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Abstract: The transport of proteins between the different cellular compartments and the cell surface
is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been
described in mammalian cells, especially through multivesicular bodies and exosomes. These highly
sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act
sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final
destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-
translational modifications (PTMs) participate in the tight regulation of cargo transport in response
to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation
is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or
threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated
by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of
O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the
current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein
trafficking in mammalian cells, in classical and unconventional secretory pathways.

Keywords: O-GlcNAcylation; trafficking; secretory pathway; Golgi apparatus; endosome; exocytosis;
endocytosis; clathrin; extracellular vesicles

1. Introduction

Transport of proteins between the cellular compartments and the cell surface is gov-
erned by intricate molecular networks called the secretory pathway. Intracellular trafficking
of newly synthesized proteins occurs between the endoplasmic reticulum (ER) to the Golgi
apparatus, allowing the processing and maturation of glycoproteins, the targeting of pro-
teins to their final compartment, or the recycling of macromolecules. This is supported
by the early secretory pathway that encompasses the anterograde transport of cargoes
from the ER to the Golgi, and conversely, their retrograde transport from the Golgi to
the ER [1–3]. Then, the late secretory pathway takes over to transport mature proteins
to their final destination, i.e., the plasma membrane, the extracellular space or organelles
of the endolysosomal compartment [4,5] (Figure 1). This implies both the constitutive
and regulated secretory pathways which are important for maintaining cellular homeosta-
sis and exocytosis of specific cargoes in differentiated cells, respectively [6]. Conversely,
plasma membrane proteins are internalized by endocytosis through clathrin-dependent
or clathrin-independent mechanisms. Endocytosed cargoes are usually transported into
early endosomes to be sorted and sent to late endosomes and lysosomes for degradation,
to the trans-Golgi network (TGN), or to the recycling endosomes to be routed back to the
cell surface [4]. Finally, proteins can bypass the Golgi to reach cell surface using unconven-
tional secretion pathways. Three types of organelles are involved in the unconventional
secretion pathways that are mostly induced by stress: multivesicular bodies (MVBs) [7],
autophagosomes and lysosomes [8] (Figure 1).
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unconventional secretion pathways that are mostly induced by stress: multivesicular bod-
ies (MVBs) [7], autophagosomes and lysosomes [8] (Figure 1). 

 
Figure 1. Schematic view of the intracellular compartments and organelles involved in the main 
conventional and unconventional secretory pathways. 

The secretory pathway relies on a myriad of signaling and regulatory proteins in-
volved in the formation, budding, transport, or fusion of vesicles with the targeted mem-
brane. They act sequentially and in a well-orchestrated manner to ensure the proper de-
livery of cargoes to their final destination. Among these key molecular actors, specific pro-
teins form the vesicular coat, such as the coat protein complexes (COP) involved in 
transport between the ER and the Golgi, and the clathrin chains, the major components of 
clathrin-coated vesicles (CCVs) involved in the exocytic and the endocytic traffics. Beside 
these structuring proteins, many adaptor and accessory proteins are required, such as 
Adaptor Protein (AP) complexes that are crucial for sorting of cargo from TGN and for 
internalization of cell surface cargoes [9]. Other crucial regulatory factors are the small 
GTPase proteins, including ADP-ribosylation factor (Arf) and Rab proteins, their effectors 
and regulators (Figure 2a), which are involved in many steps from the formation of 
transport vesicle at the donor compartment to its fusion at the target membrane [9–12]. 
The final steps of vesicle docking and fusion are controlled by soluble NSF attachment 
protein receptor (SNARE) complexes. SNARE proteins that are localized in opposing 
membranes ensure the delivery of cargoes to their appropriate place by driving mem-
brane fusion [13]. 

Figure 1. Schematic view of the intracellular compartments and organelles involved in the main
conventional and unconventional secretory pathways.

The secretory pathway relies on a myriad of signaling and regulatory proteins involved
in the formation, budding, transport, or fusion of vesicles with the targeted membrane.
They act sequentially and in a well-orchestrated manner to ensure the proper delivery of
cargoes to their final destination. Among these key molecular actors, specific proteins form
the vesicular coat, such as the coat protein complexes (COP) involved in transport between
the ER and the Golgi, and the clathrin chains, the major components of clathrin-coated
vesicles (CCVs) involved in the exocytic and the endocytic traffics. Beside these structuring
proteins, many adaptor and accessory proteins are required, such as Adaptor Protein
(AP) complexes that are crucial for sorting of cargo from TGN and for internalization of
cell surface cargoes [9]. Other crucial regulatory factors are the small GTPase proteins,
including ADP-ribosylation factor (Arf) and Rab proteins, their effectors and regulators
(Figure 2a), which are involved in many steps from the formation of transport vesicle at the
donor compartment to its fusion at the target membrane [9–12]. The final steps of vesicle
docking and fusion are controlled by soluble NSF attachment protein receptor (SNARE)
complexes. SNARE proteins that are localized in opposing membranes ensure the delivery
of cargoes to their appropriate place by driving membrane fusion [13].

Post-translational modifications (PTMs) participate in the regulation of trafficking by
modifying protein–protein interaction, complex assembly and cargo transport. PTMs not
only occur on accessory and regulatory proteins, but also on protein cargoes themselves.
For example, ubiquitination acts as a signal for the internalization and sorting of plasma
membrane proteins such as tyrosine kinase receptors and nutrient transporters [14–16].
Numerous kinases such as ERK, Akt, AMPK and Src, are activated by external stimuli
and propagate signaling cascades by phosphorylating specific targets including trafficking-
related proteins [17–22]. Furthermore, kinases associated with the trafficking machinery act
directly or indirectly on key players of the secretory pathway, such as adaptor-associated
kinase 1 (AAK1), which is activated by clathrin assembly [23], and protein kinase D (PKD)
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at the TGN that regulates the post-Golgi transport of E-cadherin [24,25]. In addition to
these well-studied PTMs, there is increasing evidence that O-GlcNAcylation plays a role in
the trafficking of proteins in the secretory pathways.

Cells 2023, 12, x FOR PEER REVIEW 3 of 33 
 

 

 
Figure 2. O-GlcNAcylation of COPII and COPI trafficking machineries. O-GlcNAc modification (G) 
is indicated by a red circle on the target proteins of OGT. (a), Initiation of the assembly or disassem-
bly of COP complexes is mediated by small GTPase proteins, according to their GTP or GDP state. 
(b), Anterograde trafficking of COPII vesicles. (c), The retrograde transport of ER- and Golgi-resi-
dent proteins is mediated by COPI-coated vesicles. 

Figure 2. O-GlcNAcylation of COPII and COPI trafficking machineries. O-GlcNAc modification (G)
is indicated by a red circle on the target proteins of OGT. (a), Initiation of the assembly or disassembly
of COP complexes is mediated by small GTPase proteins, according to their GTP or GDP state.
(b), Anterograde trafficking of COPII vesicles. (c), The retrograde transport of ER- and Golgi-resident
proteins is mediated by COPI-coated vesicles.
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O-GlcNAcylation is the reversible addition of a single O-linked-β-N-acetylglucosamine
monosaccharide (O-GlcNAc) on a wide range of cytoplasmic, nuclear and mitochondrial
proteins. In contrast to ubiquitination and phosphorylation cycles that are carried out by
a myriad of ubiquitin ligases/deubiquitinases and kinases/phosphatases, respectively,
the O-GlcNAc cycle is controlled by a unique pair of enzymes which are ubiquitously
expressed: The O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT adds the Glc-
NAc moiety on the hydroxyl group of Ser/Thr (S/T) residues using the nucleotide-sugar
UDP-GlcNAc as a donor substrate, whereas OGA removes the O-GlcNAc moiety [26,27].

UDP-GlcNAc is the final product of the hexosamine biosynthetic pathway (HBP) which
depends on major metabolic pathways including carbohydrates, fatty acids and amino
acids metabolisms. OGT is therefore seen as a sentinel of nutrient availability, helping cells
to adapt their biological response to changes in the extracellular environment [28–30]. In
addition, O-GlcNAcylation can occur co-translationally on nascent proteins, as evidenced
for a set of proteins including Sp1 and Nup62 [31]. Moreover, a non-catalytic function of
OGT is required for normal cellular growth, highlighting an additional role of OGT on its
protein partners independently of its glycosyltransferase activity [32].

The full-length isoforms of OGT and OGA are abundantly expressed in the cyto-
plasm and nucleus, where they control the O-GlcNAc cycle on a wide range of pro-
teins, including signaling proteins, cytoskeletal and structural proteins, ribosomal pro-
teins and transcription factors [29,33]. O-GlcNAc modification regulates crucial protein
functions, such as cellular localization, stabilization, and bioactivity of protein targets.
O-GlcNAc PTM also modifies protein–protein interactions, hence regulating interactions in
oligomeric enzymes [34,35] and the assembly of multiprotein complexes [36–38]. Moreover,
O-GlcNAcylation can reduce the propensity of proteins to aggregate [39,40]. In addition,
a potential competition between O-GlcNAc and other PTMs, such as ubiquitination and
phosphorylation, may occur at the same or adjacent residues, adding to the complexity
of understanding the direct molecular functions of O-GlcNAc PTM [29,33,41–46]. For
example, alternative modification of c-Myc at T58 by phosphorylation or O-GlcNAcylation
differentially regulates its functions, in particular its proteasomal degradation [47]. For the
catalytic subunit of casein kinase 2, CK2α, O-GlcNAcylation at S347 inhibits phosphory-
lation at a proximal site, T344. This affects the phosphorylation-dependent stabilization
of CK2α. Furthermore, reciprocal phosphorylation and O-GlcNAc modifications at these
proximal sites significantly alter the protein substrate selectivity of CK2, without modu-
lating its catalytic efficiency with peptide substrates [48]. Conversely, phosphorylation of
OGT can regulate its glycosyltransferase activity. For example, phosphorylation at T444
of OGT by AMP-activated protein kinase (AMPK) alters its subcellular localization and
substrate selectivity [49]. More recently, EGF-induced tyrosine-phosphorylation of OGT at
Y976 was shown to promote its association with pyruvate kinase M2 (PKM2). This induces
an upregulation of PKM2 O-GlcNAcylation, resulting in destabilization of PKM2 tetramers
and hence a reduction in PKM2 activity [35].

