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Abstract: Objective: Glioma is the most common primary malignancy of the adult central nervous
system (CNS), with a poor prognosis and no effective prognostic signature. Since late 2019, the
world has been affected by the rapid spread of SARS-CoV-2 infection. Research on SARS-CoV-2
is flourishing; however, its potential mechanistic association with glioma has rarely been reported.
The aim of this study was to investigate the potential correlation of SARS-CoV-2-related genes with
the occurrence, progression, prognosis, and immunotherapy of gliomas. Methods: SARS-CoV-2-
related genes were obtained from the human protein atlas (HPA), while transcriptional data and
clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma
Genome Atlas (CGGA) databases. Glioma samples were collected from surgeries with the knowledge
of patients. Differentially expressed genes were then identified and screened, and seven SARS-CoV-2
related genes were generated by LASSO regression analysis and uni/multi-variate COX analysis.
A prognostic SARS-CoV-2-related gene signature (SCRGS) was then constructed based on these
seven genes and validated in the TCGA validation cohort and CGGA cohort. Next, a nomogram
was established by combining critical clinicopathological data. The correlation between SCRGS and
glioma related biological processes was clarified by Gene set enrichment analysis (GSEA). In addition,
immune infiltration and immune score, as well as immune checkpoint expression and immune escape,
were further analyzed to assess the role of SCRGS in glioma-associated immune landscape and the
responsiveness of immunotherapy. Finally, the reliability of SCRGS was verified by quantitative
real-time polymerase chain reaction (qRT-PCR) on glioma samples. Results: The prognostic SCRGS
contained seven genes, REEP6, CEP112, LARP4B, CWC27, GOLGA2, ATP6AP1, and ERO1B. Patients
were divided into high- and low-risk groups according to the median SARS-CoV-2 Index. Overall
survival was significantly worse in the high-risk group than in the low-risk group. COX analysis and
receiver operating characteristic (ROC) curves demonstrated excellent predictive power for SCRGS
for glioma prognosis. In addition, GSEA, immune infiltration, and immune scores indicated that
SCRGS could potentially predict the tumor microenvironment, immune infiltration, and immune
response in glioma patients. Conclusions: The SCRGS established here can effectively predict the
prognosis of glioma patients and provide a potential direction for immunotherapy.

Keywords: COVID-19; glioma; immunotherapy; prognosis; molecular mechanism

1. Introduction

Gliomas are the most common primary malignant tumor of the central nervous system
(CNS) in adults, with an annual incidence of 6.6 cases per 100,000 in the United States and
7.0 cases per 100,000 in China [1,2]. As neuroectodermal tumors, gliomas originate from
glial or precursor cells and include astrocytomas, glioblastomas, oligodendrogliomas, and
ependymomas [3]. According to the fifth edition of the WHO Classification of Tumors of the
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Central Nervous System (WHO CNS5) in 2021, gliomas are classified from grade II to IV by
histological characteristics, together with molecular features such as IDH mutation status,
CDKN2A/B deletion status, TERT promoter mutation status and chromosome 1p/19q
co-deletion status [4]. Most low-grade gliomas (LGG, WHO Grade II and III) progress to
glioblastoma (GBM, WHO Grade IV) in under ten years [5]. About half of newly diagnosed
gliomas are classified as glioblastoma, with a median survival of only 12–17 months and a
five-year survival rate of less than 5.5% [1]. Despite the comprehensive treatment, including
surgery, radiotherapy, chemotherapy, and molecular targeted therapy, the prognosis of
gliomas, especially high-grade gliomas, has not been significantly improved [6].

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious
positive-sense, single-stranded RNA virus that is thought to have emerged from a zoonotic
source and spread rapidly in humans through respiratory droplets and contact [7]. The
rapid global spread of SARS-CoV-2 infection, since late 2019, is known as the coronavirus
disease 2019 (COVID-19) pandemic. The COVID-19 pandemic caused by SARS-CoV-2
infection has placed undue strain on health systems due to the threat to population health,
particularly those with weakened immunity, such as cancer patients or the elderly [8–14].

