s)
in conferring drought tolerance and strict regulatory policies for the release of GM crops
in the environment. After the discovery of genome editing tools, experiments are being
designed to edit the genes involved in drought tolerance pathways for increasing the public
acceptance of genome-edited crops [114]. Many studies have reported the conferring of
drought tolerance in plants through CRISPR. For instance, downregulating the expression
of DERF1, PMS3, MSH1, MYB5, and SPP regulatory genes using CRISPR/Cas9 have shown
to result in drought tolerance enhanced in rice [79]. Mutation induced in Arabidopsis OST2
structural gene through deploying CRISPR/Cas9 demonstrated drought tolerance [115].

In another study, CRISPR/Cas9-mediated knockout of the miR169a gene in Arabidop-
sis resulted in a significant improvement of drought tolerance [116]. Similarly, activation
of the vacuolar H+-pyrophosphate (AVP1) regulatory gene with CRISPR/Cas9 resulted
in drought tolerance improving in Arabidopsis [117]. Likewise, activation of the abscisic
acid-responsive element binding gene (AREB1) by CRISPR/Cas9a exhibited enhanced
drought tolerance in Arabidopsis [118]. Recently, the silencing of the trehalase (TRE1)
gene through CRISPR/Cas9 demonstrated drought tolerance in Arabidopsis thaliana [119].
Also, the editing in the STL1 structural gene conferred improved drought tolerance in
A. thaliana. In maize, editing of the ARGOS8 gene—the negative regulator of ethylene
response—through CRISPR/Cas9 enhanced drought tolerance [84]. Also, suppressing the
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expression of the abscisic acid hydroxylase 2 (abh2) gene improved drought tolerance in
maize [85]. Among oil seed crops, CRISPR/Cas9 was deployed to edit the A6.RGA gene,
which showed significant enhancement in drought tolerance in rapeseed [86]. In rice, the
CRISPR/Cas9-mediated knockout of SRL1, SRL2, and ERA1 genes improved drought toler-
ance [80,81]. Multiple genes were also edited in tomato plants through CRISPR/Cas9 assay
for improving drought tolerance. For instance, the gibberellin insensitive dwarf1 (GID1)
gene [82] and the LBD40 gene were edited [83]. In wheat, the SAL1 gene negative regulator
of drought tolerance was edited through multiplex CRISPR/Cas9 assay that improves
drought tolerance at the seedling stage [120]. Cotton’s ability to withstand drought can be
improved by CRISPR/Cas genome editing of the HB12 gene [121].

4. CRISPR for Improving Salt Tolerance in Crop Plants

To meet the increasing world food demand, the UN has estimated that 70–100% of
crop production should be increased by the end of 2050. However, at the same time,
increasing crop cultivation has led to reduced soil fertility and salinization, which are quite
unsuitable for crop growth and cultivation. Soil salinization occurs due to the accumulation
of excessive soluble salts in the crop root zone, which hinders water absorption by roots.
Consequently, plants exhibit osmotic stress along with nutritional imbalance that pose
detrimental effects on plant morphology, plant biochemistry, and biomass and ultimately
result in irreversible damage to plants [122–124]. Salt stress/salinity also increases the level
of reactive oxygen species (ROS); resultantly, the cellular as well as metabolic activities
of plants are badly affected [125,126]. The toxic impact of ROS is lipid peroxidation and
membrane deterioration, as well as DNA and protein damage [127]. Salt stress hinders
the photosynthetic machinery and transpiration by reducing chlorophyll content and
stomatal conductance and impairing the chloroplast and photosystem II development [128].
In addition, it lowers the soil and leaf water potential; reduces plant turgor pressure by
affecting water relations and ends up with osmotic stress [129]. Consequently, plants
suffer a reduced leaf area, reduced photosynthesis, less production of biomass, poor seed
germination, and reduced crop yield [130–132].

