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Abstract: Background: Immune interactions play important roles in the regulation of T cells’ cytotoxic
function, further impacting the anti-tumor efficacy of immunotherapy. A comprehensive analysis of
immune cell types in HCC and immune-cell-related signatures predicting prognosis and monitoring
immunotherapy efficacy is still absent. Methods: More than 1,300 hepatocellular carcinomas (HCC)
patients were collected from public databases and included in the present study. The ssGSEA
algorithm was applied to calculate the infiltration level of 28 immunocyte subpopulations. A cell
pair algorithm was applied to construct an immune-cell-related prognostic index (ICRPI). Survival
analyses were performed to measure the survival difference across ICRPI risk groups. Spearman’s
correlation analyses were used for the relevance assessment. A Wilcoxon test was used to measure
the expression level’s differences. Results: In this study, 28 immune subpopulations were retrieved,
and 374 immune cell pairs (ICPs) were established, 38 of which were picked out by the least absolute
shrinkage and selection operator (LASSO) algorithm. By using the selected ICPs, the ICRPI was
constructed and validated to play crucial roles in survival stratification and dynamic monitoring of
immunotherapy effect. We also explored several candidate drugs targeting ICRPI. A composite ICRPI
and clinical prognostic index (ICPI) was then constructed, which achieved a more accurate estimation
of HCC’s survival and is a better choice for prognosis predictions in HCC. Conclusions: In conclusion,
we constructed and validated ICRPI based on the cell pair algorithm in this study, which might
provide some novel insights for increasing the survival estimation and clinical response to immune
therapy for individual HCC patients and contribute to the personalized precision immunotherapy
strategy of HCC.

Keywords: immune cell; immunotherapy; hepatocellular carcinoma; prognosis; treatment; tu-
mor biomarkers

1. Introduction

As the sixth most commonly diagnosed cancer and the third leading cause of cancer
death worldwide in 2020, liver cancer has a high incidence rate and mortality [1]. About
75% of the new primary liver cancer patients in the world each year exhibit hepatocel-
lular carcinoma (HCC). As the global cancer statistics in 2020 reported, it was estimated
that 905,677 new cases and 830,180 new deaths would be reported in 2020 [2]. As the
American Cancer Society reported, there will be about 41,260 new liver cancer cases
and about 30,520 new deaths in the United States in 2022 [3]. According to the statis-
tics provided by the American Society of Clinical Oncology (ASCO, www.cancer.net/
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accessed on 1 October 2022), the 5-year survival rate of HCC is 20%, but this figure was
only 3% 40 years ago. The survival rate of patients is usually affected by a set of features,
and the disease stage is one of the major factors. When HCC is diagnosed in the early
stage, it has a 34% 5-year survival rate. However, when HCC spread to the surrounding
tissues/regional lymph nodes, the rate drops sharply to 12%. Even worse, when HCC
metastasizes far away, the rate is only 3%. Nevertheless, even if HCC is discovered at a
very advanced stage, therapies can effectively prolong life cycles and enhance the quality of
life [4]. If surgery works, it usually leads to a higher survival rate for patients at all stages.

As a type of cancer treatment, immunotherapies treat cancer by helping the im-
mune system defend against cancer [5]. These days, there is a growing realization that
immunotherapy for cancers is effective and secure [6–8]. Exploring immune-related prog-
nostic biomarkers has been one of the ineluctable research highlights in tumor therapy.
Over the past 5 years, immune-checkpoint inhibitors have brought revolutionary changes to
the management of HCC. The combination of atezumab and bevacizumab in the treatment
of HCC was currently approved by FDA because it could improve the overall survival
rate compared with sorafenib [9]. Recent research data show that the overall survival rate
of duvalimab combined with trimetazumab was better than that of sorafenib, while the
progression-free survival rate of atizumab combined with cabozadinib was higher than that
of sorafenib (https://www.astrazeneca.com/media-centre/ accessed on 1 October 2022).
Despite these significant advances, the molecular underpinnings governing immune re-
sponses and escape remain unclear [10]. The immune microenvironment (IME) is an
essential part of the development and progression of HCC, and it defined different etio-
logically dependent immune characteristics [11]. As the important components of IME,
immune cells (including T cells, B cells, macrophages, etc.) represent the major components
of antitumor immune reaction [12,13]. Recent research studies have shown that immune
cells are correlated with the prognosis of cancers, which could also accelerate tumor initia-
tion and progression [14–16]. However, to the best of our knowledge, studies concentrating
on immune cell subpopulations are still lacking, which indicates that a deep understanding
of the activity of immune cells in the tumor microenvironment (TME) is still required.

Charoentong et al. firstly developed an immune cell infiltration-level estimation
method with the use of metagenes [17], which has been broadly used in the field of
immunity. Two studies contributed by Wang et al. published in Briefings in Bioinformatics
successfully applied this method in breast cancer [18,19]. The immune cell signature
could act as a prognostic index in breast cancer. Moreover, Ye et al. proved that tumor-
infiltrating immune cells could act as markers for prognosis in colorectal cancer [20]. Thus,
we thought it was also feasible to construct a prognostic index based on immune cells in
HCC. Studies only based on a single dataset or method cannot draw a good conclusion.
So, many studies have begun to conduct analysis using multiple datasets to improve the
feasibility of their conclusions [21]. However, due to the differences between the abilities
of researchers to process data, the conclusions of the studies are sometimes unreliable.
To overcome the difficulty of using multiple datasets from different platforms, we have
reviewed several studies. A paper from JAMA Oncology contributed by Li et al. has attracted
our attention [22]. They used methods based on the relative ranking of gene expression
levels to construct a prognostic signature in early-stage nonsquamous non-small-cell lung
cancer, which could effectively eliminate the potential biological heterogeneity among data
cohorts and technical biases across measurement platforms and produce robust results
in various applications. Based on this, Zhang et al. constructed an immune infiltrating
cell signature using a method based on a relative ranking of immune cell infiltration
levels—immune cell pair (ICP)—which was validated as prognostic index in glioma [23].
Moreover, Yan et al. constructed a novel T-cell signature based on the cell pair algorithm,
which could predict survival and immunotherapy response for bladder cancer patients [24].