Given the broad range of OGT’s targets, O-GlcNAc cycling plays critical role in nu-
merous cellular processes, such as signaling pathways, stress response, transcriptional and
epigenetic regulation [29,50–53]. A role for O-GlcNAc has also emerged in the regulation of
trafficking and secretion of proteins. Notably, O-GlcNAc cycling regulates the secretion of
cytokines to modulate inflammatory responses, mainly through transcriptional-dependent
mechanisms. Readers are referred to recent studies and comprehensive reviews for a more
detailed overview of this topic [54–57]. Here, we review the evidence characterizing the
role of O-GlcNAcylation on components of the molecular trafficking machinery in the early
and late secretory. We also analyze the effects of O-GlcNAc dynamics on the modulation of
trafficking and bioactivity of various cargoes. Finally, we discuss the current knowledge on
O-GlcNAcylation and unconventional secretion pathways.
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2. Overview of O-GlcNAcylated Proteins Involved in the Regulation of
Vesicle Trafficking

Thanks to methodological developments and mass spectrometry analyses, a con-
siderable number of proteins involved in trafficking have been identified as OGT sub-
strates. Based on the two O-GlcNAcome databases recently implemented, oglcnac.mcw.edu
(v1.3) [58] and oglcnac.org (O-GlcNAcAtlas_2.0) [59], we selected the O-GlcNAcylated
proteins involved in the secretion machinery and classified them according to the pathway
they are involved in: the early secretory pathway (Table 1), the clathrin-dependent or
-independent endocytosis (Table 2) and the unconventional secretory pathways (Table 3).
Original publications on the experimental identification of O-GlcNAc sites and proteins
can be found in the databases. Despite the fact that O-GlcNAc sites have been identified on
many of them, little is known about their specific function. In the following sections, we
will describe more particularly the current knowledge on the role of O-GlcNAc cycling on
the regulation of these pathways.

Table 1. O-GlcNAcylated proteins involved in the early secretory pathway. Phosphorylation sites are
in bold, based on PhosphoSitePlus®.

UniProt
Accession

UniProt
Name Short Name Name O-GlcNAcylated Residues

COPI

P53621 COPA_HUMAN COPA Coatomer subunit
alpha S489, T821

P35606 COPB2_HUMANCOPB2 Coatomer subunit
beta’ S423, S432

P48444 COPD_HUMAN COPD Coatomer subunit
delta S192, T203, T207, S223, S383, S385

Q9Y678 COPG1_HUMANCOPG1 Coatomer subunit
gamma-1

S134, T135, S186, S187, S356, S366, S369, S372, S552, S554, S697,
T705, T708, T718, T723, S725

COPII assembly

O15027 SC16A_HUMAN Sec16A Protein transport
protein Sec16A

S589, T823, S836, S838, S844, T1001, S1022, S1244, S1245, T1980,
S2159

Q9Y6Y8 S23IP_HUMAN Sec23IP
SEC23-
interacting
protein

S32, T41, S44, S49, S87, S88, S90, T103, T106, S107, S111, T118,
T123, T124, S126, S130, S134, S136, S138, T186, S190, S486

Q92734 TFG_HUMAN TFG TRK-fused gene
protein S183, S193, T330, T333, S334, T337, S369, S376, T393

COPII, inner coat

Q15436 SC23A_HUMAN Sec23A Protein transport
protein Sec23A

S97, S102, S115, S116, T137, T168, S184, S226, T241, T355, T367,
S376, T379, S380, T508, S516, S571, T573, S575, S587, S588,
S596, S600, S601, S627, S629, S639, S640, S641, S748

O95486 SC24A_HUMAN Sec24A Protein transport
protein Sec24A S156, S157, T160, S162, T165, T168, T169, S175, S176, S314, S961

O95487 SC24B_HUMAN Sec24B Protein transport
protein Sec24B

S139, S142, S147, S149, S197, T212, S226, S228, T232, S235, S238,
S245, S253, S255, S258, T259, T261, S269, T270, T279, S281,
T292, S296, S298, S310, S311, S315, T316, S319, T327, T329,
T332, T341, S342, T344, S347, S660

P53992 SC24C_HUMAN Sec24C Protein transport
protein Sec24C

S60, S65, S66, S72, T73, S96, S97, S168, S170, S181, S191, T201,
S205, T612, T615, T617, S773, T775, T776

O94855 SC24D_HUMAN Sec24D Protein transport
protein Sec24D T9, S13, T35, S418, S421, T427
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Table 1. Cont.

UniProt
Accession

UniProt
Name Short Name Name O-GlcNAcylated Residues

COPII, outer coat

P55735 SEC13_HUMAN Sec13 Protein SEC13
homolog S309, T315

O94979 SC31A_HUMAN Sec31A Protein transport
protein Sec31A

S269, S278, S451, S527, S532, T658, S666, T674, S762, T774, T903,
S904, T910, S914, S915, S917, S938, S948, S963, S964, S965,
S1041, S1047, S1048, S1050, S1051, T1073, T1187, T1190, T1195,
S1196, S1199, T1201, S1202

Q5JRA6 TGO1_HUMAN TANGO1

Transport and
Golgi
organization
protein 1 homolog

S579, S591, T864, S865, T1093, S1099

ER-Golgi SNARE

O75396 SC22B_HUMAN SEC22B Vesicle-trafficking
protein SEC22b S164

Arf-GAP

Q8N6T3 ARFG1_HUMANARFGAP1

ADP-ribosylation
factor GTPase-
activating protein
1

T141, S144

Q9EPJ9 ARFG1_MOUSE ARFGAP1

ADP-ribosylation
factor GTPase-
activating protein
1

T404

Q99K28 ARFG2_MOUSE ARFGAP2

ADP-ribosylation
factor GTPase-
activating protein
2

T391, S393, S394

Q9NP61 ARFG3_HUMANARFGAP3

ADP-ribosylation
factor GTPase-
activating protein
3

S266, S509

Q15027 ACAP1_HUMANACAP1

Arf-GAP with
coiled-coil, ANK
repeat and PH
domain-
containing
protein 1

S258, T306, S345

Q9ULH1 ASAP1_HUMANASAP1

Arf-GAP with
SH3 domain,
ANK repeat and
PH domain-
containing
protein 1

T808

Q9QWY8 ASAP1_MOUSE ASAP1

Arf-GAP with
SH3 domain,
ANK repeat and
PH domain-
containing
protein 1

T823
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Table 1. Cont.

UniProt
Accession

UniProt
Name Short Name Name O-GlcNAcylated Residues

Arf-GEF

Q92538 GBF1_HUMAN GBF1

Golgi-specific
brefeldin
A-resistance
guanine
nucleotide
exchange factor 1

S283, S1784, S1856

Table 2. O-GlcNAcylated proteins involved in clathrin-dependent or -independent endocytosis.
Phosphorylation sites are in bold, based on PhosphoSitePlus®.

UniProt Accession UniProt Name Short Name Name O-GlcNAcylated
Residues

Clathrin chains

Q00610 CLH1_HUMAN CHC1 Clathrin heavy chain 1 S97, T1180

P53675 CLH2_HUMAN CHC2 Clathrin heavy chain 2 not assigned

P09496 CLCA_HUMAN LCA Clathrin light chain A not assigned

P09497 CLCB_HUMAN LCB Clathrin light chain B S217 or S221

AP complex

Q9BXS5 AP1M1_HUMAN AP1M1 AP-1 complex subunit mu-1 S28

O95782 AP2A1_HUMAN AP2A1 AP-2 complex subunit alpha-1 T189, S611

P17427 AP2A2_MOUSE AP2A2 AP-2 complex subunit alpha-2 T126

P63010 AP2B1_HUMAN AP2B1 AP-2 complex subunit beta S671, S672

Q9DBG3 AP2B1_MOUSE AP2B1 AP-2 complex subunit beta S79, S90

O00203 AP3B1_HUMAN AP3B1 AP-3 complex subunit beta-1 S671

Endocytic accessory proteins

Q9Y6I3 EPN1_HUMAN EPN1_HUMAN Epsin-1 T517, S536

Q14677 EPN4_HUMAN EPN4,
CLINT1 Epsin-4, Clathrin interactor 1 S311, S312, T315, S407,

S409, S420, S624

Q99KN9 EPN4_MOUSE EPN4,
CLINT1 Epsin-4, Clathrin interactor 1 S90, T273, S320, S327,

S328, S630

Q13492 PICAL_HUMAN CALM,
PICALM

Phosphatidylinositol-binding
clathrin assembly protein
(Clathrin assembly lymphoid
myeloid leukemia)

S248, T352, S353, T355,
T356, S359, S362, T363,
S364, T370, S409, S443,
S452, S453, S497, T498,
T517, S565, T573, S576,
T585, T586

Q7M6Y3 PICAL_MOUSE CALM,
PICALM

Phosphatidylinositol-binding
clathrin assembly protein
(Clathrin assembly lymphoid
myeloid leukemia)

T301, T355, T356, S359,
S362, T363, S364, T370,
S453, T460, S481

Q2M2I8 AAK1L_HUMAN AAK1 AP2-associated protein kinase 1
T354, T359, T360, S363,
T441, T445, S447, T448,
T507, S519
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Table 2. Cont.

UniProt Accession UniProt Name Short Name Name O-GlcNAcylated
Residues

Q3UHJ0 AAK1_MOUSE AAK1 AP2-associated protein kinase 1

T359, T360, S406, S414,
S416, T445, T448, S572,
T578, S648, T740, T746,
T747, S749, S751, T846

O60641 AP180_HUMAN AP180 Clathrin coat assembly protein
AP180 (SNAP91)

T309, T310, T312, S341,
T626, T627, S629

Q61548 AP180_MOUSE AP180 Clathrin coat assembly protein
AP180 (SNAP91)

S303, S305, S306, T309,
T310, T312, T333, S621,
S624, T625

Dynamin GTPase

Q05193 DYN1_HUMAN Dnm1 Dynamin-1 T684

P39053 DYN1_MOUSE Dnm1 Dynamin-1 T748, T749

P50570 DYN2_HUMAN Dnm2 Dynamin-2 not assigned

Q8BZ98 DYN3_MOUSE Dnm3 Dynamin-3 T769

Clathrin-independent endocytosis

Q99961 SH3G1_HUMAN Endophilin 2 Endophilin A2 T278/T279, S286

Q62419 SH3G1_MOUSE Endophilin 2 Endophilin A2 T27, T284

Q99963 SH3G3_HUMAN Endophilin 3 Endophilin A3 T55

Q9Y371 SHLB1_HUMAN Endophilin B1 Endophilin B1 (Bax-interacting
factor 1, Bif-1) not assigned

Q9NR46 SHLB2_HUMAN Endophilin B2 Endophilin B2 not assigned

Table 3. O-GlcNAcylated proteins involved in unconventional secretory pathways. Phosphorylation
sites are in bold, based on PhosphoSitePlus®.