Salinity tolerance is conferred by a series of molecular as well as physiological mecha-
nisms in plants [133]. Genome editing and genetic engineering tools have been deployed
to target genes involved in ion transport for regulating osmotic adjustment under salt
stress [134]. The overexpression of SOS1 (salt overly sensitive 1) increased the salinity
tolerance in Arabidopsis [135]. Similar to SOS1, overexpression of HvHKT2;1 (subfamily
II HKT transporter from Hordeum vulgare) led to increased translocation of Na+, which
resulted in enhanced salinity tolerance in barley [136]. In another study, editing in the
OsRR22 gene encoding response regulator (type-B) expressed high tolerance to salinity
in rice [98]. In addition, the PARAQUAT TOLERANCE 3 mutants (OsPQT3) developed
through CRISPR/Cas9 conferred a high degree of salinity tolerance in rice [99]. The role
of OsmiR535 in salt stress tolerance was explored by deploying genome editing tools and
it was suggested that the knockout of OsmiR535 through CRISPR/Cas9 could improve
salinity tolerance in rice. Moreover, a homozygous five bp deletion in the coding sequence
of OsmiR535 could serve as a potential target for improving salinity tolerance in rice [100].
Another study demonstrated the potential application of CRISPR/Cas9 by manipulating
the hybrid proline-rich protein 1 (HyPRP1) gene—a negative regulator of salt stress in
tomato. The knockdown of SlHyPRP1 negative-response domain(s) enhanced salinity toler-
ance at seedling as well as vegetative stages in tomato plants [89]. A gene cluster containing
(ACQOS; AT5G46520) and (NLRs; AT5G46510) is involved in osmotic stress tolerance. The
role of ACQOS was investigated by inducing small insertion/deletion mutations through
CRISPR-Cas9, which suggested that ACQOS was linked with salt stress resistance directly
in Arabidopsis [137]. Although, limited reports are available on the potential implications
of the CRISPR/Cas9 system toward the enhancement of salinity tolerance, there is no
doubt that the CRISPR/Cas system is a promising tool in improving salinity tolerance in
different crops.
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5. CRISPR/Cas9 for Mitigating the Impact of Heat Stress

The optimum temperature for plant growth and development is 15–24 ◦C [138–140].
Heat stress is explained as the 10–15 ◦C increase in temperature above the ambient temper-
ature, which is required for normal growth and development. High heat stress emerged
as a serious issue responsible for huge yield losses and is expected to exacerbate in the
future [141]. Heat stress poses extremely negative effects on plants during all growth stages,
from germination to harvesting [142,143]. Heat stress not only aggravates the mortality
rate of plants but also deteriorates their quality [144,145]. Plants restrict their growth,
metabolism, and cellular activities above the normal temperature. Heat stress also affects
the plant’s phenology including its photosynthetic machinery, respiration, and sink/source
machinery and impairs photosystem II resulting in reduced production [146–148].

Prolonged exposures to extreme temperatures may lead to irreversible changes in
plants such as cellular destruction. Plants respond to heat stress by wilting, fruit senescence,
bolting, and leaf damage [149]. It causes several molecular, biochemical, and physiological
changes that can adversely affect plant growth and productivity and may result in visual
symptoms including leaf burn and discoloration [150]. Mostly, reproductive growth was
highly affected under heat stress as temperatures ≥ 30 ◦C may lead to pollen shedding,
poor pollen viability, poor germination, and growth of pollen [151].

Heat stress affects the physiological processes of plants in several ways. It increases
the membrane fluidity, leading to a series of reactions that alter metabolisms and impair
cellular machinery [152]. Furthermore, other cellular processes such as protein degradation
and cytoskeleton are also influenced by heat stress [153]. Climate change, prolonged heat
waves, and global warming are among the leading cause of heat stress [154]. Heat stress
severely limits the productivity of crop plants. For instance, it is speculated that each one-
degree rise in temperature reduces wheat production by more than 6% [12,155]. Therefore,
strategies to mitigate the devastating effects of heat stress are urgently required as global
warming is worsening day by day.