Thus, in this research paper, for the first time, via the utilization of multiple meta-HCC
cohorts, we first measured the immune cell infiltration level of each HCC among these
cohorts. Then, an immune cell pair (ICP) was constructed by using the 28 immune cell types
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with the aim of simulating immune cell interactions. Prognostic ICPs were screened and
used to construct an immune-cell-related prognostic index (ICRPI) by acting on prognosis
predication and immunotherapy efficacy monitoring.

2. Methods
2.1. Collection of HCC Cohorts and the Related Clinical Characterization

The HCC expression cohorts were retrieved from several public databases, including
ArrayExpress (n = 1), gene expression omnibus (GEO) database (n = 7), the International
Cancer Genome Consortium (ICGC) database (n = 1), and the Cancer Genome Atlas
(TCGA) database (n = 1) (Table S1). Only HCC cohorts with more than 40 HCC samples
and related survival and clinical information were collected and used in the present study.
A total of 10 HCC cohorts with survival information were included in our study. The
related literature of these cohorts is also shown in Table S1. TCGA-LIHC RNA-seq data
were firstly downloaded for the TCGA database. R package “DEseq.2” [25] was used for
normalization and log2 transformation. For the GEO cohorts platformed on Affymetrix,
raw CEL files were retrieved. We applied the robust multichip average (RMA) algorithm
for normalization via R package “affy” [26]. For the GEO cohorts platformed on Illumina,
we directly retrieved the normalized expression profiles for the GEO database. Package
“sva” [27] in R software was used to merge the entire meta-cohort via the 10 collected
cohorts using the following three steps: data preprocessing; merging; and ComBat-adjusted
handling. In total, 717 normal samples and 1340 HCC samples were collected. The
expression matrix of the 717 normal samples was only used for batch normalization, which
was not included in the subsequent analysis. In the present study, 1340 HCCs containing
complete survival information were used. To make sure whether the cohort of the patients
was sufficient, we also performed power calculation via R package “pwr” in this study. As
Figure S1 shows, in all cases (t-test: Figure S1A,B; one-way ANOVA: Figure S1C; correlation
analysis: Figure S1D), the cohort of the patients was sufficient.

2.2. Application of Cell Pair Algorithm to Construct IMMUNE-Cell-Related Prognostic
Index (ICRPI)

Charoentong et al. developed an analytical strategy for characterizing the cellular
composition of immune infiltrates based on the use of metagenes [17]. They defined a set of
pan-cancer metagenes for 28 immune cell subpopulations, which has been widely used for
immune cell infiltration level estimations. Hence, this metagene-based method was used in
the present study to measure the immune cell infiltration level in every HCC based on a
single-sample gene set enrichment analysis (ssGSEA) realized by R package “GSVA” [28].
With the aim of avoiding differences among different data cohorts and improving the use
of multiple cohorts, the immune-cell-related prognostic index (ICRPI) was constructed by
using cell pair algorithms. Specifically, an immune cell pair score (ICPs) was defined as 1
when the infiltration level of immune cell subpopulation 1 was more than the infiltration
level of immune cell subpopulation 2. Otherwise, the ICPs were assigned 0 (the infiltration
level of immune cell subpopulation 1 was less than the infiltration level of immune cell
subpopulation 2). Some ICPs with constant values (0 or 1) were removed for analyses
in the next step to minimize the biases caused by the platform-dependent preferential
measurement. We immediately contained these ICPs for identifying prognostic ICPs by
using survival analyses (log-rank test method) based on the entire meta-cohort. The entire
meta-cohort was randomly classified into a meta-training cohort and meta-testing cohort
with a ratio of 1:1. By using package “glmnet” [29] in R software, we conducted a least
absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis of
the selected prognostic ICPs via the meta-training cohort. The coefficients of the ICPs in
the multivariate Cox proportional hazards model were contained for ICRPI construction.
The ICRPI score of each HCC patient was evaluated by using Formula (1).

ICRPI = ∑n
i=1 Coe fi × TCPsi (1)
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Formula (1). The calculation formula of the immune-cell-related prognostic index
(ICRPI). Coef represents the regression coefficient, and ICPs represent the immune cell pair
score of each immune cell pair (ICP).

Here, Coef represents the regression coefficient, and ICPs represent the immune cell
pair score of each ICP (immune cell pair). To divide HCC patients into high- and low-risk
groups appropriately, a time-dependent receiver operating characteristic (ROC) curve was
plotted. This analysis was performed based on the training cohort with the use of the
“survivalROC” [30] package. The time point for this analysis was set as “5 years”, and
then the ICP showing the minimum distance between the ROC curve and the point was
further determined as the grouping cutoff value in the present study. HCC patients across
the meta-training cohort, meta-testing cohort, entire meta-cohort, and TCGA-LIHC cohort
were separated into a high-risk group and a low-risk group (ICRPI risk groups).

2.3. Correlation between ICRPI and Survival, Clinical Characteristics, Pathological feaTures, and
the Genomic Alterations of HCC Patients

To explore the prognostic value of the ICRPI, we then conducted survival analyses by
using R package “survival”. The survival difference between the ICRPI risk groups were
measured via the two cohorts. The prognostic role of the ICRPI was also validated via the
entire meta-cohort and TCGA-LIHC data. A log-rank test was chosen for measuring the
survival difference, with statistical significance when the p value was <0.05. Furthermore,
we attempted to explore the clinical difference between low- and high-risk groups. Several
clinical indicators containing age, gender, and TNM stage were contained for exploring
clinical differences. Because of the importance of pathological features in HCC, pathologic
M, pathologic N, and pathologic T were collected from TCGA data to explore the relation of
ICRPI to pathological features. Moreover, metastasis, intrahepatic metastasis, and vascular
invasion were collected from cohort GSE45114 to explore pathological differences. We
performed Fisher’s exact test for determining the statistical differences among the groups,
with statistical significance when the p value was < 0.05. The single-nucleotide variant
(SNV) data of LIHC containing 367 samples were also obtained from the TCGA database.
The mutation landscape in HCC patients grouped by ICRPI was presented by using R
package “maftools” [31].