UniProt
Accession UniProt Name Short Name Name O-GlcNAcylated

Residues

MVBs formation and sorting of endosomal cargo proteins into MVBs

ESCRT-0

O14964 HGS_HUMAN HGS Hepatocyte growth factor-regulated tyrosine
kinase substrate S297, S299, S300, S310, S315

ESCRT-I

Q8NEZ2 VP37A_HUMAN VPS37A Vacuolar protein sorting-associated protein
37A S172, S174, T178

ESCRT-III

Q9HD42 CHM1A_HUMAN CHMP1A Charged multivesicular body protein 1a not assigned

O43633 CHM2A_HUMAN CHMP2A Charged multivesicular body protein 2a not assigned

Q9UQN3 CHM2B_HUMAN CHMP2B Charged multivesicular body protein 2b S80

Q96CF2 CHM4C_HUMAN CHMP4C Charged multivesicular body protein 4c not assigned

Q9NZZ3 CHMP5_HUMAN CHMP5 Charged multivesicular body protein 5 T18, T23

Autophagosome Maturation

Q9H8Y8 GORS2_HUMAN GRASP55 Golgi reassembly-stacking protein 2
S260, S262, S263, S269,
T274, T301, S391, S409,
T423, T424
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Table 3. Cont.

UniProt
Accession UniProt Name Short Name Name O-GlcNAcylated

Residues

Q99JX3 GORS2_MOUSE GRASP55 Golgi reassembly-stacking protein 2 T425, T426

SNARE Complex

O00161 SNP23_HUMAN SNAP23 Synaptosomal-associated protein 23 S116

O95721 SNP29_HUMAN SNAP29 Synaptosomal-associated protein 29 S2, S61, T130, S153

3. COPII and COPI Machineries

Transport across the early secretory pathway is crucial to ensure the proper PTMs
and processing of various proteins, including the N-linked and O-linked glycosylation
of glycoproteins [60]. It has been evidenced that O-glycans and N-glycans function as
Golgi export signals to the trans-Golgi to promote the constitutive exocytic trafficking
of secretory cargoes [61]. Mature and fully processed proteins exit from the TGN which
serves as a sorting hub to address them to their proper destination [62]. Thus, tight
regulation of trafficking between the ER and Golgi compartments is crucial on the one
hand, for the processing and PTMs of proteins from the secretory pathway, and on the
other hand, for the proper localization of ER- and Golgi-resident proteins [63–66]. Indeed,
defects in intra-Golgi transport of enzymes implicated in glycosylation strongly affect the
maturation, processing and trafficking of glycoconjugates, leading to severe pathologies
such as congenital disorders of glycosylation (CDG) [67]. The early steps of the canonical
protein secretion pathway are governed by COPII and COPI-mediated transports [1–3]
(Figure 2b,c), that are both sensitive to O-GlcNAc homeostasis.

3.1. COPII-Mediated Anterograde Transport

Newly synthesized proteins are exported from the ER by COPII-coated vesicles to the
Golgi apparatus. COPII vesicles are composed of two layers: Sar1 and Sec23/Sec24 proteins
coat the inner layer where Sec24 interacts with the cargo, and Sec13/Sec31 heterodimers
coat the outer layer [68,69]. Near the ER membrane, Sec16 serves as a scaffold to initiate
the assembly of COPII at the endoplasmic reticulum exit sites (ERES) [70]. Then, Sec23-
interacting protein (Sec23IP) (also known as p125A) is required to promote the displacement
of Sec16 from COPII inner layer, which links the two coat layers [71,72]. These Sec proteins
are substrates of OGT (Table 1) (Figure 2b). In addition, Sec24B/C, Sec31A and Sec23IP
have been identified as O-GlcNAcylated nascent proteins [31].

Functional assays using protein reporters demonstrated that COPII-dependent an-
terograde transport is sensitive to O-GlcNAc cycling in mammalian cells. OGT inhibition
reduced the trafficking of the secreted soluble horseradish peroxidase (ssHRP) [73] and
the temperature-sensitive vesicular stomatitis virus G glycoprotein (ts-VSVG-GFP), con-
comitantly to a decrease in COPII-labeled structures [74]. However, conflicting results on
ts-VSVG-GFP transport were obtained in cells treated with Thiamet G, a potent inhibitor
of OGA. Cox and colleagues observed a delay in the ER-to-Golgi transport of ts-VSVG in
stably transfected COS7 cells, while Cho et al. reported an acceleration of the transport
of the glycoprotein from the ER to the plasma membrane in transiently transfected HeLa
cells, concomitantly with an increase in COPII-labeled ERES. These conflicting results may
be attributed to the differences in cell type, the transfection method, and the time course
and concentration of Thiamet G used in their experiment design [73,74]. Furthermore,
perturbation in O-GlcNAc cycling affects the cytosolic and membrane-bound distribution
of the COPII subunits Sec23A and Sec31A, indicating that O-GlcNAc dynamics regulates
the recruitment of COPII subunits at the ERES [73,74].
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3.1.1. Sec23A Inner Coat Protein

Regarding Sec23A, thirty O-GlcNAc sites have been identified so far along the protein
sequence: in the Zn-finger domain (S97, S102), the trunk domain (S115, S116, T137, T168,
S184, S226, T241, T355, T367, S376, T379, S380), the β-barrel domain (T508, S516), the
helical domain (S571, T573, S575, S587, S588, S596, S600, S601), the gelsolin-like domain
(S627, S629, S639, S640, S641) and the C-terminal tail (S748) (Table 1) (Figure 3a,b) [73].
Although S184 is localized near the domain of interaction with Sec24, Cox and coworkers
showed that its mutation in alanine does not impair their binding (Figure 3b) [73]. The
O-GlcNAcylation of other residues located near the region of this interaction, such as T168
and S226, could modulate the binding between both subunits (Figure 3b). Furthermore,
O-GlcNAc modification of S596, S600 and S601 might modulate the binding of Sec23 to Sar1
due to their location close to the region of interaction of both proteins [75] (Figure 3c).
Interestingly, O-GlcNAcylation at S184 is crucial for proper trafficking of collagen in
cultured cells and in drosophila [73]. O-GlcNAcylation of Sec23A might alter its interaction
with Transport and Golgi organization protein 1 homolog (TANGO1). TANGO1 is an
integral membrane protein localized at the ERES. It interacts with Sec23A and Sec16
with its cytoplasmic and C-terminal proline-rich domain (PRD) [71]. TANGO1 mediates
export of bulky cargoes from the ER, including collagen, by promoting the recruitment
of COPII machinery to form large tubular carriers [76]. PRD motifs of TANGO1 binds to
the gelsolin-like domain of Sec23A [77], which contains five O-GlcNAc sites (Figure 3).
Further investigation is required on whether O-GlcNAcylation of these residues modulates
the interaction between Sec23A and TANGO1. It should be noted that TANGO1 has been
proposed to be O-GlcNAcylated, but the identified HexNAc-modified amino acids are
located in the ER luminal domain of the protein [76,78], suggesting that TANGO1 could be
modified by a unique GalNAc monosaccharide instead of a GlcNAc.

3.1.2. Sec24 Inner Coat Protein

At the inner coat of COPII, Sec24 interacts with the cargo. Human paralogs of Sec24
(A/B/C/D) differ in their affinity for sorting motifs onto cargo proteins [69,79]. Among
the O-GlcNAc sites mapped on Sec24C, T775 is the only conserved residue in the human
paralogs of SEC24, suggesting that O-GlcNAcylation of this residue might regulate the
whole COPII-dependent trafficking, whereas O-GlcNAc cycling on other sites might im-
pact only the anterograde transport of specific cargoes [80]. It is worthy to note that the
O-GlcNAc site T775 is adjacent to S773 and T776 which are both O-GlcNAcylated and
phosphorylated [80,81]. Interestingly, global O-GlcNAcylation of Sec24C is reduced during
mitosis whereas its phosphorylation status is increased [82]. This suggests that, depending
on stimuli, a direct competition between phosphorylation and O-GlcNAcylation might
occur on some residues of Sec24C to finely tune the anterograde transport during cell cycle
progression [83]. Changes in O-GlcNAc site occupancy induced during cell cycle have
also been reported for Sec24A (T160 and T162), Sec24B (T292, T310, T341), Sec16A (T823)
and Sec23IP (T118) [30], suggesting that O-GlcNAc cycling may be part of the regulatory
molecular mechanisms that govern COPII assembly in proliferating cells [84].

3.1.3. Sec31A Outer Coat Protein

Like Sec23A, Sec31A is extensively O-GlcNAcylated, with 34 sites identified in human
cells (Table 1). Two O-GlcNAcylated sites, S269 and S278, are located in the N-terminal
WD repeat domain of Sec31A involved in protein–protein interactions, whereas others,
such as T903 and S904, are located in disordered regions, or at the C-terminal region of
Sec31A. O-GlcNAcylation at S964 is involved in the formation of COPII vesicles at the
ERES and in the trafficking of ts-VSVG [74], whereas O-GlcNAcylation at S1202 is required
for the interaction with Sec13 [80]. Moreover, O-GlcNAcylation of Sec31A is sensitive to
calcium homeostasis in HeLa cells. Depletion of intracellular Ca2+ pool by EGTA treat-
ment increases the interaction of Sec31A with OGT and its subsequent O-GlcNAcylation,
but decreases the interaction of Sec31A with the calcium-binding protein ALG2, which
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favors the budding of COPII vesicles into the cytosolic space [85]. Conversely, increas-
ing cytosolic Ca2+ concentration induces the binding of ALG2 with Sec31A, reduces the
O-GlcNAcylation of Sec31A and the formation of COPII vesicles at the ERES [85]. Interest-
ingly, phosphorylation of Sec31 by CK2 reduces its fraction bound to ER membrane and
the interaction with Sec23 [19]. These results strongly suggest that phosphorylation and
O-GlcNAcylation of Sec31A may cooperate to regulate the formation of COPII vesicles at
the ERES.