The deletion of heat sensitive albino1 (OsHSA1) gene in rice exhibited more sensitivity
to heat but had a faster greening phenotype as compared to the wild type. It was demon-
strated that HSA1 plays important roles in chloroplast development at early stages and
functions in protecting chloroplasts under heat stress at later stages [101]. The OsHSA1
encodes a fructokinase-like protein that is involved in chloroplast protection and devel-
opment during different growth stages in rice. Mutants generated through CRISPR/Cas9
in tomato Slcpk28 showed an increased accumulation of ROS and protein oxidation and
decreased the activity of antioxidant enzymes including ascorbate peroxidase under heat
stress [156]. The CRISPR/Cas9-mediated knockout of SlMAPK3 expressed improved heat
stress tolerance by decreasing ROS accumulation and up-regulating the expression of genes
encoding heat shock proteins (HSPs) and heat stress transcription factors (HSFs) [102].

Brassinosteroids (BRs) are plant hormones involved in conferring tolerance to abiotic
stresses in plants [157]. In tomato plants, the BZR1 gene serves as a key regulator of
the BR response. Heat-stress-induced damage was exacerbated in the ∆bzr1 mutants
and BR-induced heat stress tolerance was lost through the respiratory burst of oxidase
homolog (RBOH1)-dependent ROS signaling, which is regulated by feronia homologs [158].
The knockout of OsNAC006 by CRISPR/Cas9 exhibited an increased level of H2O2 and
superoxide radicals (O2–) as well as decreased chlorophyll content and antioxidant enzymes.
It indicates that Osnac006 may be involved in heat stress tolerance by mediating the process
of photosynthesis and limiting the activity of antioxidant enzymes, triggered in response
to oxidative stress under high temperatures [159]. The gene knock-out by CRISPR/Cas9
in genes encoding the abscisic acid receptor (PYL1/4/6) has shown considerable high-
temperature tolerance in rice [103]. To address the issues such as global warming and
climate change, the identification of targets for improving heat stress tolerance as well as
the development of heat tolerant varieties are necessary. Phytochrome (PHY) could be an
important target in this respect as PHYB has been identified as a thermo-sensor [160,161].
The PHY mutants expressed improved tolerance to high temperatures in Arabidopsis [162]
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and tomato plants [163]. This mutant information is important for the definition of targets
of genome editing.

High temperatures result in higher respiration in pollen grains, which can lead to the
elimination of respiratory substrates and decreased mitochondrial activity, ultimately result-
ing in pollen abortion and poor fruit setting [164,165]. Parthenocarpy (fruit development
without pollination/fertilization) is an important target for seedless fruit development due
to its fertilization independence, consumers’ preference, and good quality of fruit [166,167].
During the screening of an ethyl-methanesulfonate (EMS) mutated population in tomato
under heat stress, a mutant capable of generating high-quality seedless fruit was selected.
Following the CRISPR/Cas9 gene knockout revealed that the seedless phenotype was
caused by a mutation in the tomato SlAGAMOUSLIKE 6 (SlAGL6) gene encoding MADS-
box. Hence, mutations in SlAGL6 increased heat stress in tomato plants. Moreover, these
mutants exhibited facultative parthenocarpy without any pleiotropic effect, which was com-
parable in both shape and weight to the wild-type fruits (seeded) [21]. Aux/IAA9 (IAA9) is
responsible for fruit development in tomato and represses parthenocarpy. CRISPR/Cas9-
mediated mutant plants showed fruit development without fertilization and mutants were
also heritable in successive generations [168]. Another hormone DELLA is a negative
regulator of gibberellin signaling. the loss-of-function mutations in SlDELLA exhibited
high gibberellin sensitivity and a parthenocarpic phenotype [169,170]. All these findings
suggested that the CRISPR/Cas9 system enhanced parthenocarpy in tomato plants. Other
members of Solanaceae, such as peppers and eggplants, can also be improved by deploying
the genome editing tool CRISPR/Cas9. Also, the overexpression of ZmWRKY106 enhances
drought and heat tolerance in transgenic maize plants by regulating the expression of
stress-related genes, reducing ROS content, and by increasing the activities of antioxidant
enzymes [171]. Heat shock proteins (HSPs) are molecular chaperones involved in cellular
survival by transporting, folding, and degrading other proteins under heat stress [172]. The
overexpression of HSP70 genes conferred increased resistance to abiotic stresses includ-
ing high-temperature stress [173,174]. Moreover, the overexpression of HSP40 enhanced
thermo-tolerance in transgenic Arabidopsis [175].