2.4. Association between ICRPI and Several Mutation and Immune Indices

Microsatellite instability (MSI) occurs because of functional defects in DNA mis-
matched repairs in neoplastic tissue. MSI accompanied by DNA mismatch repair defects is
a noteworthy marker of malignancy in clinics [32]. For the present study, we calculated
the MSI for each sample from the TCGA-LIHC cohort via R package “PreMSIm” [33]. The
mRNA stemness index (mRNAsi) has been identified as a novel predictor that is associated
with stem-like indices and tumor prognoses [34]. Thus, we collected mRNAsi, mDNAsi,
EREG-mDNAsi, and EREG-mRNAsi from a previous research study and further explored
the difference among the ICRPI groups. Homologous recombination deficiency (HRD)
scores represent distinct types of genomics scar and chromosomal instability caused by
deoxyribonucleic acid repair deficiency and, thus, are regarded as powerful biomarkers
of a given cancer [35]. Thus, the HRD scores for the ICRPI risk groups were calculated to
compare their chromosomal instability with Wilcoxon test. The index of cytolytic activity
(CYT) is measured as a new biomarker of immunotherapy, which could characterize the
antitumor immunity of CD8 + cytotoxic T cells and macrophages. We then evaluated
the CYT score for each sample across the TCGA-LIHC data; in detail, the CYT score was
defined as the mean expression of PRF1 and GZMA [36]. Cohort GSE104580, including
147 HCC patients with transcatheter arterial chemoembolization (TACE) treatment infor-
mation, was obtained from the GEO database for the exploration of the predictive potential
of ICRPI. The normalization of this cohort was conducted as described above. Then, the
difference between the ICRPI risk groups were also measured by using the Wilcoxon test.
A p value of <0.5 was considered significant.
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2.5. Association between ICRPI and Immunotherapy-Predicted Pathways

Some therapeutic signatures containing oncogenic pathways that might form non-
inflammatory TME, gene characteristics related to targeted therapy, and gene signatures
for radiotherapy response prediction were also retrieved from Mariathasan’s study and
Hu’s study [37,38]. Then, we explored the association between ICRPI and immunotherapy-
predicted pathways. Pearson’s correlation analyses were performed, and a p value < 0.05
was considered significant.

2.6. Association between ICRPI and Immune-Related Features

To further explore the potential functions of ICRPI and provide an immune landscape
for ICRPI, we calculated the immune score, stromal score, and tumor purity of HCCs via
R package “ESTIMATE” [39] by using TCGA data. The T cell dysfunction and exclusion
(TIDE) method was used for observing the response of immunity treatments and it was also
quantified for HCC samples. The TIDE scores of the HCC samples from the TCGA-LIHC co-
hort were evaluated and retrieved via the following website: http://tide.dfci.harvard.edu/
accessed on 1 October 2022. Furthermore, by using a pan-cancer analysis of immune
subtypes, Thorsson et al. defined 6 immune-related subtypes including wound healing
(C1), IFN-γ-dominant (C2), inflammatory (C3), lymphocyte-depleted (C4), immunologi-
cally quiet (C5), and TGF-β-Dominant (C6) [40]. We attempted to explore the differences
between these subtypes and the ICRPI. The authors in this study also defined 56 molecular
signatures associated with immune characteristics [40]. Thus, we measured the correlation
of ICRPI with these signatures. In view of the major significance of immune checkpoints
(ICPs) and immunogenic cell death (ICD) modulators for tumor immunity, the associations
between ICRPI with ICPs and ICD modulators were explored. The Wilcoxon method was
used for statistical examinations. We also measured 28 immune cell components among
the ICRPI risk groups.

2.7. Exploring the Role of ICRPI in Response to Anti-PD-1/L1 Immunotherapy

We obtained 2 immunotherapy-related datasets containing a gene expression matrix
and survival information for the potential exploration of treatment responses. The ex-
pression matrix of cohort IMvigor210, patients of which were treated by atezolizumab
(an anti-PD-L1 antibody), was firstly normalized via the method described previously. In
total, we contained 298 cancer patients for this step analysis. Moreover, the expression
matrix of cohort GSE78220, patients of which were treated by pembrolizumab (an anti-PD-1
antibody), was further downloaded via the GEO website. Normalization was performed
via package “limma” [41]. Then, 27 cancer patients with their immunotherapy and survival
information were contained for this analysis. We firstly explored the survival difference
across the ICRPI risk groups via R package “survival”. Secondly, the ICRPI difference be-
tween different response groups (CR, PR, PD, and SD) was explored and the Kruskal–Wallis
test was chosen to test the significance. Thirdly, by using R package “pROC” [42], receiver
operating characteristic (ROC) curves were plotted to measure the prediction values of
ICRPI for immunotherapy responses. The prediction potential was quantified by the area
under the curve (AUC).

2.8. Construction and Verification of a Composite ICRPI and Clinical Prognostic Index (ICPI)

To obtain the prediction value of ICRPI and compare the prognostic accuracy of ICRPI
with other HCC-related signatures, we collected 3 existing molecular signatures including a
3-gene signature [43], 6-gene signature [44], and 9-gene signature [45]. For these signatures,
concordance indices (C-index) were calculated and considered as the comparison standards.
Moreover, ICRPI and several clinical indicators (gender, age, and TNM stage) were included
for multivariable Cox proportional regression analyses by using the four cohorts. Then,
features showing significant values (p < 0.05) were used to establish the composite ICRPI
and clinical prognostic index (ICPI). Similarly, we also evaluated the C-index of the ICPI via
the four cohorts. In addition, the prognostic performances of continuous ICRPI and ICPI
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scores were compared by taking the C-index as the standard. The restricted mean survival
(RMS) curve was used for the visualization of a continuous C-index. RMS represents the
life expectancy at 10 years for patients with different indicators [46]. The higher the RMS
time ratio, the greater the prognostic potential.

2.9. Drug Sensitivity Exploring

Then, we attempted to identify several novel therapeutic drugs, which could pro-
vide novel choices for HCC treatments. Based on the related drug information provided
by the Genomics of Drug Sensitivity in Cancer (GDSC) database [47], we predicted the
drug response in HCC with the use of package “pRRophetic” [48]. Ridge’s regression
was firstly used to estimate the maximum inhibitory concentration (IC50) of each patient.
Then, a 10-fold cross-validation was used to measure the accuracy of the estimation. We
further divided the patients into high- and low-risk groups according to the level of
ICRPI, and the Wilcoxon rank-sum test was used to measure the significance; p < 0.05 was
considered significant.

