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Supplementary Table 

 
Supplementary Table S1. Inhibitors employed and their primary targets. 

Inhibitor Function Supplier 

Pertussis toxin 
G protein inhibitor [1-3] List Biological 

Labs Gαi/o inhibitor [4-8] 

YM-254890 Selective Gαq inhibitor  [9-11] Fujifilm 

2-APB 

Inositol 1,4,5-trisphosphate receptor inhibitor [8,12,13] 

Santa Cruz Bio-

technology 

Store-operated calcium entry (SOCE) inhibitor [14] 

Ca++ release activated channels (CRAC) inhibitor 

[12,14,15] 

La3+ 
SOCE inhibitor [16]  

CRAC blocker [17] 
Sigma-Aldrich 

SP600125 JNK inhibitor[18-22] ApexBio 

Pictilisib PI3K inhibitor[18] Selleckchem 

SCH772984 ERK1/2 inhibitor[18] BioVision 

Vx-11e ERK2 inhibitor[18] BioVision 
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Supplementary Figures 
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Supplementary Figure S1. The inhibitors employed in main Fig. 1 exert no cytotoxicity on cultured skin MC. Cultured skin-

derived MCs were incubated with PTX, 2-APB, YM-254890, La3+, or with corresponding controls (solvent of each inhibitor) at the 

concentrations and preincubation times used for experiments and described in Methods. Each control is given below the respective 

inhibitor. YO-PRO-1/Propidium Iodide were stained to detect apoptosis, Zombie Aqua was used to quantify viability. The red 

frames indicate the total percentage of apoptotic cells given in as red numbers. Cells were measured by flow cytometry. 1 out of 2 

experiments is shown. Note that viability is high and not compromised by any inhibitor. 

 

 
 

Supplementary Figure S2. MC degranulation via MRGPRX2 relies on Gαi, Gαq and calcium mobilization as evidenced by 

histamine release. Cultured skin derived MCs were pre-treated with PTX, YM-254890, 2-APB or La3+, then triggered by (A) c48/80, 

(B) SP or (C) IgER-CL (cross-linking) as in main Fig. 1, histamine release was determined. The data are from 6-7 independent exper-

iments, ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Supplementary Figure S3. The survival of ex vivo skin MC is not perceptibly compromised by the inhibitors employed in 

main Fig. 1. Ex vivo skin MCs were incubated with PTX, 2-APB, YM-254890, La3+, or with corresponding controls (solvent of each 

inhibitor) at the concentrations and preincubation times used for experiments and described in Methods. Each control is given be-

low the respective inhibitor. YO-PRO-1/Propidium Iodide were stained to detect apoptosis, Zombie Aqua was used to quantify 

viability. The red frames indicate the total percentage of apoptotic cells given in as red numbers. Cells were measured by flow cy-

tometry. Results are pooled from 2 different experiments. Note that viability is high and not compromised by any inhibitor. 
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Supplementary Figure S4. Differences between c48/80 and SP from main Fig. 1. (A-D) Cultured or (E-H) ex vivo skin derived 

MCs were pre-treated with PTX, YM-254890, 2-APB or La3+ and triggered by c48/80 or SP, β-hexosaminidase release was measured 

according to Fig 1. % inhibition (calculated as described in Methods) was compared between c48/80 and SP. The data are from 6-10 

independent experiments, ns: not significant, ** p < 0.01, skMCs: skin mast cells. 
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Supplementary Figure S5. Comparison between cultured and ex vivo skin MCs from main Fig. 1. Cultured and ex vivo skin 

MCs were pre-treated with PTX, YM-254890, 2-APB or La3+ then stimulated by c48/80, SP or IgER-CL (cross-linking) according to 

Fig 1. β-hexosaminidase release was determined. % inhibition (calculated as described in Methods) for (A-D) c48/80, (E-H) SP or (I-

L) IgER-CL was compared between the MC subsets. The data are from 5-12 independent experiments, ns: not significant, * p < 0.05. 
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Supplementary Figure S6. The inhibitors employed in main Fig. 2 exert no cytotoxicity on cultured skin MC. Cultured skin-

derived MCs were incubated with ERK1/2 inhibitor (inh), ERK2 inhibitor, JNK inhibitor, PI3K inhibitor, or with corresponding 

controls (solvent of each inhibitor) at the concentrations and preincubation times used for experiments and described in Methods. 