6. CRISPR/Cas9 for Mitigating the Impact of Cold Stress

In recent years, climate change has become the core problem threatening global food
security [176]. In addition to heat waves, extremely cold temperatures have also been
recorded in different ecological regions of the world [177]. Cold- or low-temperature stress
may be divided into freezing stress (<0 ◦C) and chilling stress (0–15 ◦C), which adversely af-
fects crop growth and production [178–180]. Excessive cold temperatures halt plant growth
as it causes mechanical injury and dysfunction of metabolic activities [181]. Cold stress
poses negative effects on the biochemical, physiological, and molecular activities of plants
during their growth and development. Cold exposure, especially during winter, severely
affects the photosynthetic potential and the plant anatomy [182,183]. Cold stress during the
seedling stage may lead to poor germination and emergence. Prolonged exposures causes
stunted growth, leaf chlorosis, poor source–sink relations, and nutrient localization [184].
The major impact of cold stress in plants is membrane rigidification, which aggravates
other downstream processes in response to cold stress. Moreover, it disturbs the stability of
the protein and expression, as well as impairs the activities of several enzymes including
ROS-scavenging enzymes. Resultantly, the photosynthetic capacity of plant cells is ques-
tioned along with membrane damage and the formation of secondary structures in RNA
that restrict its expression [185]. Low temperatures can injure crop species affecting their
growth, productivity, and survival [186].

Various physiological and biochemical processes in plants are regulated by proline-
rich proteins involved in growth and stress tolerance in plants. The knockout of OsPRP1
(encodes proline-rich protein) by CRISPR/Cas9 enhanced the cold tolerance ability in
rice [187]. In addition, the CRISPR/Cas9-mediated knockout of OsMYB30, characterized
as a cold-responsive gene in rice, exhibited a higher cold tolerance than that of wild-
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type rice [104]. The CRISPR/Cas9-mediated ∆Atcbf single, double, and triple mutants
in Arabidopsis elucidated that three tandemly arranged CCAAT-binding factor (CBF)
genes such as CBF1, CBF2, and CBF3 have been involved in cold acclimatization. The
cold-acclimated Atcbf triple mutants exhibited a highly sensitive response under cold stress
compared to that of the wild type. Under prolonged exposures to chilling temperatures,
the expression of CBF genes was suddenly enhanced. Resultantly, CBF proteins activate
the transcription of downstream cold-responsive genes to improve the freezing tolerance
in plants [188]. The CBF1 is the only cold-inducible gene in tomato plants and its increased
expression resulted in salicylic acid and hydrogen peroxide-induced cold tolerance in
tomato plants [189]. The CBF1 mutants generated by the CRISPR/Cas9 exhibited greater
electrolyte leakage and malondialdehyde (MDA) levels than wild-type plants in tomato
plants, indicating that the knockout of CBF1 can increase cold-stress-induced membrane
damage [190]. Plant annexins and phospholipid-binding proteins are involved in the
regulation of plant development and stress tolerance. The OsAnn3-knockout mutants
developed by CRISPR/Cas9 showed enhanced relative electrical conductivity as compared
to wild-type plants, which proved that OsAnn3 can perform a role in cold tolerance in
rice [191]. Several cis-regulatory elements in the rice promoter region OsAnn5 are common
promoter elements. However, some elements are unique to OsAnn5, including recognition
sites for MYB, dehydration-responsive elements, and light-responsive elements, showing
that several transcription factors regulate the expression of OsAnn5 in rice. The elimination
of OsAnn5 function through CRISPR/Cas9 significantly increased the survival rates at the
seedling stage under cold stress in rice demonstrating that OsAnn5 regulates cold stress
tolerance at the seedling stage in rice [192].