3. Results
3.1. ICRPI Construction

The flow chart of the entire process in this research study was shown in Figure 1.
Twenty-eight immune cell types were collected and contained in this study in total. Then,
ssGSEA was used for the immune infiltration-level estimation of the 28 immune cell
types. Multivariate Cox analyses were obtained to measure the prognostic value of the
28 types of immune cells (Table S2). Figure 2A described a comprehensive landscape of
immune cell interactions, cell lineages, and their roles on the overall survival (OS) of HCC
patients. These immune cell types were separated into four clusters via the “hclust” method
(Figure 2B). The relationship between immune cells is complex. More than half of them
showed strong positive correlations with each other. Some immune cell types showed a
strong negative correlation with others, such as gamma delta T cell and central memory
CD4 T cell (Figure 2A). Moreover, some immune cell types had positive correlations with
others, such as gamma delta T cell with eosinophil (Figure 2A). The result indicated that
these immune cells played their roles in the tumor immune microenvironment by mutual
promotion or antagonism. Furthermore, these immune cell types also showed inconsistent
roles in the prognosis of HCC patients. We defined several types of immune cells, including
eosinophil (HR = 0.008, p = 0.001), type 17 T helper cell (HR = 0.607, p = 0.016), and effector
memory CD8 T cell (HR = 0.053, p = 0.043) as favorable factors for the OS of HCC patients.
In contrast, some other immune cell types containing macrophages (HR = 65.16, p = 0.004),
mast cells (HR = 12.033, p = 0.018), and monocytes (HR = 30.915, p = 0.041) were defined
as elements at risk of HCC’s OS. As we mentioned in the Methods section, 374 immune
cell pairs (ICPs) were generated with the use of the proportion of each immune cell type
(Table S3). By performing a log-rank test, 38 ICPs were screened via the entire meta-cohort
(Table S4), which were further contained in the LASSO algorithm (Table S4). In total,
12 ICPs were screened (Figure 2C,D) and 5 were generated by 10 immune cell types and
were picked out by a multivariate Cox regression analysis and further used for ICRPI
construction (Figures 2E and S2A; Table S5). The AUC value of the time-dependent ROC
curve at 5 years was 0.761 (Figure 2F), the grouping value of ICPRI was identified as 1.1151,
and HCCs were subsequently classified into ICRPI high- and low-risk subgroups.
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1 
 

 
  Figure 1. The flow diagram of this study. Data preparation, analysis, and validation are shown in the

flow diagram. In total, 1340 HCC patients were included in this study, and the immune-cell-related
prognostic index (ICRPI) was constructed by using cell pair algorithms, log-rank test, Lasso, and Cox
analysis. Then, we explored the role of ICRPI in survival and clinical conditions, mutation landscape,
immune exploration, immunotherapy, and drug therapy.
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2 

 
  

Figure 2. Survival landscape of the 28 immune cell types and immune-cell-related prognostic index
(ICRPI) construction. (A) Cellular interaction and survival landscape of the 28 immune cell types.
(B) The relationship among the 28 immune cell types. (C,D) Plot of partial likelihood deviance for
the 12 immune cell pairs (ICPs) associated with survival in the training set. (E) Forest plot for the
Hazard Ratios (HRs) of ICPs used for ICRPI construction. (F) Time-dependent ROC curve for ICRPI
in the meta-training cohort at 5 years.

3.2. ICRPI Was Associated with Survival and Clinical Features of HCC

Based on the training cohort (n = 670), HCC patients in the ICRPI low-risk group
(n = 421) showed better OS compared to those of the ICRPI high-risk group (n = 249), as
described in Figure 3A (p < 0.001). We obtained a similar conclusion via the meta-testing
cohort (n of high-risk set = 259, n of low-risk set = 411, Figure 3B), entire meta-cohort (n of
high-risk set = 508, n of low-risk set = 832, Figure 3C), and TCGA-LIHC cohort (n of high-
risk set = 204, n of low-risk set = 167, Figure 3D). The ICRPI distribution of HCC patients
in the four cohorts is shown in Figure S1B–I. In total, HCC patients in the ICRPI high-risk
group were more prone to death, which indicated that ICRPI was a prognostic index for
HCC (Figure S2B–I). We further explored the clinical difference among the ICRPI risk
groups (Table S6). In the meta-training dataset, patients classified into the ICRPI high-risk
set showed higher stages (p < 0.001) than the patients in the low-risk subgroup (Figure 3E).
Furthermore, HCC patients in the ICRPI high-risk group might have had worse survival
states compared with the ICRPI low-risk group (p < 0.001, Figure 3E), which concluded that
the ICRPI could act as a prognosis stratification tool. The meta-testing cohort (Figure 3F),
entire meta-cohort (Figure 3G), and TCGA-LIHC cohort (Figure 3H) were used to validate
the clinical difference among the ICRPI risk groups, and the result is consistent with those
shown in Figure 3E. These included no difference in age, gender, and survival time between
the high-risk patient group and low-risk patient group, suggested by all data cohorts
(Figure 3E–H). We also explored the relationship of ICRPI to several pathological features.
As Figure 3I shows, patients classified into the ICRPI high-risk group showed higher
histologic grade (p = 0.041) than the patients in the low-risk subgroup via cohort TCGA-
LIHC. There were no significant relationships between ICRPI and pathologic M, pathologic
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N, and pathologic T (Figure 3I). By using cohort GSE45114, we also explored the relationship
of ICRPI to metastasis, intrahepatic metastasis, and vascular invasion. As Figure 3J shows,
it seems that HCC patients classified into the ICRPI high-risk group were more likely to
metastasize, intrahepatic metastasize, and vascular invade, without significance. Higher
tumor mutation burden (TMB), as well as higher somatic mutation rates, was associated
with greater anti-cancer immunity. Figure 4A shows the mutation landscape of the top
30 high-frequency mutated genes in HCC patients via TCGA data. The ICRPI high-risk
group showed a higher mutation rate (Figure 4A). There was a trend that ICRPI high-risk
group contained higher TMB compared to the ICRPI low-risk group (Figure 4B), in addition
to the number of mutated genes (Figure 4C), without any significance.