Cells 2023, 12, x FOR PEER REVIEW 9 of 33 
 

 

helical domain (S571, T573, S575, S587, S588, S596, S600, S601), the gelsolin-like domain 
(S627, S629, S639, S640, S641) and the C-terminal tail (S748) (Table 1) (Figure 3a,b) [73]. 
Although S184 is localized near the domain of interaction with Sec24, Cox and coworkers 
showed that its mutation in alanine does not impair their binding (Figure 3b) [73]. The O-
GlcNAcylation of other residues located near the region of this interaction, such as T168 
and S226, could modulate the binding between both subunits (Figure 3b). Furthermore, 
O-GlcNAc modification of S596, S600 and S601 might modulate the binding of Sec23 to 
Sar1 due to their location close to the region of interaction of both proteins [75] (Figure 
3c). Interestingly, O-GlcNAcylation at S184 is crucial for proper trafficking of collagen in 
cultured cells and in drosophila [73]. O-GlcNAcylation of Sec23A might alter its interac-
tion with Transport and Golgi organization protein 1 homolog (TANGO1). TANGO1 is an 
integral membrane protein localized at the ERES. It interacts with Sec23A and Sec16 with 
its cytoplasmic and C-terminal proline-rich domain (PRD) [71]. TANGO1 mediates export 
of bulky cargoes from the ER, including collagen, by promoting the recruitment of COPII 
machinery to form large tubular carriers [76]. PRD motifs of TANGO1 binds to the gel-
solin-like domain of Sec23A [77], which contains five O-GlcNAc sites (Figure 3). Further 
investigation is required on whether O-GlcNAcylation of these residues modulates the 
interaction between Sec23A and TANGO1. It should be noted that TANGO1 has been pro-
posed to be O-GlcNAcylated, but the identified HexNAc-modified amino acids are lo-
cated in the ER luminal domain of the protein [76,78], suggesting that TANGO1 could be 
modified by a unique GalNAc monosaccharide instead of a GlcNAc. 

 
Figure 3. (a), Pairwise sequence alignment of yeast and human Sec23a using EMBOSS Needle 
(http://emboss.open-bio.org/). The secondary structure of human Sec23a is based on sequence ho-
mology with yeast Sec23a, according to [75], and is colored as follows: orange, Zinc-finger domain; 
cyan, trunk domain; green, β-barrel domain; light blue, helical domain; dark blue, gelsolin-like do-
main. O-GlcNAcylated residues are outlined in red. Residues interacting with Sar1 are outlined in 
black and the ones interacting with Sec24 are outlined in brown (according to [75]). (b), Ribbon 
representation of human Sec23a structure (PDB accession number, 3EGD) using Chimera software 
(version 1.5). Structural domains are colored as in (a). O-GlcNAcylated sites are shown in red, resi-
dues interacting with Sar1 are in yellow (by sequence homology, according to [75]). Human Sec24 
(from residue Glu560 to residue Ala618) is shown in light grey (PDB accession number, 3EGD). (c), 
Enlarged picture of ribbon representation of helical and gelsolin-like domains of Sec23a, colored as 
in (b). 

Figure 3. (a), Pairwise sequence alignment of yeast and human Sec23a using EMBOSS Needle
(http://emboss.open-bio.org/). The secondary structure of human Sec23a is based on sequence
homology with yeast Sec23a, according to [75], and is colored as follows: orange, Zinc-finger domain;
cyan, trunk domain; green, β-barrel domain; light blue, helical domain; dark blue, gelsolin-like
domain. O-GlcNAcylated residues are outlined in red. Residues interacting with Sar1 are outlined
in black and the ones interacting with Sec24 are outlined in brown (according to [75]). (b), Ribbon
representation of human Sec23a structure (PDB accession number, 3EGD) using Chimera software
(version 1.5). Structural domains are colored as in (a). O-GlcNAcylated sites are shown in red,
residues interacting with Sar1 are in yellow (by sequence homology, according to [75]). Human
Sec24 (from residue Glu560 to residue Ala618) is shown in light grey (PDB accession number, 3EGD).
(c), Enlarged picture of ribbon representation of helical and gelsolin-like domains of Sec23a, colored
as in (b).

Furthermore, O-GlcNAcylation of Sec31A is dependent on glucose availability in stably
expressing Sec31A HEK293T cells. High glucose levels decrease Sec31A O-GlcNAcylation
compared to a lower glucose concentration, while the steady-state level of Sec31A re-
mains unchanged [80]. Interestingly, COPII subunits are also regulated at a transcriptional
level in response to nutrient availability fluctuations [86,87]. In particular, glucose short-
age (0.1/1 mM) increases the mRNA levels of several COPII-coat Sec proteins in human
bronchial epithelial cells. In this case, COPII upregulation is needed to counterbalance the
loss of EGFR at the cell surface in this scarce nutritional condition [87]. It would be interest-
ing to determine whether changes in O-GlcNAc levels onto COPII-Sec components are at
the forefront of the molecular mechanisms to rapidly adjust COPII anterograde transport
in response to nutrient excess or shortage, before the induction of a more comprehensive
response through transcriptional mechanisms.

http://emboss.open-bio.org/
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3.2. COPI-Dependent Retrograde Transport

Formation of COPI vesicles begins with the activation of the small GTPase Arf1 which
recruits cytosolic COPI at the Golgi membrane (Figure 2c). COPI-coated vesicles are
composed of seven core subunits organized in two subcomplexes: the α/β′/ε trimeric
complex and the β/γ/δ/ζ tetrameric complex [1,88]. OGT interacts with COP-ε [89] and
COP-α, -γ, -δ proteins were shown to be O-GlcNAcylated (Table 1) (Figure 2c). In addition,
COP-α is O-GlcNAcylated in a co-translational manner [31].

Cox and collaborators showed that disruption of the secretory pathway by Brefeldin A
decreases O-GlcNAcylation of COPγ1. COPγ is O-GlcNAcylated at T552 and S554 which
are located within the interface of COPγ/COPβ. This suggests that O-GlcNAcylation of
COPγmay regulate protein–protein interactions, and subsequently, the COPI-mediated ret-
rograde trafficking [90]. In addition, direct competition with phosphorylation may occur on
COPγ1, since five sites (S356, S554, T718, T723, and S725), candidates for O-GlcNAcylation,
are also phosphorylated [21,90]. Although functional studies are needed, these studies
suggest that OGT could regulate retrograde trafficking by modulating the assembly of
COPI subcomplexes.

3.3. Arf-GAP and Arf-GEF

Arf small GTPases take part in the intracellular trafficking by recruiting coat proteins
onto budding vesicles along the secretory pathway [1,10,91]. Arf proteins cycle between
their active-GTP-bound to their inactive-GDP-bound conformations thanks to the antag-
onist activity of guanine nucleotide-exchange factors (GEFs) and Arf GTPase-activating
proteins (ArfGAPs) (Figure 2a). GEFs mediate the exchange of GDP to GTP, inducing
conformational changes that allow the insertion of the myristoylated N-terminal helix of
Arf into the membranes, hence the recruitment of adaptor proteins and effectors [9,10]. The
Golgi-associated BFA-resistant GEF1 (GBF1) functions mostly with Arf1 and mediates the
recruitment of the COPI complex to the cis-Golgi [10]. GBF1 is O-GlcNAcylated but the
role of the sugar on GBF1 function is fully unknown (Table 1). This PTM could regulate the
binding of GBF1 to Arf1, as recently demonstrated for its phosphorylation by the tyrosine
kinase Src which induces the subsequent relocalization of polypeptide GalNAc transferases
(GALNTs) from the Golgi to the ER [22].

On the other hand, hydrolysis of GTP-bound Arfs is mediated by ArfGAPs (Figure 2a).
A few O-GlcNAc sites have been identified on human ArfGAP1 and ArfGAP3 whose
activity on Arf1 is involved in COPI vesicle formation [92,93] (Table 1). Furthermore,
other ArfGAP superfamily members have been reported to be modified by OGT (Table 1),
such as ASAP1 (ArfGAP with SH3 domain, ANK repeat and pleckstrin homology (PH)
domain-containing protein 1) which has a GAP activity on Arf1 and Arf5. This is also the
case for ACAP1 (Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein
1) which regulates the activation of Arf6 [94]. Arf6 is involved in the trafficking of recycling
endosomes to the plasma membrane and plays a key role in regulating cell adhesion and
migration [91,95]. Further studies are needed to determine whether the O-GlcNAcylation
of Arf-GAPs is involved in the intracellular trafficking of endosomal compartments.

4. Clathrin-Mediated Vesicle Trafficking

Clathrin-coated vesicles (CCVs) are composed of clathrin heavy chains (CHCs) tightly
associated with clathrin light chains (LCs) that form the polyhedral coat of the vesicles,
together with adaptor protein (AP) complex and endocytic accessory proteins (EAPs).
CCVs are involved in the transport of newly biosynthesized proteins from TGN and
endosomes, and in the recycling pathway of plasma membrane proteins to the endosomal
system [23,96,97].

4.1. O-GlcNAcylation of Clathrin and Endocytic Accessory Proteins

Clathrin light chain B (LCB) is O-GlcNAcylated in its C-terminal region, at
S217/S221 [98], while Clathrin heavy chain 1 (CHC1) is O-GlcNAcylated at S97 which is
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located within a clathrin box motif (CMB) involved in AP2 binding [99] (Table 2). However,
to date, the functional relevance of O-GlcNAc PTM on clathrin chains is fully unknown.

The formation of CCVs is initiated by the recognition of the cargo by APs which then
recruit clathrin to stabilize the curvature of vesicles [23]. AP complexes are heterotetramers
consisting of two large subunits (α, δ, γ, ε or ζ), one medium subunit (µ), and one small
subunit (σ). AP complexes are crucial for the regulation of CCVs initiation by triggering
clathrin assembly and recruiting accessory proteins. AP2 is required for endocytosis at the
plasma membrane, while AP1 and AP3 are required for sorting and trafficking of cargoes at
the TGN and endosomes [23,62,99]. In addition to the O-GlcNAcylation of AP3 which was
characterized two decades ago [100], several AP1 and AP2 subunits have been identified
as O-GlcNAcylated proteins in mammalian cells (Table 2). However, the role of O-GlcNAc
on AP complexes remains to be investigated.

A variety of EAPs are recruited to coordinate the coat assembly and vesicle formation
in clathrin-mediated endocytosis (CME) [23,101]. O-GlcNAc sites have been identified on
many EAPs, such as AP2-associated protein kinase 1 (AAK1), Epsin 1, Epsin 4, clathrin
coat assembly protein AP180 (also known as SNAP91), and phosphatidylinositol-binding
clathrin assembly protein M (also known as clathrin assembly lymphoid myeloid leukemia
or CALM) (Table 2). The O-GlcNAcylation sites of human AP180 are located within its
clathrin and adapter (CLAP) domain. A decrease in O-GlcNAc modified AP180 was
observed in AD brain extracts, concomitantly to a reduction in the level of the protein [102].
The authors suggested that O-GlcNAcylation of AP180 regulates its stability but it remains
to be experimentally determined. Some of the O-GlcNAc sites of CALM are modified in a
cell cycle-dependent manner (T356, T363, S364, S453) [30], some of them were shown to
be also phosphorylated (S359, S453, T573) (Table 2). The latter suggests that a crosstalk
between both PTMs may occur on these residues to finely regulate CALM biological role.
Finally, dynamin (Dyn) is involved in the early steps of maturation of vesicles and in the
membrane fission of CCVs [23]. O-GlcNAcylation of Dyn1 and Dyn2 has been evidenced
at least in human cells, while O-GlcNAcylation of Dyn3 has been reported only in mouse
placenta (Table 2) [103]. For Dyn1, the only O-GlcNAc site identified so far is T684 which is
located in its coiled-coiled GTPase effector domain.