Wang et al. showed that high expression of C1R, chemokine (C-C-motif) ligand 2
(CCL2), and TNF receptor superfamily 1A (TNFRSF1A) in the COVID-19 pathway was sig-
nificantly associated with low survival in GBM patients and immune cell infiltration, which
may be used as molecular biomarkers of prognosis and immune infiltration in patients
with GBM in the future [15]. Chen’s team also found that, compared with normal brain
tissue, viral receptors Alanyl aminopeptidase (ANPEP) and Glutamyl Aminopeptidase
(ENPEP) were significantly increased in both mRNA and protein levels in GBM and were
associated with poor prognosis and survival [16]. These studies provide valuable entry
points for the further exploration of the correlation between COVID-19 and glioma. This
also prompted us to further attempt, through a series of bioinformatics analyses and glioma
samples, to better understand the biological characteristics and clinical significance of
SARS-CoV-2-related genes in glioma, as well as their potential significance for glioma
immunotherapy.

2. Materials and Methods
2.1. Acquisition of Patient Data

The training set contained 667 glioma patients and 1152 normal people as a control. The
RNA-Seq data and corresponding clinicopathological data of these patients were obtained
from the TCGA website (http://cancergenome.nih.gov/, accessed on 1 September 2022). A
total of 1152 normal brain tissue samples were obtained from Genotype-Tissue Expression
Project (GTEX, https://www.gtexportal.org/home/index.html, accessed on 1 September
2022) database.

2.2. Identification of SARS-CoV-2 Related Genes for Glioma in TCGA

A total of 333 SARS-Cov-2-related genes were obtained from the human protein atlas
(HPA) (https://www.proteinatlas.org/, accessed on 1 September 2022) database. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
performed to identify pathways enriched by differentially expressed genes [17]. Then,
the mRNA expression and survival data were used to further screen the above genes by
univariate COX regression analysis, least absolute shrinkage, selection operator (LASSO)
regression, and multivariate COX regression analysis (p < 0.05).

http://cancergenome.nih.gov/
https://www.gtexportal.org/home/index.html
https://www.proteinatlas.org/
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2.3. Construction of the SARS-CoV-2 Related Risk Signature

The regression coefficients were linearly integrated with the expression levels of seven
SARS-CoV-2-related genes to establish the optimal SARS-CoV-2-related risk signature. The
risk score is defined here as the SARS-CoV-2 Index (SC2I) and is calculated as follows:

SC2I =
n

∑
i=1

(Coefi × Expi)

Expi represents the expression value, and Coefi is the corresponding regression coeffi-
cient calculated by multivariate Cox analysis.

2.4. Construction and Evaluation of a Predictive Nomogram

Age, sex, MGMT promoter methylation status, IDH mutation status, WHO grade,
tumor subtype, and SC2I were combined to construct a nomogram using the R package
“survival” and “rms” to predict the probability of clinical events in a personalized way.
Calibration curves were adopted to evaluate the accuracy of the nomogram in predicting
the 1-, 3-, and 5-year survival rates of glioma patients [18].

2.5. Functional Enrichment Analysis

GO enrichment analysis and KEGG pathway analysis were used for functional enrich-
ment analysis via GSEA and R software.

2.6. Evaluation of the Immune Landscape

The abundance of 22 immune cells was calculated using the Cibersort algorithm [19].
The extent of 28 infiltrating immune cells was quantified using the single sample gene set
enrichment analysis (ssGSEA) of the “gsva” package [20]. Spearman correlation analysis
was used to obtain the relationship between risk scores and the expression levels of common
immune checkpoints. The ESTIMATE Score, Immune Score, and Stromal Score were
calculated using the ESTIMATE algorithm via the R package “estimate” to evaluate the role
of SC2I in predicting the glioma tumor microenvironment [21]. Finally, the tumor immune
dysfunction and exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu, accessed on
1 September 2022) was applied to investigate the role of SC2I in predicting the response of
glioma to immunotherapy.

2.7. Validation of SARS-CoV-2 Related Gene Signature in CGGA

Patient data from the CGGA database (http://www.cgga.org.cn/, accessed on
1 September 2022) were used for external validation. The median of the SC2I was used
as the boundary to divide the sample into high- and low-risk groups. Different packages
in R software were used to draw the Kaplan–Meier curve and ROC curve, and “ggplot2”
software was used to draw the PCA scatter plot.