3.3. The Correlation of ICRPI with Several Highly Trustworthy Indices

MSI has been identified as a meaningful marker for cancer diagnosis and treatment
across a set of cancer types. A tendency had been proved that HCCs in the ICRPI high-
risk set showed a greater MSI (Figure 4D, no significance), MSIsensor score (Figure 4E,
p < 0.001), and MSI MANTIS score (Figure 4F, no significance) than those in the ICRPI
low-risk group. mRNAsi was defined as a novel predictor associated with stem-like indices
and tumor prognosis. HCCs in the ICRPI high-risk subgroup showed higher mRNAsi
(Figure 4G, p < 0.05) and lower EREG-mRNAsi (Figure 4I, p < 0.05) compared to the ICRPI
low-risk group. A further analysis concluded that there were no statistical differences
(mDNAsi (Figure 4H) and EREG-mDNAsi (Figure 4J)) among the ICRPI risk groups. The
HRD score represents distinct types of genomics scar and chromosomal instability caused
by deoxyribonucleic acid repair deficiency, regarded as a powerful biomarker of a given
cancer. Samples in the ICRPI low-risk group showed lower HRD scores compared to those
in the ICRPI high-risk group (p < 0.001, Figure 4K). The cytolytic activity (CYT) score is
a new index of cancer immunity calculated from the mRNA expression levels of GZMA
and PRF1; we concluded that the HCC patients with higher ICRPI had lower CYT scores
compared to those observed in lower ICRPI patients (p < 0.01, Figure 4L). The details about
these indices are shown in Table S7.

3.4. The Role of ICRPI in TACE Treatment Response

Transcatheter arterial chemoembolization (TACE) treatments have been widely used
for unresectable live cancer treatments. Currently, this treatment method is the preferred
therapy for patients with advanced liver cancer. By using GSE104580, we found that HCC
patients that had no response to TACE treatments showed higher ICRPI levels compar-
ing with HCC patients that were responsive to TACE treatments (Figure 4M, p < 0.001).
Moreover, the ICRPI was concluded to have predictive values in HCC responses relative to
TACE, with an AUC value of 0.707 (Figure 4N), which might be a biomarker for predicting
HCC responses to TACE.



Cells 2023, 12, 202 10 of 22

 

3 

 
  Figure 3. Survival, clinical, and pathological difference across ICRPI high-risk and ICRPI low-risk

groups. (A) Overall survival curve for ICPRI in the meta-training cohort. (B) Overall survival curve
for ICPRI in the meta-testing cohort. (C) Overall survival curve for ICPRI in the entire meta-cohort.
(D) Overall survival curve for ICPRI in the TCHA-LIHC’s data. The differences in clinical features
(living status, age, gender, TNM stage, and survival time) across ICRPI risk groups via the meta-
training cohort (E), meta-testing cohort (F), entire meta-cohort (G), and TCGA-LIHC cohort (H). The
relation of ICRPI to the pathological features (pathologic M, pathologic N, and pathologic T) via
TCGA-LIHC cohort (I). The relationship of ICRPI to the pathological features (metastasis, intrahepatic
metastasis, and vascular invasion) via cohort GSE45114 (J).
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4 

 
  Figure 4. Association between ICRPI and genomic correlations and other highly trustworthy indices

via TCGA-LIHC data. (A) The oncoplot of the top 30 mutated genes that were associated with ICRPI.
(B) Association between ICRPI and TMB. (C) Association between TCPRI and mutation number.
(D) MSI. (E) MSI sensor score. (F) MSI MANTIS score. (G) mRNAsi. (H) mDNAsi. (I) EREG-mRNAsi.
(J) EREG-mDNAsi. (K) HRD score. (L) CYT score. (M) TACE response. (N) ROC curve to explore the
role of ICRPI in TACE response prediction. NS no significance, * p < 0.05, *** p < 0.001.

3.5. Association between ICRPI and Immune Related Features

Subsequently, the associations among ICRPI and immunotherapy-related pathways
were explored. Figure 5A indicated that the ICRPI was positively related to base excision re-
pair (p < 0.001), cell cycle (p < 0.001), DNA replication (p < 0.001), Fanconi anemia pathway
(p < 0.001), homologous recombination (p < 0.001), microRNAs in cancer (p < 0.001), mis-
match repair (p < 0.001), nucleotide excision repair (p < 0.001), oocyte meiosis (p <0.001), p53
signaling pathway (p < 0.001), progesterone-mediated oocyte maturation (p < 0.001), pyrim-
idine metabolism (p < 0.001), and viral carcinogenesis (p < 0.05). The ICRPI also showed
significantly negative associations with IFN-Gamma signatures (p < 0.001), proteasome
(p < 0.05), and systemic lupus erythematosus (p < 0.05). Furthermore, patients classified
into the ICRPI low-risk group showed higher levels in the immune score (p < 0.001), stro-
mal score (p < 0.001), and ESTIMATE score (p < 0.001) compared to the ICRPI high-risk
group (Figure 5B–D). Moreover, HCCs split into the ICRPI high-risk subgroup showed
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greater tumor purity comparing with ICRPI low-risk group patients (Figure 5E, p < 0.001).
Higher TIDE scores indicated that patients were less likely to benefit from ICI treatment.
Figure 5F–H suggested a conclusion that HCCs in the ICRPI high-risk subgroup probably
benefit from ICI treatments more easily (p < 0.001). Patients in the ICRPI risk groups
mainly overlapped with C3 and C4 (Figure 5I). Meanwhile, 17% of HCCs in the ICRPI
low-risk subgroup were classified into C2, and more HCCs in ICRPI low-risk subgroup
were categorized into C3; meanwhile, more HCCs in the ICRPI high-risk group were
categorized into C4 (Figure 5G). The 56 molecular were collected from previous studies.
Further analyses indicated that the ICRPI was positively associated with wound healing,
Th2 cells, TGF beta response, proliferation, neutrophils, macrophages M0, dendritic cells
activated, dendritic cells, and B cells memory (Figure 6A). In addition, ICRPI was negatively
correlated with Th17 cells, T cells gamma delta, T cells CD8, activated NK cells, monocytes,
macrophages M1, lymphocytes, lymphocyte infiltration signature score, and IFN gamma
response (Figure 6A). Furthermore, the correlation between ICRPI and immune modulators
including ICPs and ICD modulators was explored, Figure 6B showed the correlation of
ICRPI with ICPs, and the ICRPI was positively associated with VTCN1, TNFSF9, TN-
FSF4, TNFSF18, TNFSF15, TNFSF14, TNFRSF25, TNFRSF18, TNFRSF14, LGALS9, LAIR1,
HHLA2, HAVCR2, CD44, CD276, and BTNL2. Moreover, the ICRPI was negatively related
with TMIGD2, KIR3DL1, IDO1, CD48, CD244, CD160, and BTLA (Figure 6B). Moreover,
the ICRPI was positively correlated with P2RY2, P2RX7, IFNK, IFNE, IFNAR2, IFNAR1,
HMGB1, HGF, EIF2AK3, EIF2AK2, EIF2AK1, EIF2A, and CALR (Figure 6C). Then, we
explored the association between ICRPI and 28 immune cell types (Figure 6D,E). The
ICRPI was positively correlated with six immune cell types, including activated CD4 T cell,
activated dendritic cell, macrophage, monocyte, T follicular helper cell, and Type 2 T helper
cell. The ICRPI is negatively related to 11 immune cell types (eosinophil, Type 1 T helper
cell, Gamma delta T cell, etc.), which is coincident with Figure 6A.