Palin and colleagues explored the O-GlcNAcome of placentas from diabetic mothers.
They showed that many proteins involved in CME, such as CHC, AP2A2, and Dyn2 are
abnormally O-GlcNAcylated in diabetic tissue compared to the control groups [98]. Thus,
in addition to phosphorylation-dependent signaling pathways that are crucial to adapt the
endocytosis rate to the nutrient uptake and metabolic status of the cell [20], a role for the
nutrient-sensing O-GlcNAc modification in the regulation of clathrin-dependent endocytic
traffic has emerged.

4.2. Clathrin-Coated Pits Formation and Transmembrane Receptors Endocytosis

Rahmani and colleagues have further highlighted molecular insights into the regula-
tion of CME by O-GlcNAc cycling. They showed that loss of OGT increases the recruitment
of clathrin to clathrin-coated pits (CCPs). This results in an increase in larger nascent CCPs
that have a higher propensity to abort, without affecting the fraction of persistent CCPs.
A decrease in O-GlcNAc levels induced by glucose deprivation has similar effects on CCPs.
Conversely, an increase in O-GlcNAc levels by Thiamet G treatment slightly reduces the
recruitment of clathrin to CCPs and the fraction of short time-life CCPs [104] (Figure 4).
Interestingly, O-GlcNAc cycling can differentially regulate the recruitment of EAPs that are
required for CCP initiation and stabilization [23,105]. Loss of OGT increases the recruitment
of CALM but decreases the recruitment of Epsin 1 to CCPs [104] (Figure 4). O-GlcNAc sites
have been identified on CALM and Epsin 1 (Table 2), but further experiments are needed to
determine whether their recruitment to CCPs is regulated by their own O-GlcNAc status.
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OGT silencing also promotes the colocalization of AAK1 with clathrin. The muta-
tion of the mapped and putative O-GlcNAc sites on AAK1 (T360, T448, and T441, S447,
T507, S519 and S650) enhances the colocalization of AAK1 with clathrin, suggesting that
O-GlcNAcylation of AAK1 could negatively regulate the recruitment of the kinase to CCPs
(Figure 4). Interestingly, the activity of AAK1 is required to increase CCPs initiation when
OGT is silenced, but whether the O-GlcNAcylation of AAK1 inhibits its kinase activity
remains to be confirmed [104]. Furthermore, phosphorylation of AP2µ2 by AAK1 stabi-
lizes the open conformation of AP2 and its subsequent membrane binding [106]. AP2 can
directly interact with transmembrane receptors that need to be internalized, notably via
the binding of µ2 subunit with specific motifs in the cytoplasmic domain of cargo [107]. In
that respect, modulating the recruitment of AAK1 to CCPs by O-GlcNAc cycling could
regulate the rate of receptors internalization, as shown for the EGF (EGFR) and transferrin
(TfR) receptors [104]. Upon OGT silencing in human retinal pigment epithelial cells, EGFR
is proportionally increased in the larger clathrin-labeled structures observed at the cell sur-
face, but TfR recruitment is less effective [104]. Consistently with these results, increasing
O-GlcNAc levels by glucosamine supplementation enhances the rate of TfR endocytosis in
human placenta cells [98]. Furthermore, TfR is potentially O-GlcNAcylated [98]. Thus, in
addition to the O-GlcNAc modification of CCP components, the O-GlcNAcylation of TfR
per se could also regulate the endocytosis of Tf and the uptake of iron into cells. However,
it is likely that the impact of O-GlcNAc cycling on CME of TfR is cell-type specific since Tf
internalization is not sensitive to the perturbation of O-GlcNAc homeostasis induced by
knockdown of OGT or OGA in HeLa cells [108].

5. Effect of O-GlcNAc Cycling on Cargo Trafficking
5.1. E-cadherin Trafficking

Cell–cell adhesion is tightly controlled by the amount of the major player of ad-
herens junctions, E-cadherin, present at the cell surface [109]. O-GlcNAcylation negatively
regulates E-cadherin levels by a transcriptional mechanism. Indeed, the transcriptional
repressor Snail 1 is stabilized by O-GlcNAcylation, thus decreasing E-cadherin expression
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and promoting cell migration [110]. Besides that, O-GlcNAcylation of E-cadherin has been
evidenced by biochemical approaches, although no O-GlcNAc sites have been identified so
far [111–113]. However, O-GlcNAc residues have been characterized on other members of
the cadherin superfamily, such as cadherin-2 (N-cadherin, at S691), cadherin 13 (T-cadherin,
at S600 and S607), and E-cadherin’s cytoplasmic partners including β-catenin [114,115].

A blockade of the transport of E-cadherin to the plasma membrane is observed in
thapsigargin-induced apoptotic cells, concomitantly to the detection of O-glycosylated
forms of E-cadherin [111,112]. This is associated with a lower binding of E-cadherin to
p120-catenin (p120), resulting in loss of adhesion [111]. Alternatively, independently of
its catalytic activity, OGT inhibits the formation of the E-cadherin/p120 complex through
its direct binding to p120 [116]. Changes in the formation of E-cadherin/p120 complex by
OGT might also arise from O-GlcNAcylation of the p120-interacting protein Scribble on
which three O-GlcNAc sites have been identified (T475, S764, and S1140). Indeed, Scribble
is required not only for stabilizing E-cadherin/p120 interaction at the cell cortex, but also
for targeting internalized E-cadherin to the lysosomes [117]. It would be interesting to
determine whether O-GlcNAc cycling on Scribble impacts the endolysosomal trafficking
of E-cadherin.

5.2. GLUT4 Trafficking

Regulation of the amount of glucose transporters (GLUTs) at the cell surface is essential
to control glucose uptake, especially in insulin-responsive organs. Among GLUTs, GLUT4
is mainly expressed in adipocytes and muscle cells where the regulation of its subcellular
localization is important to maintain glucose homeostasis. In the basal state, GLUT4 is
retained in TGN, endosomes and in insulin-responsive vesicles, called GLUT4 storage
vesicles. Upon insulin stimulation, GLUT4 is released from the storage compartments and
transported to the plasma membrane to allow glucose uptake in responsive cells [118].
The docking and fusion of GLUT4 vesicles at the plasma membrane are mediated by the
t-SNARE proteins syntaxin 4 (STX4), synaptosomal-associated protein 23 (SNAP23), and
the v-SNARE protein vesicle-associated membrane protein 2 (VAMP2). Assembly of the
SNARE complex is regulated by the interaction of STX4 with Munc18c (also referred to
as syntaxin-binding protein 3). In basal conditions, Munc18c keeps STX4 in an inactive
state. Upon insulin stimulation, Munc18c dissociates from STX4 that switches in an open
conformation, allowing SNARE complex assembly and exocytosis of GLUT4 [119] (Figure 5).
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pendent phosphorylation of GluA2 at S880 promotes AMPAR clathrin-mediated internal-
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tion of murine GluA1 at S831 stimulates the delivery of AMPAR to synapses [126,127]. 
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Enhanced O-GlcNAcylation of GLUT4 and GLUT4-associated proteins was first evi-
denced by biochemical approaches in mice overexpressing GLUT1 in muscle which fail to
stimulate GLUT4-mediated glucose transport in response to insulin [120]. O-GlcNAcylation
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of GLUT4 has not been confirmed so far, but other studies showed thatO-GlcNAc levels
modulate the amount of GLUT4 available at the cell surface by targeting proteins in-
volved in the trafficking of GLUT4-vesicles. First, increasing HBP flux by either glutamine:
fructose-6-phosphate amidotransferase (GFAT) overexpression or glucosamine supple-
mentation significantly decreases the amount of GLUT4 in the plasma membrane of rat
adipocytes [121]. Later, an underlying O-GlcNAc-dependent molecular mechanism was
described, providing a link between chronic elevation of HBP flux, O-GlcNAc levels, and
insulin resistance in type II diabetes [122]. O-GlcNAcylation of Munc18c induced by glu-
cosamine supplementation impairs the insulin-stimulated association of STX4 with VAMP2
and the subsequent translocation of GLUT4 at plasma membrane of adipocytes [122]
(Figure 5). SNAP23 is also O-GlcNAcylated, but whether it is glycosylated or not in insulin-
responsive cells remains to be determined [123,124]. Additionally, tether-containing UBX
domain for GLUT4/ASPC1 (TUG) is a tethering protein that sequesters GLUT4-containing
vesicles in the cytoplasm in basal conditions. O-GlcNAc sites have been mapped on TUG
on S187, S246 and S410, but the functional significance of TUG O-GlcNAcylation is fully
unknown [78,125] (Figure 5).

5.3. Trafficking of GluA2-Containing AMPARs

Alpha-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA)-selective gluta-mate
receptor (AMPAR) is a transmembrane receptor for glutamate which regulates synaptic
transmission in neurons. AMPAR is a heterotetrameric complex composed by GluA1,
GluA2, GluA3 and GluA4. Phosphorylation events at the cytoplasmic C-tail of the subunits
modulate AMPAR subcellular localization and function. For example, PKC-dependent
phosphorylation of GluA2 at S880 promotes AMPAR clathrin-mediated internalization
and depresses synaptic transmission, whereas CaMKII-dependent phosphorylation of
murine GluA1 at S831 stimulates the delivery of AMPAR to synapses [126,127]. Besides
phosphorylation, a few studies reported that O-GlcNAc cycling regulates the subcellular
distribution of AMPAR subunits and modulates hippocampal synaptic transmission. Inhi-
bition of OGT by alloxan increases the presence of GluA2 in the plasma membrane fraction
from rat hippocampus and enhances AMPAR responses during long-term potentiation.
These observations suggest that decreasing O-GlcNAc levels stimulates the translocation
of GluA2 from the cytosol towards the plasma membrane [128]. Part of the regulatory
mechanisms may be due to the O-GlcNAc modification of GluA2 through its interaction
with OGT [129]. Moreover, elevation of O-GlcNAc levels in thiamet G-treated rats disrupts
normal hippocampal-dependent learning [129] and decreases the neuronal excitability in
rat hippocampus with similar characteristics of GluA2-lacking AMPARs [130]. These works
suggest that, as with other PTMs, O-GlcNAcylation of GluA2 or associated proteins triggers
the trafficking of GluA2-containing AMPARs, and thus modulate the synaptic plasticity
through regulation of the cell surface expression of AMPAR [127]. Further investigations
are needed to decipher the underlying molecular mechanisms driven by O-GlcNAcylation
of GluA2.