2.8. Tissue Samples and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

From May 2022 to August 2022, we collected clinicopathological data, including age,
gender, WHO grade, IDH mutation status, MGMT promoter methylation status, and
tissue samples of nine patients with glioma, from the First Affiliated Hospital of Soochow
University. In this paper, we presented the results of the analysis with WHO grade and IDH
mutation status as grouping indicators. This study was approved by the Medical Ethics
Committee of the First Affiliated Hospital of Soochow University, and informed consent
was obtained from all patients. A quantitative real-time polymerase chain reaction was
performed. Tissues were stored at −80 ◦C, and total RNA was extracted from tissues using
RNA Trizol reagent (Beyotime, Shanghai, China) following manufacturer’s instructions.
The extracted total RNA was reverse-transcribed into cDNA using reverse transcription
reagent, and cDNA was amplified in real-time using SYBR fluorescent quantitative PCR
reagent. CT values were measured and calculated by computer software. The relative

http://tide.dfci.harvard.edu
http://www.cgga.org.cn/
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mRNA levels were normalized to β-actin as an internal control by the 2−∆∆CT method.
Sequences of primers are shown in Supplementary Table S1.

2.9. Statistical Analysis

The RNA-seq transcriptome data were preprocessed using Perl programming lan-
guage (version 5.32.0, created by Larry Wall from Los Angeles, CA, USA). The R software
(version 4.2.1, created by Ross Ihaka and Robert Gentlemen from Auckland, New Zealand)
was applied for all statistical analyses and graph visualization. The chi-square test was used
to compare categorical variables between the high- and low-risk groups. p value ≤ 0.05
was considered statistically significant.

3. Results
3.1. Identification of Prognostic SARS-CoV-2 Related Differentially Expressed Genes in Glioma
Patients

A total of 74 differential expressed genes (DEGs) were identified by differential anal-
ysis between the normal and tumor groups (Figure 1A,B). GO enrichment analysis and
KEGG pathway analysis were used to identify the biological characteristics of these DEGs.
Protein targeting, protein targeting to mitochondrion, protein folding, endomembrane
system organization, and cellular response to heat were identified as the most abundant
processes using GO analysis (Figure 1C,E). KEGG pathway analysis suggested that DEGs
were significantly enriched in protein processing in the endoplasmic reticulum, nucleo-
cytoplasmic transport, lysosome, RNA degradation, and DNA replication (Figure 1D,F).
Thirty-two genes were screened by univariate Cox regression analysis using mRNA expres-
sion and survival data from TCGA. These 32 genes were then incorporated into the least
absolute shrinkage and selection operator (LASSO) regression to avoid overfitting prob-
lems, and 26 genes stood out (Figure 2B,C). Finally, multivariate Cox regression analysis
was performed to screen out seven genes, which were REEP6, CEP112, LARP4B, CWC27,
GOLGA2, ATP6AP1, and ERO1B (Figure 2D). Pan-cancer analysis of these seven genes
mentioned above in the TCGA and GTEX showed variable expression levels in the tumor
and normal groups (Supplementary Figure S1). As a result, the identification of prognostic
SARS-CoV-2-related genes was completed. Among these genes, CEP112 and ATP6AP1
are risk factors for glioma with hazard ratios (HRs) > 1, while REEP6, LARP4B, CWC27,
GOLGA2, and ERO1B are protective factors with HRs < 1. In addition, we explored the
proteins expressed by REEP6, LARP4B, CWC27, GOLGA2, ATP6AP1 and ERO1B in glioma
patients through the HPA database, and REEP6, LARP4B, GOLGA2 and ATP6AP1 showed
higher staining intensity in glioma than in normal brain tissue (Supplementary Figure
S2A–F). Statistical histograms are shown in Supplementary Figure S2G.
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Figure 1. Identification of DEGs and biological characteristics of these genes by GO enrichment 
analysis and KEGG pathway analysis. (A,B) Heatmap (A) and a volcano plot (B) of 74 DEGs in 
normal and glioma groups. The logFC is presented. (C,E) Results of GO enrichment analysis. (D) 
and (F) Results of KEGG pathway analysis. The larger the circle, the redder the color and the 
stronger the correlation. DEGs, differential expressed genes; GO, gene ontology; KEGG, Kyoto en-
cyclopedia of genes and genomes. 