3.6. The ICRPI Could Predict the Immunotherapeutic Benefit

Immunotherapies such as PD-L1 and PD-1 blockade unquestionably emerged great
advances in tumor treatments. In IMvigor210, HCC patients in the ICRPI low-risk subgroup
(n = 100) had longer survival (p < 0.001, Figure 7A) compared to HCCs classified into the
ICRPI high-risk subgroup (n = 198). The predictive value of the ICRPI relative to anti-PD-L1
immune therapy was further confirmed (Figure 7B–E). Patients divided into the ICRPI
low-risk subgroup could benefit from anti-PD-L1 treatments better (Figure 7B, 7D), which
was validated by the Kruskal–Wallis test (p = 0.0054) and Wilcoxon test (p = 0.013), as
Figure 7C,E suggested. HCCs with SD states for anti-PD-L1 responses showed the highest
ICRPI levels among all anti-PD-L1 response states (Figure 7C). ICRPI was indicated to
be a predictive biomarker relative to anti-PD-L1 immunotherapy benefits (AUC: 0.658,
Figure 7F). Furthermore, with the use of the GSE78220 dataset, the role of ICRPI in anti-PD-1
treatment responses was then explored. Patients divided into the ICRPI low-risk subgroup
had better survival by comparison with the ICRPI low-risk subgroup (p = 0.028, Figure 7G).
Similarly, patients in the ICRPI low-risk group could respond to anti-PD-1 immunotherapy
better by comparisons with those classified into the ICRPI high-risk subgroup (Figure 7H,J),
concluded by the Kruskal–Wallis test (p = 0.044) and Wilcoxon test (p = 0.023), as Figure 7I,K
suggested. The HCCs with CR states for anti-PD-1 responses had the lowest ICRPI scores
among all groups (Figure 7I). The ICRPI was then concluded to be a suitable predication
application for anti-PD-1 therapy benefits (AUC: 0.731, Figure 7L). Taken together, the
results obviously concluded that ICRPI was associated with anti-PD-L1/PD-1 immune
treatment responses, which might act upon the prediction of responses to immunotherapy.
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5 

 
  Figure 5. Correlation of ICRPI with immune-related features. (A) Association between ICRPI and

immunotherapy response related pathways. (B) Association between ICRPI and immune score.
(C) Association between ICRPI and stromal score. (D) Association between ICRPI and ESTIMATE
score. (E) Association between ICRPI and tumor purity. (F) Association between ICRPI and TIDE.
(G) Association between ICRPI and exclusion. (H) Association between ICRPI and dysfunction.
(I) Association between ICRPI and immune subtypes. NS no significance, *** p < 0.001.



Cells 2023, 12, 202 14 of 22

 

6 

 
  Figure 6. Immune landscape of ICRPI in HCC. (A) Association between ICRPI and 56 molecular

signatures. (B) Association between ICRPI and ICPs. (C) Association between ICRPI and ICD
modulators. (D) Heatmap showed the immune infiltration levels of the 28 immune cell types defined
by ssGSEA. (E) Association between ICRPI and 28 immune cell types defined by ssGSEA. * p < 0.05,
** p < 0.01.

3.7. Predictive Value Comparison of ICRPI with Several Molecular Signatures

To determine whether the ICRPI was better than previous prognostic signatures, three
multiple gene signatures were collected and included in the present study. As shown in
Figure 8A, the ICRPI showed the best prognosis prediction potential compared to the three-
gene signature, six-gene signature, and nine-gene signature in the TCGA-LIHC cohort,
meta-training cohort, meta-testing cohort, and entire meta-cohort.

3.8. Construction of ICPI and Its Prognostic Role

To maximize the application of the ICRPI in the prognosis prediction of HCC patients,
we immediately contained the ICRPI and several essential clinical factors (age, gender, and
TNMstaging) in the multivariable Cox analysis via the meta-training cohort (Figure 8B;
Table S8). TNMstaging (HR = 1.50, p < 0.001) was then screened and generated with ICRPI
(HR = 1.64, p < 0.001) to construct ICPI. The prognostic value of age was then validated by
the meta-testing cohort (Figure S3A), entire meta-cohort (Figure S3B), and TCGA cohort
(Figure S3C). Based on the results of the Cox result, the ICPI of HCC patients was defined
as TNMstage × 0.404 + ICRPI × 0.497. The result was shown in Figure 8C, the prediction
potential of ICRPI had been significantly improved by constructing ICPI in all the four
data cohorts (Figure 8C) and validated by RMS curves in the meta-training cohort (mean
C-index: ICPI: 0.70, ICRPI: 0.67, p = 0.042, Figure 8D), meta-testing cohort (mean C-index:
ICPI: 0.66, ICRPI: 0.61, p = 0.029, Figure 8E), entire meta-cohort (mean C-index: ICPI: 0.68,
ICRPI: 0.64, p = 0.004, Figure 8F), and TCGA-LIHC cohort (mean C-index: ICPI: 0.68,
ICRPI: 0.66, p = 0.291, Figure 8G).
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7 

 
  Figure 7. ICRPI is a prognostic biomarker and predicts immunotherapeutic benefits. (A) Kaplan–