5.4. Amyloid-β Peptide Trafficking

Abnormal deposits of β-amyloid peptides (Aβ) in neurons is one of the major features
of Alzheimer’s disease (AD). Aβ are derived from the amyloidogenic proteolytic pathway
of the amyloid precursor protein (APP), a ubiquitous protein that is highly expressed in
the neuronal system where it plays a key role in synaptic functions and axogenesis [9].
APP is an integral membrane protein that undergoes substantial PTMs, including N-linked
and mucin-type O-glycosylations, during its traffic through the secretory pathway. The
subcellular localization and trafficking of APP regulate the production of different APP-
derived peptides which have either neuroprotective or neurotoxic properties, depending on
their proteolytic processing pathway [131]. At the cell surface, APP is cleaved by α-secretase
and γ-secretase to generate APP fragments through the so-called non-amyloidogenic
pathway. A part of APP is internalized through CME and transported in early endosomes.
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Then, APP traffics in late endosomes and lysosomes for degradation, goes back to TGN, or is
recycled into the plasma membrane. During the intracellular transport of APP, Aβ peptides
are generated in the amyloidogenic pathway by the sequential cleavage of APP by β-
secretase (also known as BACE1, β-site APP-cleaving enzyme 1) and γ-secretase [131,132].

Enhancing O-GlcNAc levels by the inhibition of OGA reduces Aβ levels and deposit
of amyloid plaques in AD mice models [133,134]. T651 and T652 residues have been iden-
tified as O-GlcNAc sites in mouse synapses (amino acids conserved in human APP) [41],
suggesting that OGT could regulate APP proteolytic processing. Based on site-directed
mutagenesis, O-GlcNAcylation of APP at T576 has been proposed to regulate endocytosis
and trafficking of APP, therefore decreasing the production of Aβ peptides [135,136]. How-
ever, mass spectrometry analyses unambiguously evidenced that T576, T651 and T652 are
modified with short O-GalNAc mucin-type glycans rather than with O-GlcNAc monosac-
charide [137–139]. Downregulation of Aβ levels in high O-GlcNAc conditions could rather
result from the O-GlcNAcylation of the nicrastin accessory subunit of γ-secretase at S708
that suppresses its proteolytic activity towards APP [134].

5.5. Trafficking of Hyaluronan Synthases

Hyaluronic acid (HA) is a linear polysaccharide belonging to the glycosaminoglycan
(GAG) family, composed of repeat units of D-glucuronic acid (GlcUA) and GlcNAc. HA
is a major constituent of the extracellular matrix where it plays critical functions in cell
proliferation and migration. In contrast to other GAGs which are synthesized in the
Golgi apparatus, HA is mainly produced at the plasma membrane by three membrane-
bound HA synthases (HAS1-3) which use cytoplasmic UDP-GlcUA and UDP-GlcNAc as
donor substrates [140,141]. Thus, localization of HAS at the plasma membrane is one of
the mechanisms that regulates HA biosynthesis and content in normal and pathological
conditions. HAS are transported to the cell surface by the canonical secretory pathway. At
plasma membrane, HAS are endocytosed and recycled back to the cell surface, or degraded
in lysosomes [140,141].

HAS2 and HAS3 are both O-GlcNAcylated [142,143]. O-GlcNAcylation of HAS2 at
S221 does not interfere with HAS2 traffic, but increases its stability, possibly by compet-
ing with phosphorylation at the same residue [142–144]. Additionally, O-GlcNAcylation
regulates HAS2 expression at a transcriptional level through the O-GlcNAcylation of the
transcription factors Sp1 and YY1 by altering their binding to HAS2 promoter [145]. In
contrast to HAS2, O-GlcNAcylation regulates the trafficking of HAS3. Elevated O-GlcNAc
levels enhance the retention of HAS3 at plasma membrane by reducing its endocytosis
rate and slow down the degradation of HAS3 in lysosomes, thus favoring HA synthesis.
Conversely, reducing O-GlcNAcylation results in decreased plasma membrane half-life
of HAS3, due to the accumulation of the enzyme in enlarged endosomes [143]. In ad-
dition, as discussed later in the Section 7, OGT activity and O-GlcNAc levels correlate
with the release of HAS3 in extracellular vesicles [143]. Mapping of HAS3 O-GlcNAc sites
will help in examining whether the O-GlcNAc-dependent regulation of HAS3 traffic is
related to its direct modification, or indirectly by the O-GlcNAcylation of actors of the
endolysosomal pathway.

5.6. Megalin-Mediated Albumin Endocytosis

Reabsorption of albumin in kidney is important to maintain the homeostasis of the
circulating plasma albumin. This process occurs by receptor-mediated endocytosis through
the binding of albumin to multiligand transmembrane receptors, such as megalin which is
present at CCPs of proximal tubule epithelial cells [146]. The amount of megalin in plasma
membrane is positively regulated by PI3K/Akt signaling pathway whose activation is
required for fast recycling and cell surface expression of megalin [147]. The trafficking and
recycling of megalin are controlled by clathrin and AP1 in MDCK cells [148].

O-GlcNAcylation regulates albumin endocytosis. In renal tubular epithelial cells,
increasing O-GlcNAc levels with high glucose concentration leads to O-GlcNAcylation of
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Akt, resulting in the inhibition of the kinase. This induces a decrease in the expression of
cell surface megalin and, consequently, a decrease in albumin endocytosis [149]. Further
works are pending to determine whether O-GlcNAcylation of clathrin and AP1 subunits
participate in the regulation of megalin-mediated albumin endocytosis in proximal tubule
cells. Furthermore, a chronic increase in O-GlcNAcylation in diabetes might favor the
O-GlcNAc-driven impaired albumin reabsorption by renal tubular cells, thus contributing
to albuminuria in diabetic nephropathy. However, clathrin-independent mechanisms such
as caveolae-mediated endocytosis, may also contribute to albuminuria [150,151].

5.7. O-GlcNAcylation of HGS Controls the Endosomal Sorting of Internalized
Membrane Receptors

Degradation of membrane proteins requires the assembly of the endosomal sorting
complex required for transport (ESCRT), a highly conserved multi-subunit machinery.
ESCRT complexes sequentially assemble on endosomes to generate MVBs and deliver
ubiquitinated membrane proteins to lysosomes for degradation. The ESCRT-0 complex is
involved in the initial recognition of ubiquitinated membrane proteins in early endosomes.
ESCRT-0 is a heterodimer of hepatocyte growth factor regulated tyrosine kinase substrate
(HGS/HRS) and signal transducing adaptor molecule (STAM). HGS is also critical for
the recruitment of ESCRT-I which is responsible for sorting of ubiquitinated proteins
into MVBs [152,153]. Five O-GlcNAc sites have been mapped on HGS, all located in a
disordered region (Table 3). Wu and colleagues showed that HGS is dynamically modified
by O-GlcNAc in response to nutrient availability (glucose and glutamine), exogenous
stimuli (serum and EGF), or oxidative stress [154]. To date, O-GlcNAcylation of HGS has
been shown to regulate the lysosomal degradation of EGFR and programmed-death ligand
1 (PD-L1) [154,155] (Figure 6).
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Figure 6. O-GlcNAcylation of the ESCRT-0 subunit HGS inhibits the intraluminal sorting of ubiquiti-
nated membrane proteins into MVBs and reduces their lysosomal degradation. Ubiquitination of cell
surface EGFR and PD-L1 are internalized in endosomes where they are recognized by the ubiquitin-
interacting motifs of HGS, which triggers their sorting into MVBs and degradation into lysosomes.
O-GlcNAcylation of HGS (at S297/S299/S300) leads to its ubiquitination and prevents the formation
of the ESCRT-0 complex HGS-STAM at the endosomal membrane. This leads to accumulation of
EGFR and PD-L1 in the endosomal compartments and to their sustained expression in cells.

5.7.1. Endosomal Sorting of EGFR

Once activated by their ligand, EGFR are internalized into CCVs and transported
to early endosomes where they are sorted to be either recycled back to the plasma mem-
brane if they are non-ubiquitinated, or targeted for lysosomal degradation if ubiquiti-
nated [156]. Ubiquitinated EGFR are included into intraluminal vesicles (ILVs) encapsu-
lated in MVBs. Among the O-GlcNAcylated residues of HGS (Table 3), the triple mutation
S297A/S299A/S300A (3SA) abolishes its O-GlcNAcylation and accelerates EGFR degra-
dation [154]. O-GlcNAcylation of HGS leads to its ubiquitination, preventing the binding
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of HGS to STAM, and consequently to the formation of ESCRT-0. O-GlcNAcylation of
HGS at S297, S299 and S300 also inhibits HGS-EGFR interaction. This leads to the reten-
tion of EGFR in early endosomes and inhibits the transport of the receptor to lysosomes,
thereby prolonging EGFR-mediated signaling [154] (Figure 6). In agreement with these
results, the delivery of a wild-type HGS—cell-penetrating peptide (CPP-G1) into cancer
cells competes with the cellular HGS for its O-GlcNAcylation and reduces the expression
of EGFR. In contrast, incubation of cells with the 3SA-HGS-CPP (CPP-SA) has no effect
neither on O-GlcNAcylation of HGS, nor on EGFR expression [155]. Wu and colleagues
further demonstrated that O-GlcNAcylation of HGS supports EGF-mediated liver cancer
cell proliferation in vitro and tumorigenesis in vivo by maintaining high expression levels
of EGFR that transduces key proliferative signals. Indeed, the growth of xenograft tumors
generated from stably expressing 3SA-HGS cancer cells is significantly reduced compared
to WT-HGS stably expressing cells. In addition, reduced HGS O-GlcNAcylation alleviates
the chemoresistance of liver carcinoma cells in vitro [154].