Figure 1. Identification of DEGs and biological characteristics of these genes by GO enrichment
analysis and KEGG pathway analysis. (A,B) Heatmap (A) and a volcano plot (B) of 74 DEGs in normal
and glioma groups. The logFC is presented. (C,E) Results of GO enrichment analysis. (D,F) Results
of KEGG pathway analysis. The larger the circle, the redder the color and the stronger the correlation.
DEGs, differential expressed genes; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and
genomes.
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Figure 2. Final acquisition of prognostic DEGs for developing a risk model in TCGA cohort. (A) 
LASSO coefficient profiles of SARS-Cov-2 related genes. (B) Partial likelihood deviance of different 
numbers of variables revealed by the LASSO regression model (The log(λ) sequence plot of SARS-
Cov-2 related genes using LASSO regression). (C) Forest plot of SARS-Cov-2-related genes. DEGs, 
differentially expressed genes; LASSO, least absolute shrinkage, and selection operator. ** p < 0.01, 
*** p < 0.001. 
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Figure 2. Final acquisition of prognostic DEGs for developing a risk model in TCGA cohort.
(A) LASSO coefficient profiles of SARS-Cov-2 related genes. (B) Partial likelihood deviance of
different numbers of variables revealed by the LASSO regression model (The log(λ) sequence plot
of SARS-Cov-2 related genes using LASSO regression). (C) Forest plot of SARS-Cov-2-related
genes. DEGs, differentially expressed genes; LASSO, least absolute shrinkage, and selection operator.
** p < 0.01, *** p < 0.001.

3.2. Construction of Prognostic SARS-CoV-2 Related Gene Signature

The risk score was defined as the SARS-CoV-2 Index (SC2I), which was calculated
using the following formula:

SC2I = (−0.132 × REEP6 exp) + (0.895 × CEP112 exp) + (−0.622 × LARP4B exp) +
(−0.347 × CWC27 exp) + (−0.184 × GOLGA2 exp) + (0.066 × ATP6AP1 exp) + (−0.473 ×
ERO1B exp).

3.3. Evaluation of SC2I in TCGA

Then, we analyzed the correlations between the genes from the TCGA dataset using
the Pearson correlation analysis. Genes with correlation coefficients >0.3 are shown in
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Figure 3A, with positive correlations in blue and negative ones in red. The survival curves
of each gene are shown in Supplementary Figure S3.
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Figure 3. Correlation between SARS-Cov-2-related genes and validation of SCRGS in TCGA cohort.
(A) Interactions between SARS-Cov-2 related genes. (B) Overall survival of different SARS-CoV-2
related genes in glioma. (C) Heatmap of SCRGS expression in high- and low-risk groups (upper),
distribution and median value of SC2I (middle), and the distributions of survival status, survival
time, and SC2I (below). (D) PCA analysis of SARS-CoV-2-related gene signature. (E) Time-dependent
ROC analysis of SARS-CoV-2-related gene signature. SCRGS, SARS-CoV-2-related gene signature;
SC2I, SARS-CoV-2 index; PCA, principal component analysis; ROC, receiver operating characteristic.
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Samples in the TCGA dataset were divided into high-risk and low-risk groups based
on the median SC2I. First, we performed a Kaplan–Meier (KM) analysis, which showed
that patients in the low-risk group had a higher probability of survival than those in the
high-risk group (Figure 3B). The heatmap showed that the expression of the seven modeling
genes was differentially expressed in the high- and low-risk groups. Compared with the
high-risk group, the expression of CEP112 was decreased in the low-risk group, while
the expression level of REEP6, LARP4B, and ERO1B was relatively increased (Figure 3C).
Patients in the high-risk group had a shorter survival time than those in the low-risk
group (Figure 3C). Then, we performed principal component analysis (PCA) in the TCGA
cohort, which showed a significant and stable distribution of differences between the high-
and low-risk subgroups (Figure 3D). The time-dependent receiver operating characteristic
(ROC) curve was used to evaluate the effectiveness of SC2I in predicting the prognosis of
glioma patients. As shown in Figure 3E, the AUC of 1-, 3- and 5-year overall survival (OS)
rates in the TCGA dataset were 0.895, 0.894, and 0.844, respectively. These results indicate
that the SC2I is accurate in predicting the prognosis of patients with glioma.