7. CRISPR for Improving Plant Tolerance to Climate Change

Climate change coupled with environmental pollution renders detrimental effects on
the growth, development, phenology, and production potential of crop plants. Drastic
changes in global environmental conditions have led to the development of climate-resilient
phytoremediation methods. These approaches are of huge importance due to the current
situation of the environmental crisis. Soil contamination with heavy metals and metalloids
is one of the major harmful effects of environmental pollution worldwide. Some of the
metal ions are carcinogenic pollutants with a long half-life and are non-degradable in
the environment. Therefore, enhancing the adaptive potential of plants to the changing
environmental conditions is a major concern regarding phytoremediation practice. Genome
modification using artificial nucleases has the potential to enhance phytoremediation.

Recently, the CRISPR-Cas9-based gene editing approach has been extensively used
for the phytoremediation of heavy metals. These modifications facilitate to control and
stabilize the harmful effects of environmental pollutants on various crop plants. CRISPR-
Cas9-based gene editing offers exciting options for photo technologies such as phytoreme-
diation [193]. Several phytoremediators have been sequenced such as Thlaspi caerulescens
(hyper-accumulator for Ni, Zn, and Cd), Arabidopsis halleri (hyper-accumulator for Zn and
Cd), Hirschfeldia incana (for controlling Pb), Brassica juncea, and Pteris vittata [194–197].
Phytoremediation is the most effective, environmentally friendly, and cost-effective ap-
proach for the remediation of toxic metals and plant pollutants. Gene editing has the
potential to modify the efficacy of phytoremediation for metal uptake, metal transport, and
sequestration. Many genes including metal transporter, a metal chelator, phytochelatin, and
metallothionein have been transferred to plants to enhance metal uptake and sequestration.
For instance, the CRISPR-Cas9-based genome modification in a metal transporter gene
OsNRAMP5 resulted in low Cd-accumulation without affecting the yield in indica rice [105].
Moreover, transgenic plants developed by CRISPR-Cas9 genome editing demonstrated an
increased ability to tolerate, detoxify, or accumulate heavy metals thereby promoting phy-
toremediation [198]. The overexpression of metallothioneins encoding genes (MT1, MT2,
and MTA1) led to the increased potential of accumulating Cu, Zn, and Cd in Arabidopsis
and tobacco [199,200]. Similarly, the overexpression of ATP Sulfurylase and Selenocysteine
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Methyltransferase gene in B. juncea led to enhanced tolerance towards Selenium [201]. The
expression of BcMT1 and BcMT2 metallothionein genes from B. campestris to Arabidopsis
resulted in increased tolerance to Cu and Cd [202]. CRISPR has opened the way of phytore-
mediation for many plants, such as maize and poplar, which were considered capable but
not yet investigated due to the complex architecture of their genome.

8. CRISPR for Improving Plant Tolerance to Herbicides and Heavy Metals

Heavy metals (As, Ni, Mn, Co, Cu, Zn, etc.) have been accumulated in soils due to
several anthropogenic activities which exert negative impacts on plant growth by disturbing
the cellular membranes, photosynthetic ability, and cellular respiration that ultimately limits
crop productivity [203,204]. Moreover, heavy metals produce hydrogen peroxide (H2O2),
free radicals such as hydroxyl radicals (OH), and superoxide radicals (O−2), which lead
to oxidative stress [205]. In addition, the continuous application of herbicides used for
eradicating weeds has produced herbicide resistance in several plants [206,207].