5.7.2. Endosomal Sorting of PD-L1

PD-L1 is an immune checkpoint molecule expressed at the plasma membrane of vari-
ous cell types. Expression of PD-L1 at the cell surface of cancer cells plays a critical role in
immune evasion by suppressing T cell activation through the interaction of PD-L1 with
the receptor PD1 on T cells. The development of monoclonal antibodies (mAb) blocking
PD-L1 or PD1 is a promising therapeutic strategy to restore an antitumoral immune re-
sponse [157]. A large proportion of surface-expressed PD-L1 is continuously internalized
in early endosomes through CME. Then, PD-L1 is sorted in recycling endosomes to recycle
back to the cell surface, or in MVBs to be degraded in lysosomes [157]. Zhu and colleagues
recently demonstrated that an increase in O-GlcNAcylation of HGS impairs its interaction
with internalized PD-L1. This induces a sustained PD-L1 expression in cancer cells due to a
decrease in its lysosomal degradation (Figure 6). Conversely, OGT inhibition or mutation of
the 3 major HGS O-GlcNAc sites (S297A/S299A/S300A) downregulates PD-L1 expression
through the sorting of intracellular PD-L1 towards the lysosomes [155].

Interestingly, the delivery of CPP-G1 into cancer cells reduces the O-GlcNAcylation of
endogenous HGS and the expression of PD-L1 in a dose-dependent manner. In contrast,
ectopic expression of CPP-SA has no effect. In addition, CPP-G1, but not CPP-SA, signifi-
cantly enhances the cytotoxic activity of CD8+ T cells in vitro, indicating that promoting
PD-L1 degradation by reducing the O-GlcNAcylation of HGS may be an efficient way to
stimulate an antitumoral immune response, as the authors demonstrated it in vivo. OGT
inhibition synergizes with PD-L1 mAb treatment to significantly increase the infiltration
of CD8+ T cells in tumors and reduce tumor growth, compared to PD-L1 mAb treatment
alone [155].

To conclude, these two recent studies provide new molecular insights into the role of
O-GlcNAc modification of HGS, a key component of ESCRT-0 complex, on intraluminal
sorting and lysosomal-mediated degradation of membrane receptors. They also highlight a
novel role of OGT in tumorigenesis and anti-tumoral therapies through the regulation of cell
surface turn-over of critical receptors involved in tumoral growth and immune surveillance.
Furthermore, it is likely that future works will link the nutrient-driven O-GlcNAc PTM to
the other steps of the MVB pathway since subunits of ESCRT-I (Vps37a) and ESCRT-III
(Chmp1a, Chmp2a/2b, Chmp4c and Chmp5) complexes are O-GlcNAcylated (Table 3).

6. Clathrin-Independent Endocytosis
6.1. Regulation of the Secretion of Galectin 3

Some cargo proteins are internalized by clathrin-independent processes that are still
poorly understood compared to CME [4,158]. During the last few years, the recognition
of cell surface glycoproteins by lectins of the galectin family has been shown to regulate
clathrin-independent endocytosis (CIE) [158,159]. More particularly, interaction of extra-
cellular galectin 3 (Gal-3) with galactoside-containing glycans leads to an increase in β1
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integrin and CMHI internalization, but to a decrease in CD59 internalization due to the
galectin lattice-dependent cell-surface sequestration [160,161]. A recent study showed
that OGT activity indirectly interferes with CIE of specific cargo proteins by targeting
Gal-3 [108]. Disruption of O-GlcNAc cycling by knockdown of OGT or OGA decreases the
secretion of Gal-3, resulting in an increase in CD59 endocytosis. Moreover, secreted Gal-3
is preferentially non-O-GlcNAcylated compared with intracellular Gal-3; OGT inhibition
increases its secretion. This suggests that low O-GlcNAc level is required for the secretory
process of the galectin. Lowering O-GlcNAcylation by glucose privation also increases
Gal-3 secretion, compared to normal and high glucose culture media in which secreted
Gal-3 is drastically reduced [108]. Surprisingly, mutation of four predicted O-GlcNAc sites
located in the N-terminal domain of Gal-3 (T84A, S91A, S92A and T104A) downregulates
its secretion [108]. Since Gal-3 forms pentameric oligomers through self-association of
its N-terminal domain [162], further experiments are needed to determine whether these
mutations induce changes in the oligomerization and secretion rate of Gal-3, independently
of its O-GlcNAc status. Taken together, these results show that nutrient-sensing O-GlcNAc
modification modulates CIE of specific cargo proteins by regulating Gal 3 secretion [108].

6.2. Fast Endophilin-Mediated Endocytosis

OGT may regulate other cellular processes involved in CIE, such as fast endophilin-
mediated endocytosis (FEME). This process allows rapid internalization of cargo proteins
including tyrosine kinase receptors after stimulation by their ligand [158,163]. Endophilins
are Bin/Amphiphysin/Rvs (BAR)-domain-containing proteins involved in the formation
and scission of endocytic vesicles. Endophilins A are involved in plasma membrane
internalization, both in CME and CIE processes [163–165]. Endophilins A2 and A3 are
modified by OGT (Table 2). Furthermore, endophilins B1 and B2 which are implicated in
membrane dynamics of intracellular organelles are also O-GlcNAcylated [166] (Table 2).
The role of O-GlcNAc PTM on their endocytic functions is fully unexplored.

6.3. Caveolae-Mediated Endocytosis

The caveolae-mediated endocytosis is mediated by little caves called caveolae, re-
sulting from the invagination of plasma membrane. The formation of caveolae is initi-
ated by the binding of ligands to cargo receptors, allowing the recruitment of caveolin
andcavin proteins that cover the nascent vesicles, which leads to their maturation and
detachment [167]. Caveolin-1 (Cav-1) is a major structural protein of caveolae vesicles but
caveolae-independent functions have also been described in the cytoplasm [168]. Proteomic
approaches identified Cav-1 as potentially O-GlcNAcylated, but so far O-GlcNAc sites have
not been mapped. However, two studies pointed out a link between Cav-1 and O-GlcNAc
dynamics in cancer cells. Elevated O-GlcNAcylation in small cell lung cancer cells increases
Cav-1 stability, probably by limiting its ubiquitination and its subsequent proteasomal
degradation [169]. Conversely, Cav-1 increases OGT and O-GlcNAc levels in hepatic cancer
cells through a post-transcriptional mechanism. Cav-1 alleviates the transcription of miR24
which targets the 3′ untranslated regions of the mRNA of OGT by reducing the expression
of the transcription factor RUNX 2 [170]. Cav-1-dependent OGT upregulation promotes
the metastatic potential of hepatocellular carcinoma. Further exploration is needed to
investigate whether the link between O-GlcNAcylation and Cav-1 is dependent or not of
the caveolae-mediated endocytosis process.

7. Unconventional Secretory Pathways

Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous
structures encompassing microvesicles (MVs) and exosomes. MVs are generated by the
outward budding and fission of plasma membrane, while exosomes are ILVs formed by
inward budding of the late endosomal membrane during their maturation into MVBs.
The fusion of MVBs with the plasma membrane allows the secretion of exosomes in the
extracellular space [7,171]. EVs allow producing cells to communicate with neighboring
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cells or distant cells by secreting various types of molecules including nucleic acids, proteins
and lipids [172]. As discussed below, OGT expression and O-GlcNAc cycling are important
for EV protein sorting and unconventional secretion.

7.1. Placental OGT Expression and Maternal Circulating EVs

EV circulation increases during pregnancy. By supporting communication between
the mother and the fetus, the production of EVs by the placenta is involved in key physi-
ological processes for fetal development such as angiogenesis, immune modulation and
glucose uptake [173]. Maternal stress and gestational diabetes mellitus are associated
with changes in concentration, size and content of circulating EVs that may contribute to
glucose intolerance and pathophysiological consequences [174,175]. Using genetic target-
ing of placental OGT, Zierden and colleagues recently showed that high placental OGT
expression correlates with an increased concentration of maternal circulating EVs and an
improvement of maternal glucose tolerance [175] (Figure 7). Since a significant reduction
in maternal glucose sensitivity is known to occur as pregnancy progresses, these results
suggest that OGT-dependent increased EV secretion may contribute to improve glucose
homeostasis during gestation. A comparative study of EV content between high OGT
score and low OGT score-derived placental EVs will help in understanding the underlying
molecular mechanisms.
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Figure 7. O-GlcNAcylation regulates unconventional secretory pathways by regulating molecules
sorting and the rate of EV secretion. (i), High placental OGT expression correlates with increases
maternal EVs secretion and improvement of glucose tolerance. (ii), Phosphorylation and O-GlcNAc
modification of CryAB may regulate the encapsulation of the chaperone into MVs in an opposite
manner. Secreted CryAB is mainly non-phosphorylated while O-GlcNAcylation at T170 promotes its
secretion. (iii), The interaction between phosphorylated Cav1 and hnRNPA2B1 induced by oxidative
stress promotes the O-GlcNAc modification of hnRNPA2B1. O-GlcNAcylation at S73 and S90 of
hnRNPA2B1 is linked to the binding and release of specific miRNAs that activate macrophages in
response to cellular stress. (iv), EVs from metastatic cells have higher levels of O-GlcNAcylated encap-
sulated proteins compared to those contained in EVs from non-metastatic cancer cells. (v), Decreased
O-GlcNAcylation of SNAP23 facilitates the formation of the SNARE complex SNAP23/STX4/VAMP8
and the secretion of EVs in response to cisplatin treatment.

7.2. O-GlcNAc Cycling Regulates the Encapsulation of Molecules into Extracellular Vesicles

Molecules encapsulated into EVs help cancer cells to adapt to the tumoral microen-
vironment [172,176]. Differences in O-GlcNAc-modified proteins encapsulated in EVs
derived from colorectal cancer cells and metastatic cells have been reported: EVs derived
from metastatic cells contain more O-GlcNAcylated proteins than EVs from non-metastatic
colon cancer cells, in particular the O-GlcNAcylated forms of the transitional endoplasmic
reticulum ATPase and RuvB-like helicase [177] (Figure 7). The biological significance of
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this finding is still unexplored, but O-GlcNAcylation might regulate EV protein sorting in a
direct or indirect manner.

As discussed in the Section 5.5, high O-GlcNAc conditions favor HA biosynthesis
by regulating the trafficking of HAS3 and promoting its retention at the cell surface [143].
Conversely, high HAS expression and activity increase the secretion of hyaluronan into
EVs that are mostly shed from plasma membrane protrusions of various cell types [178].
Elevated O-GlcNAcylation increases the release of HAS3-positive EVs whereas reduced
O-GlcNAcylation decreases this process [143]. Whether the O-GlcNAcylation of HAS3 is
directly involved in the rate of its encapsulation remains to be elucidated. Actually, this
was shown for the chaperone α-crystallin B (CryAB), whose secretion in EVs is directly
linked to its O-GlcNAc status [179]. The mutation of the major O-GlcNAc site T170A of
CryAB significantly decreases its encapsulation into exosomes [179]. Moreover, CryAB
secreted into exosomes is mainly non-phosphorylated, suggesting that a crosstalk between
O-GlcNAc and phosphorylation occurs for the encapsulation of cytosolic proteins into EVs,
possibly by modifying their aggregation property [39,40,179] (Figure 7).