3.4. Independent Prognostic Value of OS

A heatmap containing mRNA expression and other clinical information (subtype,
WHO grade, IDH mutation status, MGMT promoter status, gender, age, and survival
status) of SARS-CoV-2-related genes showed that the expression of LARP4B, GOLGA2,
CWC27, REEP6, and ERO1B were positively correlated with the risk score. In contrast,
CEP112 and ATP6AP1 were negatively correlated. Meanwhile, the WHO grade of gliomas
was positively correlated with the SC2I, as expected (Figure 4A). SC2I was significantly
higher in patients with gliomas of WHO grade IV than those of WHO grade III and II
(Figure 4B). An IDH mutation status-based subgroup analysis showed that patients with
IDH wild type had significantly higher SC2I than IDH mutated type (Figure 4B). Subgroup
analysis based on tumor subtype suggested that the SC2I in the proneuronal type was lower
than that in classical and neural type (Figure 4B). The above findings implied that SC2I
could differentiate glioma patients classified based on the above key indicators. Univariate
Cox and multivariate Cox of SC2I combined with clinical information showed that SC2I
itself was an independent risk factor for the prognosis of glioma (Figure 4C,D). Moreover,
the ROC curve of SC2I and other clinical characteristics revealed that its predictive perfor-
mance (AUC = 0.959) was better than other classical indicators, including tumor subtype
(AUC = 0.778), WHO grade (AUC = 0.906), IDH mutation status (AUC = 0.132), MGMT
promoter status (AUC = 0.321) and age (AUC = 0.809) (Figure 4E).
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Figure 4. Correlation between SC2I and clinicopathological characteristics in TCGA dataset.
(A) Heatmap of correlation between risk groups and subtype, WHO grade, IDH mutation status,
MGMT promoter status, gender, age, survival status, and mRNA expression of SARS-CoV-2-related
gene. (B) Different distribution of SC2Is among glioma subgroups (C,D) Univariate and multivariate
COX regression analysis of the combination of SC2I and clinicopathological characteristics. (E) ROC
curves of SC2I and clinicopathological characteristics. SC2I, SARS-CoV-2 index; TCGA, The Cancer
Genome Atlas; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanyl DNA methyltransferase;
ROC, receiver operating characteristic. * p < 0.05, *** p < 0.001, **** p < 0.0001.

3.5. Establishment of a Nomogram Based on Independent Prognostic Factors for OS and Validation
of Its Predictive Accuracy

By integrating SC2I, age, gender, MGMT promoter status, IDH mutation status, WHO
grade, and original subtype, we established a nomogram to accurately predict the 1-, 2- and
3-year survival probability of glioma patients (Figure 5A). The calibration curves showed
significant concordance between the predicted and actual rates of OS at 1, 2, and 3 years in
the TCGA dataset (Figure 5B–D).
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Figure 5. Prediction of the survival of glioma patients by nomogram, and GSEA analysis between
different risk groups in TCGA cohort. (A) Nomogram used for predicting glioma patients was
constructed. (B–D) Calibration plots for predicting 1-, 2- and 3-year overall survival. (E,F) GO and
KEGG functional enrichment analysis. GSEA, gene set enrichment analysis; TCGA, The Cancer
Genome Atlas; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.

3.6. Functional Enrichment Analysis

Gene set enrichment analysis (GSEA) reminds us of some key pathways. In the seven
SARS-Cov-2-related genes, the up-regulated ones are enriched in cell differentiation in-
volved in embryonic placenta development, mitotic metaphase plate congression, azurophil
granule lumen, Ficolin-1-rich granule and vesicle lumen by Gene ontology enrichment anal-
ysis. Meanwhile, those downregulated genes are rich in the following pathways: neuron
cell–cell adhesion, ligand-gated ion channel signaling pathway, cytoplasmic microtubule
organization, negative regulation of synaptic transmission, and the neuromuscular process
controlling balance (Figure 5E).

The KEGG pathway analysis was also carried out. The results revealed that the
upregulated genes are enriched in systemic lupus erythematosus pathways, N-glycan
biosynthesis, glutathione metabolism, pathogenic Escherichia coli infection, and leukocyte
transendothelial migration. Those down-regulated genes are enriched in terpenoid back-
bone biosynthesis, long-term depression, taste transduction, WNT signaling pathway, and
mTOR signaling pathway (Figure 5F).

3.7. Correlation Analysis between Prognostic SCRGS and Immune Status of Glioma

We performed ssGSEA analysis to detect the correlation between the modeling genes
and 28 types of tumor-infiltrating immune cells. We found that ATP6AP1 and CEP112
had an overall positive correlation with the expression of tumor-infiltrating immune cells,
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while the five other modeling genes showed the opposite trend (Figure 6A). Based on
the immune functional enrichment analysis results, we further explored the correlation
between prognostic SCRGS and glioma immune status. The results showed that the
infiltration levels of CD8+ T cells, follicular helper T cells, M0, M1, and M2 macrophages
and neutrophils in the high-risk group were higher than those in the low-risk group. In
comparison, the infiltration levels of activated NK cells, monocytes, and activated mast
cells were lower than those in the low-risk group. The levels of infiltration of the remaining
immune cells were similar between the two groups (Figure 6B). The immune score results
showed that the scores of the high-risk group were significantly higher than those of the
low-risk group in 13 immune pathways, indicating that anti-cancer immunity was activated
(Figure 6C).
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In recent years, immune checkpoint blockers (ICB) have made breakthrough progress
in the clinical treatment of a variety of malignant tumors [22,23]. Except for CD200, all
immune checkpoints were significantly up-regulated in the high-risk group compared with
the low-risk group (Figure 7A). CD274 (PD-L1) and PDCD1 (PD-1) are of great importance
and play a crucial role in tumor immunosuppression and immunotherapy [24].
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Figure 7. Comparison of immune checkpoint expression levels (A), scores for glioma microenviron-
ment (B–D), and correlation analysis between TIDE evaluation (E–G) in TCGA dataset between high-
and low-risk groups. TIDE, tumor immune dysfunction and exclusion; TCGA, The Cancer Genome
Atlas. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, no significance.