Meier curves for patients with high (n = 198) and low (n = 100) ICRPI in the IMvigor210 cohort.
(B) Rate of clinical response (complete response (CR)/ partial response (PR) and stable disease
(SD)/progressive disease (PD)) relative to anti-PD-L1 immunotherapy in high or low ICRPI groups in
the IMvigor210 cohort. (C) Distribution of ICRPI in groups with different anti-PD-L1 clinical response
statuses. (D) Rate of clinical response (CR, PR, SD, and PD) relative to anti-PD-L1 immunotherapy in
high or low ICRPI groups in the IMvigor210 cohort. (E) Distribution of ICRPI in groups with different
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anti-PD-L1 clinical response statuses. (F) ROC curve measuring the predictive value of the ICRPI.
(G) Kaplan–Meier curves for patients with high (n = 22) and low (n = 5) ICRPI in the GSE78220
cohort. (H) Rate of clinical response (CR/PR and SD/PD) relative to anti-PD-1 immunotherapy in
high or low ICRPI groups in the GSE78220 cohort. (I) Distribution of ICRPI in groups with different
anti-PD-1 clinical response statuses. (J) Rate of clinical response (CR, PR, SD, and PD) to anti-PD-1
immunotherapy in high or low ICRPI groups in the GSE78220 cohort. (K) Distribution of ICRPI in
groups with different anti-PD-1 clinical response statuses. (L) ROC curve measuring the predictive
value of the ICRPI. 

8 

 
  Figure 8. Construction of a Composite ICRPI and clinical prognostic index (ICPI). (A) C-index

comparison between ICRPI, 3-gene signature, 6-gene signature, and 9-gene signature. (B) Forest plot
for the Hazard Ratios (HRs) of high vs. low ICRPI risk groups via meta-training cohort. (C) C-index
comparison between ICRPI and ICPI. Restricted mean survival (RMS) curves for continuous ICRPI
and CTCPI in meta-training cohort (D), meta-testing cohort (E), entire meta-cohort (F), and TCGA-
LIHC cohort (G).

3.9. Novel Candidate Drugs Treating HCC

Then, we attempted to identify some novel candidate drugs for HCC treatments.
Drugs from the GDSC database including the therapeutic ability for cancers were contained
for this analysis. As the result indicated, HCC patients classified into the ICRPI high-risk
subgroup were more susceptible to 57 medicine types (Figures 9 and S4). Drugs such as
KU.55933 (p = 2.2 × 10−5), BIRB.0796 (p = 3.9 × 10−14), and Bosutinib (p = 1.8 × 10−10)
might be effective treatments for HCCs. The result indicated that ICRPI could predict
increased sensitivity towards these therapeutic drugs in HCC patients.



Cells 2023, 12, 202 17 of 22

 

9 

 
Figure 9. Drug sensitivity exploring to treat HCC patients classified into the ICRPI high-risk group.
In total, 32 potential drugs were identified. Drugs with p < 0.05 were considered significant.

4. Discussion

As major components in tumor immune microenvironments, immune cells have
been proved to be correlated with the prognosis of cancers, which could also accelerate
tumor initiation and progression [14–16]. More recently, studies have shown that the
immunotherapy efficacy of HCC patients could be impacted by immune cells. A study
contributed by Geh et al. concluded that neutrophils could act as potential therapeutic
targets in HCC [49]. Within the tumor, macrophages could affect the development and
progression of HCC. Xu et al. discussed the possible approaches for tumor-associated
macrophage (TAMs) therapy as potential targets for HCC treatment [50]. T cell is the
most numerous type with complex functions in lymphocytes [51]. T cells have been
proved as essential effectors in anti-tumor immunity. Zhang et al. screened a tumor-
infiltrating immune-cell-associated lncRNA signature, which could predict the outcomes
of tumor immunotherapy [52]. These studies proved the importance of immune cells in
survival, anti-tumor immunity, and therapy response in HCC. However, none of them
considered the integrity and comprehensive interaction of immune cell subpopulations.
Since there were a set of immune cell subpopulations, providing a landscape of these
immune cell subpopulations in HCC was urgently need. In total, 28 immune cell types
were included in the present study, the infiltration level of which were evaluated for
over 1300 samples from public databases by applying the ssGSEA method. The ssGSEA
algorithm scored the individual samples independently without considering other samples
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in the gene expression cohorts, which could overcome calculation errors caused by multiple
platforms of cohorts. Then, the immune cell pair (ICP) method was realized to measure the
interactions within immunocyte subpopulations and to further construct an immune-cell-
related prognostic index (ICRPI). Moreover, the cell pair algorithm only involves pairwise
comparisons within the cell infiltration level cohort of a sample, which allowed us to use
samples from multiple platforms. The impact of ICRPI on survival was then measured. A
subsequent analysis concluded that HCC patients with a lower ICRPI were more likely to
show better survival, which indicated that the ICRPI was a risk indicator for the survival
and prognosis of HCC patients. The clinical difference among ICRPI risk groups was also
explored, and HCCs categorized into ICRPI low-risk subgroups were less likely die and
proceeded into advance stage HCC. The 5-year survival rate of advance HCC dropped to
3%, which is consistent with the present study.

mRNAsi is a novel predictor associated with stem-like indices and tumor prognosis. A
study by Mai et al. proved that HCCs with higher mRNAsi scores had significantly worse
overall survival based on an HCC matrix of more than 1000 HCC patients [52]. In this paper,
we concluded the ICRPI was positively associated with mRNAsi, acting as a risk factor
for the survival of HCC patients, which was consistent with Mai et al [53]. HRD had been
used as a biomarker for therapy decision making [54]. As a recent study reported, the HRD
score can also predict responses to neoadjuvant chemotherapy in some cancer types, such
as triple-negative breast cancer [55]. In HCC, Knijnenburg et al. concluded that HRD scores
were often associated with shorter survival. Our result concluded that ICRPI was positively
associated with the HRD score, which further suggested that HCCs with higher HRD scores
had worse survival, which is consistent with a previous study [56]. Zhang et al. proved
that the CYT score was a prognostic marker in HCC [23]. The present study concluded that
ICRPI was negatively associated with the CYT score, which also suggested that the CYT
score was a favorable factor for the survival of HCC. The TACE treatment was the major
treatment for advanced HCC. In the present study, we also explored that ICRPI could act
as a predictive marker for the TACE treatments for HCC, which indicated that ICRPI might
act on the selection of treatment methods for HCC.