Several genes play a role in improving the tolerance to heavy metals in pants [208]. For
instance, γ-glutamyl acyltransferase mutants expressed defensive properties against heavy
metal toxicity, due to enhanced accumulation of glutathione. Hence, the development of
mutants using CRISPR-Cas9 would be beneficial to cope with heavy metal stress in plants.
Recently, oxp1 CRISPR-mediated mutants in Arabidopsis showed increased resistance to
Cadmium (Cd) [209]. In rice, several transporter genes (OsNramp1, OsCd1, and OsNramp5)
are involved in the absorption of Cd by the roots [210]. Manipulation in the expression of
these genes through CRISPR/Cas9 has resulted in minimizing the concentration of Cd in
rice. Mutants of OsLCT1 and OsNramp5 generated through CRISPR/Cas9 has resulted in
reduced levels of Cd in rice [105]. Likewise, OsARM1 regulates the expression of Arsenic
(As) linked genes in rice crops. The knock-out mutants of the OSARM1 by CRISPR produced
tolerance to As [209]. The OsHAK1 gene controls the uptake and translocation of Cesium
(Cs+) in rice. The CRISPR-Cas system was deployed to reduce the uptake of radioactive Cs
by the rice plants. The knock-out mutants of OsHAK1 exhibited a significant reduction in
137 Cs+ content levels in roots [106]. The OsPRX2 is known to limit ROS production under
K+ limiting conditions. The overexpression of Os-PRX2 produced K+ deficiency tolerance
by closing the stomata in rice [211]. The CRISPR/Cas9-mediated knock-out mutants in
OsARM1 expressed an improved tolerance to arsenic in rice plants [107].

The development of herbicide tolerance in crop plants is one of the major targets
for increasing crop production. Currently, genome editing based on the CRISPR-Cas9
system has been used to develop herbicide-tolerant crops as an effective weed control strat-
egy [212,213]. The recombination of acetolactate synthase generated using CRISPR/Cas9
produced herbicide resistance rice [110]. CRISPR/Cas9-based mutants in the ALS gene
significantly enhanced herbicide tolerance in watermelons [111]. In addition, Herbicide
resistant maize plants were developed using the same approach targeting ALS1 and ALS2
genes [112]. Herbicide tolerance traits have been incorporated in rice by exploiting CRISPR-
based editing in OsALS1 [108,109]. The knock-out mutants in the OsALS gene of rice
depicted strong herbicide tolerance potential by conferring resistance to imazapic and
imazethapyr [109]. Recently, the CRISPR-Cas9-based targeted mutations in EPSPS (5-
Enolpyruvylshikimate-3-phosphate synthase, PDS (phytoene desaturase), and ALS [37]
conferred herbicide resistance in tomato plants [214].

9. Conclusions and Future Direction

Traditional crop improvement approaches, including molecular breeding, mutagenesis,
and transgenics are time-consuming and expensive. Additionally, they are not specific in
bringing intended change to crop plants. For example, molecular breeding is limited by
species-specific barriers and is often inflicted by linkage drag, which brings with it many
unwanted characteristics. The elimination of these so-called unwanted genomic chunks
requires intensive backcrossing, which makes the procedure of developing new varieties
quite challenging. On the other hand, genetic transformation allows the engineering of
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those traits that do not even exist in the plant gene pool. However, the use of GM crops
has become so controversial that many countries in the world have completely banned the
cultivation of GM crops. Consequently, the power of the “gene revolution” faded away
before delivering. The advent of new genome editing tools such as CRISPR offers hope to
address the issues associated with GM crops. If the selectable marker as well as the gene
coding for Cas9 are removed from the plant genome, it would become similar to the one
developed by non-genetic engineering tools. Therefore, an increasing number of countries
are allowing the cultivation of transgene-free genetically edited crops. However, the major
limitation to the application of CRISPR technology to improving field crops would be
the scarcity of functionally characterized gene(s) involved in the agronomic traits [25].
The scarcity of validated targets would be one of the major bottlenecks in unlocking the
CRISPR potential for developing climate-smart stress-resilient crops. Nevertheless, we
have seen that CRISPR is being increasingly employed in field crops to help address climate
issues. The development of abiotic stress-tolerant and heavy metal stress-tolerant plants
through the manipulation of cis-, and trans-regulatory elements, resistance (R) genes, and
susceptibility (S) genes will allow their open-field cultivation as genome-edited plants do
not differ genetically from their unedited counterparts except for the desired genetic change
at a specific location on the genome. Using multiplex genome editing would allow for the
development of genome-edited crops engineered for tolerance against multiple traits in
a single transformation event. Therefore, it is expected that genome editing will become
the technology of choice for developing desired genetically and epigenetically [215,216]
biotech crops for different purposes particularly to address the food shortage problems as
well as to fight climate change more effectively.
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