In addition, we further evaluated the association between prognostic SCRGS and
the glioma microenvironment. ESTIMATE score, immune score, and stromal score in
the high-risk group were higher than those in the low-risk group, suggesting a potential
correlation between SCRGS and the tumor microenvironment of gliomas (Figure 7B–D).
We analyzed TIDE scores in both groups to further clarify the value of prognostic SCRGS in
predicting response to immunotherapy. The high-risk group had lower TIDE and exclusion
scores (Figure 7E,F), while the dysfunction scores were similar between the two groups
(Figure 7G). These results suggest that patients in the high-risk group are more sensitive to
immunotherapy. In conclusion, SCRGS can predict immunotherapy response in patients
with glioma to some extent.

3.8. Validation of the Prognostic Model in the CGGA Cohort

To confirm the reliability of SCRGS, we performed an external validation in CGGA.
Firstly, 929 glioma patients in CGGA were divided into a high-risk group and a low-risk
group based on the median risk score (Figure 8B). It was found that the survival probability
and time of the high-risk group were significantly lower than those of the low-risk group
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(Figure 8A,B). Next, ROC curve analysis was then performed to further verify the accuracy
of prognostic SCRGS in predicting the prognosis of patients with glioma in CGGA. The
AUC of 1, 3 and 5 years is 0.754, 0.794 and 0.795, respectively (Figure 8C). The expression
of seven modeling genes in the validation cohort was also detected. It is not difficult to
conclude that the expression of these genes in the CGGA cohort was consistent with that in
the TCGA cohort (Figure 8B). These were all consistent with the results in the training set.
Above all, these results indicate that the SARS-CoV-2-related gene signature constructed
using the TCGA dataset has a good predictive effect regarding the prognosis of glioma
patients.
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and low-risk groups. (B) Patients in the CGGA dataset were divided into high- and low-risk groups
according to the increasing SC2I (upper). The distributions of survival status, survival time, and
SC2I (middle). Heatmap of the modeling genes expression in high- and low-risk groups (below).
(C) Time-dependent ROC analysis of SCRGS. (D) QRT-PCR validation of SC2I between WHO II-III
grade and WHO IV grade groups (left), and IDH wildtype and IDH mutant groups. SCRGS, SARS-
CoV-2-related gene signature; CGGA, Chinese Glioma Genome Atlas; SC2I, SARS-CoV-2 index; ROC,
receiver operating characteristic. qRT-PCR, quantitative real-time polymerase chain reaction; SC2I,
SARS-CoV-2 index; IDH, isocitrate dehydrogenase. * p < 0.05; ns, no significance.

3.9. Validation of Prognostic Model in Glioma Samples

To validate the predictive power of SCRGS in glioma samples, a qRT-PCR analysis
of the collected glioma samples was performed. These samples were first divided into
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WHO grade II-III (4 cases) and grade IV (5 cases), and the SC2I scores were calculated for
both groups. It was found that the SC2I of the WHO grade IV group was significantly
higher than the corresponding score of the WHO grade II-III group (p = 0.025), which was
consistent with our expectation (Figure 8D, left). Then, the tumor samples were divided
into wild-type and mutant groups according to IDH mutation status. The results showed
that there was no significant difference in SC2I scores between the two groups (Figure 8D,
right).