Then, we attempted to characterize the immune landscape across the ICRPI risk
groups. The ICRPI might regulate some immune-related features. Specifically, Figure 5A
indicates that the ICRPI is positively related to base excision repair, DNA replication,
cell cycle, fanconi anemia pathway, microRNAs in cancer, homologous recombination,
mismatch repair, pyrimidine metabolism, oocyte meiosis, nucleotide excision repair, p53
signaling pathway, progesterone-mediated oocyte maturation, and viral carcinogenesis.
The ICRPI also showed significantly negative associations with IFN-Gamma signatures,
proteasome, and systemic lupus erythematosus. These results proved that the ICRPI
might effectively influence the HCC immune microenvironment via complex immune-
related pathways. Furthermore, the present study concluded that ICRPI was negatively
correlated with immune, stromal, and ESTIMATE scores, resulting in the lower tumor
purity of HCCs with lower ICRPI scores. In addition, ICRPI was associated with some ICPs,
including VTCN1, TNFSF9, TNFSF4, TNFSF18, TNFSF15, TNFSF14, TNFRSF25, TNFRSF18,
TNFRSF14, LGALS9, LAIR1, HHLA2, HAVCR2, CD44, CD276, BTNL2, TMIGD2, KIR3DL1,
IDO1, CD48, CD244, CD160, and BTLA, indicating that ICRPI could be an effective indicator
for immune checkpoint blockage (ICB) therapy. A higher TIDE score indicated that patients
were less likely to profit by ICI treatment. This study concluded that HCC patients classified
into the ICRPI high-risk subgroup might profit by ICI treatments better.

Tumor immunotherapy is a novel therapy option for controlling and eliminating
tumors by restarting and maintaining the tumor immune cycle and restoring the normal
anti-tumor immune response [57]. Because of its excellent curative effect and innovation, it
was rated as the most important scientific breakthrough of the year by Science in 2013. Thus,
the role of the ICRPI in immunotherapy must be explored in this research area. Further
integrated analyses cleared up the point about the association between ICRPI and response
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to anti-PD-L1/PD-1 immune therapy, which might help improve the predictive strategy
for immunotherapy.

Except immunotherapy, drug therapy, especially chemotherapy, is also the major
therapy strategies for HCC. Then, we attempted to identify some novel candidate drugs
for HCC treatment. Drugs from the GDSC database, including the therapeutic ability for
cancers, were contained for this analysis. HCC patients classified into the ICRPI low-risk
group were less sensitive to 57 drugs. Drugs such as KU.55933, BIRB.0796, and Bosutinib
might be effective treatments for HCCs, indicating that ICRPI could predict increased
sensitivity towards these therapeutic drugs in HCC patients.

To maximize the application of the ICRPI in the prognosis prediction of HCC patients,
we then constructed an ICPI by considering both ICRPI and several clinical features. The
C-index improved from 0.67 to 0.70, which truly improved the prediction of survival of
HCC patients.

The present study also has certain limitations. Although we collected and used as
many public HCC cohorts as possible, we lacked our own data for external verification.
In future, we will collect HCC patients from our hospital and further validate the ICRPI.
Furthermore, it seemed that HCC patients divided into the ICRPI high-risk group were
more likely to metastasize, intrahepatic metastasize, and vascular invade, without signifi-
cance. Perhaps because of the small size of cohort GSE45114, in the near future, we will also
validate the relationship of ICRPI to pathological features using our own data. Moreover,
aside from data size, data quality must also be considered when conducting scientific
research. Although we collected the HCC data from several widely used public databases,
which provided some guarantee of the data quality, the quality of the data was not clear. To
minimize the impact of data quality on the deduced conclusions in the present study, we
only collected HCC cohorts with a relative complete gene expression matrix, and survival
and clinical information. For HCC cohorts from different platforms, we used different
methods for individual normalization to ensure the correct standardized methods were
used. Then, the ComBat-adjusted algorithm was chosen to merge the entire meta-cohort.
Moreover, to overcome the difficulty of using multiple datasets from different platforms, we
used an immune-cell-pair algorithm to construct the ICRPI. Thus, we thought the deduced
conclusion in the present study must be credible. As for the influence of the quality of data
on our research, these must be in-depth analyses in the future using these public data and
our own data.

Taken together, the present study put forward some novel insights for increasing the
survival estimation and response to treatment (TACE, immunotherapy, and drug therapy)
for individual HCC patients via a comprehensive analysis of immune cell types, which
might take effect on the personalized precision immunotherapy strategy of HCC over the
next decades.

5. Conclusions

In general, we constructed and verified an immune-cell-related prognostic index
(ICRPI) in the present study; it is an effective tool for predicting the prognosis of HCC
and distinguishing patients that are suitable for immunotherapy. The comprehensive
evaluation of the interactions of immunocytes in HCC might improve the cognition of
the infiltration characteristics and functions of immune cells and guide more effective
immunotherapy strategies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells12010202/s1, Figure S1: Power calculation to estimate the
sample size in all cases including t test (A,B), one-way ANOVA (C), and correlation analysis (D).
Figure S2: (A) Forest plot for the Hazard Ratios (HRs) of ICPs used for ICRPI construction. (B-I) The
distribution of ICRPI in meta-training cohort (B,C), meta-testing cohort (D,G), entire meta-cohort
(E,H), and TCGA-LIHC cohort (F,I). Figure S3: Forest plot for the Hazard Ratios (HRs) of high vs.
low ICRPI risk groups via meta-testing cohort 1 (A), entire meta-cohort (B), and TCGA-LIHC cohort
(C). Figure S4: Drug sensitivity exploring to treat HCC patients classified into ICRPI high-risk group.

https://www.mdpi.com/article/10.3390/cells12010202/s1
https://www.mdpi.com/article/10.3390/cells12010202/s1


Cells 2023, 12, 202 20 of 22

In total, 25 potential drugs were identified. Drugs with p < 0.05 were thought to be significant.
Table S1: Basic information of ten included HCC cohorts. Table S2: Multivariate Cox analysis for
the 22 immune cell types. Table S3: The normalized enrichment scores for the 22 immune cell types
among 1487 BLCA patients. Table S4: Details about the immune cell pairs (ICPs) and survival
analysis for ICPs by using the training cohort and testing cohort. Table S5: Model information about
the ICRPI. Table S6: ICRPI score, clinical information, and pathological features for the 1340 LIHC
patients. Table S7: The details about the LIHC patients in TCGA-LIHC cohort. Table S8: The ICPI
score in the four cohorts.
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