Each control is given below the respective inhibitor. YO-PRO-1/Propidium Iodide were stained to detect apoptosis, Zombie Aqua 

was used to quantify viability. The red frames indicate the total percentage of apoptotic cells given in as red numbers. Cells were 

measured by flow cytometry. 1 out of 2 experiments is shown. Note that viability is high and not compromised by any inhibitor. 
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Supplementary Figure S7. The survival of ex vivo skin MCs is not perceptibly compromised by the inhibitors employed in 

main Fig. 2. Ex vivo skin MCs were incubated with ERK1/2 inhibitor (inh), ERK2 inhibitor, JNK inhibitor, PI3K inhibitor, or with 

corresponding controls (solvent of each inhibitor) at the concentrations and preincubation times used for experiments and de-

scribed in Methods. Each control is given below the respective inhibitor. YO-PRO-1/Propidium Iodide were stained to detect apop-

tosis, Zombie Aqua was used to quantify viability. The red frames indicate the total percentage of apoptotic cells given in as red 

numbers. Cells were measured by flow cytometry. Results are pooled from 3 different experiments. Note that viability is high and 

not compromised by any inhibitor. 
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Supplementary Figure S8. Differences between c48/80 and SP from main Fig. 2. (A-D) Cultured or (E-H) ex vivo skin derived 

MCs were pre-treated with ERK1/2, ERK2, JNK or PI3K inhibitors (inh) and triggered by c48/80 or SP, β-hexosaminidase release 

was measured according to Fig 2. % inhibition (calculated as described in Methods) was compared between c48/80 and SP. The 

data are from 5-11 independent experiments, ns: not significant, skMCs: skin mast cells. 
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Supplementary Figure S9. Comparison between cultured and ex vivo skin MCs from main Fig. 2. Cultured and ex vivo skin 

MCs were pre-treated with ERK1/2, ERK2, JNK or PI3K inhibitors (inh) and stimulated by c48/80, SP or IgER-CL (cross-linking) 

according to Fig 2. β-hexosaminidase release was determined. % inhibition (calculated as described in Methods) for (A-D) c48/80, 

(E-H) SP or (I-L) IgER-CL was compared between the MC subsets. The data are from 5-11 independent experiments, ns: not signifi-

cant, * p < 0.05; ** p < 0.01; **** p < 0.0001. 
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Supplementary Figure S10. c48/80 activated pERK depends on Gαi, Gαq, and Ca++, while pAKT exclusively requires the ac-

tion of Gαi only - normalization against actinin. Cultured skin derived MCs were pretreated with PTX, YM-254890, 2-APB, or no 

inhibitor then stimulated with c48/80 for 1 min as in Main Fig. 3. Cells receiving no inhibitor or stimulus were the negative control 

(w/o stim). Vehicle controls showed no difference versus “w/o inh”. Phosphorylation signals detected consecutively on the same 

membranes for (A) ERK1/2, (B) p38 and (C) AKT, quantified and normalized against actinin. Mean ± SEM of 16-18 independent 

experiments (individual cultures). ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

 

 

Supplementary Figure S11. Interconnections between early and later signals induced by SP are comparable to those elicited by 

c48/80 - normalization against actinin. MCs were pretreated with inhibitors then stimulated with SP as described in Main Fig. 4. 



Cells 2022, 11, 953 13 of 15 
 

Signals of (A) pERK1/2, (B) pp38 and (C) pAKT were quantified and normalized with actinin. Vehicle controls showed no differ-

ence versus “w/o inh”. The data are shown as Mean ± SEM of 15-20 independent experiments. ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 

 

 

Supplementary Figure S12. Interconnections between early and later signals induced by c48/80 and SP in ex vivo MCs. Ex vivo 

MCs were pretreated with inhibitors then stimulated by c48/80 and SP as described in Main Figs. 3 and 4. Signals of A) and C) 

pERK1/2 and B) and D) pAKT were quantified and normalized to cyclophilin B as described in methods (upper panel). The data 

shown are Mean ± SEM of 3 independent experiments. Lower panel: Representative blots. 

 

Supplementary Figure S13. Ca++ channel inhibition boosts AKT activation downstream of IgER-CL - normalization against 

actinin. MCs were pretreated with inhibitors then stimulated with AER-37 for FcεRI-aggregation (as described in main Fig. 5). Sig-

nals of (A) pERK1/2, (B) pp38 and (C) pAKT were quantified and normalized to actinin as described in methods. n = 11-12, Mean ± 

SEM. * p < 0.05, *** p < 0.001, **** p < 0.0001. 
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