4. Discussion

Glioma is one of the most common primary central nervous system malignancies, with
a poor prognosis and no effective prognostic indicators. HPA has been making progress
in fighting the COVID-19 pandemic, and a list of genes related to SARS-CoV-2 based on
transcriptomics and antibody-based proteomics was formed. The entry of SARS-CoV-2
into human cells depends on the SARS-CoV-2 receptor, angiotensin-converting enzyme 2
(ACE2) receptor, and cathepsin. Cathepsin degrades the spike protein (S protein), causing
viral nucleic acid to enter human host cells. ACE2 is highly expressed in endothelial cells
(ECs), bone marrow mesenchymal stem cells (BMSCs), and neural progenitor cells (NPCs),
which further differentiate into neurons and glial cells [25,26]. Given this, the nervous
system is highly susceptible to SARS-Cov-2. Cathepsin B(CTSB) and cathepsin L (CTSL) is
also strongly expressed in various cell clusters in the glioblastoma microenvironment [27].
Furthermore, the expression level of CTSL in GBM tissue was higher than that in normal
brain tissue, which was associated with the significantly reduced survival rate of GBM
patients. Meanwhile, the expression level of CTSL was negatively correlated with the purity,
B cells, and CD8+ T cells in GBM, suggesting that CTSL, an independent prognostic factor,
can be considered a promising therapeutic target [28]. Further research also demonstrated
the sensitivity of neurons and glial cell lines to SARS-CoV-2 infection at high multiplicity
of infection [29]. The S protein is a key molecule for virus entry into host cells through
interactions with ACE2 receptor molecules on cell membranes. Research by Khan et al.
indicated that the S protein has a high affinity to epidermal growth factor receptors (EGFR)
and vascular endothelial growth factor receptors (VEGFR)-overexpressing receptors in
glioma cells, and may play a role in glioma tumorigenesis [30]. Thus, SARS-Cov-2 is closely
associated with the occurrence, progression, and immune microenvironment of gliomas
through several mechanisms, which ignited our interest in conducting related studies.

In this study, 333 SARS-Cov-2-related genes were obtained from the human protein
atlas. After differential analysis, univariate Cox regression, lasso regression, and multivari-
ate Cox regression, seven genes were finally obtained: REEP6, CEP112, LARP4B, CWC27,
GOLGA2, ATP6AP1, and ERO1B.

The two previously reported gliomas of these seven genes are La-related protein 4b
(LARP4B) and ATPase H+ Transporting Accessory Protein 1 (ATP6AP1). LARP4B is a mem-
ber of the evolutionarily conserved RNA-binding protein family, which is characterized by
the La module involved in direct RNA binding [31]. LARP4B expression was reported to
be consistently decreased in human glioma stem cells and cell lines compared with normal
neural stem cells. The heterozygous deletion of LARP4B was detected in nearly 80% of
glioblastomas in the TCGA database, which was associated with poor patient survival. The
overexpression of LARP4B strongly inhibited cell proliferation in glioma by inducing mi-
totic arrest and apoptosis, which was partly dependent on p53 activity and the La module
responsible for the RNA chaperone activity. LARP4B depletion in primary astrocytes from
p53 and Nf1-deficient mice promoted cell proliferation and increased gliomas’ size and
invasiveness [32]. These data strongly suggest that LARP4B acts as a tumor-suppressor
gene of gliomas, as confirmed in our work, as LARP4B expression was negatively correlated
with SC2I. Interestingly, there were also reports of LARP4B helping to predict prognosis and
immunotherapy in glioma patients [33,34]. In summary, LARP4B is a tumor-suppressor
gene of glioma; the potential mechanisms involved, however, remain to be probed further.
The ATPase H+ Transporting Accessory Protein 1 (ATP6AP1) is a vacuolar ATPase proton
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pump component [35]. ATP6AP1 gene mutations are involved in congenital disorders of
glycosylation (CDG) and affect multiple organ systems, including immunodeficiency and
cognitive impairment [36–38]. One study recently showed that a risk signature including
ATP6AP1 could reasonably predict the prognosis and immune microenvironment of glioma
patients [39]. This corroborates the findings of our work to some extent. Non-structural
protein 6 (NSP6) of SARS-Cov-2 was reported to induce NLRP3-dependent apoptosis in
lung epithelial cells, with ATP6AP1 playing a pivotal role [35]. More experimental studies
of LARP4B and ATP6AP1 in glioma are urgently needed to clarify their specific functions
and potential mechanisms.

The remaining five genes have not been reported in glioma, but it is necessary to
recognize them to provide some reference for follow-up work. One article from India
suggested that the mutual interaction between Centrosomal Protein 112 (CEP112) and breast
cancer type 1 susceptibility protein (Brca1) was significant in the mitotic regulation and
maintenance of genomic stability [40]. CWC27 is one of the known human cyclophilins, also
known as SDCCAG10, recruited by the spliceosome for the pre-mRNA splicing process [41].
A study by Wang et al. showed that CWC27 plays an oncogenic role in bladder cancer by
inducing cell proliferation and inhibiting cell apoptosis [42]. GOGLA2 encodes GM130, a
Golgi protein involved in vesicle binding, cell proliferation, and autophagy [43–45]. In
two earlier studies, GOLGA2 downregulation inhibited tumorigenesis and cell invasion
in gastric and lung cancers, suggesting that GOLGA2 appears to be an oncogene [46,47].
Endoplasmic reticulum oxidoreductin 1B (ERO1B) is a pancreas-specific disulfide oxidase
that promotes insulin biogenesis in pancreatic β-cells, thus contributing to physiological
glucose homeostasis [48,49]. Asada et al. suggested that ERO1B expression levels were
associated with lung adenocarcinoma (LUAD) patient survival [50]. Another study showed
ERO1B was one of the prognostic indicators of esophageal cancer (EC) [51]. The Receptor
Expression-enhancing Protein 6 (REEP6), a member of the Yop1/Yip family, is associated
with the enhancement of cell surface expressions and endoplasmic reticulum membrane
shaping [52]. It has not been reported in tumors to date. We expect that these genes will be
intensively studied in gliomas over the near future, which will greatly benefit our insight
into the potential correlation between gliomas and SARS-CoV-2.

Based on these differentially expressed genes, we constructed a risk score, SC2I, and
divided glioma patients in the training cohort into high- and low-risk groups according to
the median value of SC2I. There were significant differences in gene expression pattern,
survival probability, and survival time between the two groups. ROC curve also showed
that SC2I made a good prediction of survival rate in patients with glioma. Univariate and
multivariate COX regression analysis showed that SC2I was an independent risk factor for
glioma prognosis. The ROC curve further showed that SC2I had higher prediction accuracy
than the WHO grade. Combining these clinicopathological features, we constructed a
nomogram with an improved ability to predict overall survival. Functional enrichment
analysis showed that there were differences in cellular biological processes between high-
and low-risk groups. The differences in tumor immune status between the two groups
were further analyzed. SC2I was positively correlated with immune cell infiltration and
immune pathway activation level. The immune checkpoints, including CD274 and PDCD1,
were significantly differentially expressed between the two groups, and the TIDE score
and exclusion score were significantly different between the two groups, which provides a
preliminary basis for glioma immunotherapy. The above work provides a potentially more
accurate method for the diagnosis and prognosis prediction of glioma. It provides a certain
theoretical basis for future immunotherapy, which is expected to be further verified and
applied in the near future.

Based on the above identified genes, we constructed a risk score, SC2I, and divided
glioma patients in the training cohort into high and low-risk groups according to the median
value of SC2I. There were significant differences in gene expression pattern, survival
probability, and survival time between the two groups. The ROC curve also showed
that SC2I had a good prediction of survival rate in patients with glioma. Univariate and
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multivariate COX regression analysis showed that SC2I was an independent risk factor for
glioma prognosis. The ROC curve further showed that SC2I had higher prediction accuracy
than the WHO grade. Combining these clinicopathological features, we constructed a
nomogram with an improved ability to predict overall survival. Functional enrichment
analysis showed that there were differences in cellular biological processes between high-
and low-risk groups. The differences in tumor immune status between the two groups
were further analyzed. SC2I was positively correlated with immune cell infiltration and
immune pathway activation level. The immune checkpoints, including CD274 and PDCD1,
were significantly differentially expressed between the two groups, and the TIDE score
and exclusion score were significantly different between the two groups, which provides a
preliminary basis for immunotherapy of glioma.

This study still has some limitations. First, our current results were mainly from TCGA
and CGGA databases. Since TCGA is underrepresented in terms of sample size and ethnic
differences, further validation in more glioma cohorts is warranted. Second, the number
of qRT-PCR samples used for validation was insufficient. It is necessary to collect more
tumor samples to verify the reliability of the model. In addition, the functions and specific
mechanisms of these genes in glioma are still unclear and need to be further explored.

5. Conclusions

In conclusion, we identified seven SARS-Cov-2-related genes using differential anal-
ysis, COX regression and LASSO regression analysis. Then, we established a glioma
prognostic model based on the above genes. This model can predict the prognosis of
glioma patients and is correlated with the immune landscape of glioma microenvironment.
As a result, our findings offer some valuable insights into future research and clinical
practice regarding gliomas.
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