O-GlcNAc modification of specific proteins can also regulate the secretion of other
types of molecules into EVs in response to the extracellular environment. For instance,
O-GlcNAcylated heterogeneous nuclear ribonucleoprotein (hnRNP) A2B1 is engulfed with
selected miRNAs into EVs [180]. Lee and coworkers demonstrated that oxidative stress
induces the phosphorylation of Cav-1, that increases the formation of hnRNPA2B1/Cav-1
cytosolic complex. This interaction promotes the O-GlcNAcylation of hnRNPA2B1 and
the sorting of miRNA-bound hnRNPA2B1/cav1 complexes into MVs. Mutation of two
O-GlcNAc sites at S73 or S90 located in the RNA-binding region of hnRNPA2B1, de-
creases the binding of hnRNPA2B1 with miR-17 and miR-93 miRNAs specifically. Thus,
O-GlcNAcylation of hnRNPA2B1 is essential for the encapsulation of miR-17 and miR-93
into MVs (Figure 7). Moreover, variation of the hnRNPA2B1-bound miRNA repertoire in
MVs derived from lung epithelial cells regulates the activation of macrophages in response
to cellular stress [180].

To conclude, these studies highlighted a role for O-GlcNAc cycling in the encapsulation
of specific molecules into EVs and in the rate of secretion of EVs. The uptake of these
O-GlcNAc-driven specific signals by surrounding recipient cells leads to the modulation of
biological responses within the tissue, both in physiological and pathological conditions.

7.3. O-GlcNAc Cycling Regulates the Formation of SNARE Complexes Required for
Exosome Secretion

Secretion of exosomes in the extracellular space requires the formation of SNARE
complexes through interactions between v-SNARES present on the vesicles and t-SNARES
found at the plasma membrane, such as SNAP23 [7,181]. To date, only one O-GlcNAc site at
S116 has been identified on SNAP23 [124]. This residue and two other predicted O-GlcNAc
sites, T123 and T132 (YinOYang server), are located in the linker domain that encompasses
the palmitoylated cysteines required for membrane anchorage of SNAP23 [181]. Downregu-
lation of OGT expression decreases SNAP23 O-GlcNAcylation and promotes its interaction
with STX4 and the v SNARE VAMP8 in ovarian cancer cells. Increased assembly of the
SNARE complex raises the secretion of exosomes, which facilitates drug efflux in cisplatin-
treated cells [123]. A reduced O-GlcNAcylation of SNAP23 facilitates the secretion of EVs,
while its phosphorylation at S95 is critical to promote exosome exocytosis [182]. Further
investigations are required to examine whether a competition between phosphorylation
and O-GlcNAcylation occurs onto the linker domain of SNAP23 to regulate the formation of
SNARE complexes and hence exocytosis. Furthermore, elevated OGT and O-GlcNAc levels
in cancer cells might contribute to chemoresistance through downregulation of exosome
secretion [123].
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7.4. O-GlcNAcylation of SNAP29 Regulates the Formation of Complexes Involved in Autophagy

A similar function of O-GlcNAcylation has been described on SNAP29 which is re-
quired for membrane fusion between autophagosomes and lysosomes. Elevated
O-GlcNAcylation of SNAP29 disrupts the formation of the STX17/SNAP29/VAMP8
SNARE complex and induces autophagy blockage by impairing the fusion between au-
tophagosomal and lysosomal compartments. In contrast, O-GlcNAcylation-defective
SNAP29 mutant (mutation of all four O-GlcNAc-modified residues at S2, S61, T130 and
S153) facilitates the formation of the SNARE complex and promotes autophagic flux.
Similarly, reducing HBP flux and depletion or inhibition of OGT restore this catabolic
process [183–185]. The involvement of O-GlcNAcylation of SNAP29 in the regulation of au-
tophagy in response to glucose availability was confirmed in a type I diabetes rat model. In
that case, high levels of O-GlcNAcylation of SNAP29 impair the SNARE complex formation
and induces the blockade of autophagic flux that worsened myocardial injury in diabetic
rats. In contrast, decreasing O-GlcNAc levels restores autophagy and significantly rescues
the abnormal myocardial structures [184]. Furthermore, in cells treated with arsenic, an
environmental pollutant, abnormal O-GlcNAcylation of SNAP29 also impairs autophagy,
that might participate in the arsenic-induced dysfunction in affected populations [185].

7.5. GRASP55 O-GlcNAcylation Regulates the Autophagic Flux under Nutritional
Stress Conditions

Golgi reassembly stacking protein 55 (GRASP55/GORASP2) plays a key role in Golgi
organization. In concert with GRASP65/GORASP1, GRASP55 forms ordered membrane-
associated protein arrays between two opposing membranes via its N-terminal domain [186].
GRASP55 has been proposed to slow down exocytosis to ensure more complete protein
glycosylation in the Golgi apparatus and proper sorting at the TGN [187]. GRASP55 is
also involved in Golgi-bypassing unconventional secretion of a few cargoes such as cystic
fibrosis transmembrane conductance regulator (CFTR) and TGFβ1, especially in cellu-
lar stress conditions [8,186]. Ten O-GlcNAc sites have been identified in the C-terminal
serine/proline-rich (SPR) domain of human GRASP55 (Table 3) (Figure 8). This domain
contains also many phosphorylation sites (Figure 8), among which phosphorylation at S441
regulates the oligomerization and ER relocalization of GRASP55 [186,188].
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domain. O-GlcNAcylated sites are indicated in red and phosphorylation sites in blue. Mutation of
the amino acids indicated in purple in the rat sequence decreases the O-GlcNAcylation of GRASP55.
* denotes phosphorylation and O-GlcNAc modification on the same residue.

Glucose or amino acid deprivation reduces the O-GlcNAcylation of GRASP55 ob-
served in normal nutritional conditions [189]. Lowering GRASP55 O-GlcNAcylation en-
hances its interaction with the autophagosome marker LC3 and induces the binding of
GRASP55 to the lysosomal protein LAMP2, both interactions requiring the N-terminal
GRASP domain of GRASP55. Bridging LC3 and LAMP2 via GRASP55 facilitates the
autophagosome–lysosome fusion, allowing cells to recycle cellular components to counter-
act nutrient starvation [189]. This study further showed that mutation at S380 increases
rat GRASP55 O-GlcNAcylation level while mutations at S389, S390, T403, T404 and T413
(which is also a phosphorylation site) reduce its O-GlcNAcylation. Simultaneous mutation
of all five sites suppresses GRASP55 O-GlcNAcylation and enhances the autophagosome
maturation into autolysosomes compared to wild-type GRASP55. This indicates that these
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residues are functionally important for the O-GlcNAc-dependent role of GRASP55 in the
nutrient-sensing autophagy process [189]. These five residues are conserved in the human
GRASP55 sequence (corresponding to S385, S386, T399, T400 and T411), but none of them
have been characterized as being O-GlcNAcylated until now (Figure 8). Instead, T423 and
T424 residues, which are O-GlcNAcylated in human cells, are conserved in rodent species
(T425 and T426 in mouse and rat GRASP55) (Table 3) (Figure 8). A crosstalk between
O-GlcNAcylation and phosphorylation might occur at T423 (T425 in rodents) since both
PTMs have been characterized on this amino acid, although their functional effect has
not been studied so far (Figure 8). Moreover, it remains to be investigated whether the
O-GlcNAcylation of GRASP55 might regulate the unconventional secretion pathway or the
glycosylation process of specific cargoes, under normal and stress conditions [186,187].

8. Conclusions

OGT is a nutrient-sensing enzyme and a major player in stress response. Consistent
with these functions, and as reviewed here, the homeostasis of O-GlcNAcylation modulates
intracellular transport in a close relationship with cellular metabolism, particularly with
respect to glucose uptake and HBP flux, and stress conditions. Several studies have also
highlighted a role of OGT in intercellular communication, in particular by modulating
the secretion of encapsulated molecules into MVs. We have just begun to understand
the role and physiological relevance of O-GlcNAcylation on a few effectors involved in
vesicular trafficking. By targeting key proteins involved in the secretory machineries,
this PTM can facilitate or prevent the assembly of multiprotein complexes, as evidenced
for COP and SNARE complexes. It can also regulate the proteasomal degradation of
key actors, as demonstrated for the O-GlcNAcylation of ESCRT-0 subunit HGS, which
modulates the turn-over of internalized PD-L1 and EGFR. In the latter case, it is noteworthy
that, in turn, EGF-induced phosphorylation of OGT is able to change OGT’s substrate
specificity or activity [35]. This reinforces the idea that there may be a complex interplay of
PTMs, including O-GlcNAc, to adapt protein trafficking and cellular behaviour in response
to growth signals and nutritional conditions [20,21]. However, the current knowledge
on the tight regulation of endocytosis and exocytosis mechanisms by O-GlcNAcylation
remains largely incomplete. It appears that the effect of O-GlcNAc cycling impairment
on intracellular trafficking is dependent on the cargo, the target protein of OGT, and the
cellular model. It is important to note that increasing or decreasing O-GlcNAcylation by
manipulating O-GlcNAc enzymes or HBP flux may also indirectly modulate the transport
and cell surface expression of cargoes. For example, disruption of the O-GlcNAc cycle can
interfere with their transcription, as shown for E-cadherin, HAS, and GLUT1 [110,145,190],
or with crosstalk with signaling pathways that are also sensitive to metabolic cues, such as
AMPK and Akt/mTor pathways [49,50].

The two O-GlcNAc databases offer a curated, comprehensive and updated resource of
O-GlcNAcylated proteins and O-GlcNAc sites, not only in mammals but also in all studied
species [58,59]. These databases are a wealth of information for further functional studies on
the role of O-GlcNAc cycling and O-GlcNAc site-specific functions in intracellular transport.
Combined with genetic and cellular approaches to modulate O-GlcNAc levels, in-depth
analysis of trafficking taking advantage of retention using selective hook (RUSH) strategy
or super-resolution microscopy methods, will help to further understand how O-GlcNAc
coordinates the molecular mechanisms and the spatiotemporal dynamics underlying the
accurate regulation of the secretory pathways.

Finally, the activity of OGT is influenced by its subcellular localization. Changes
in O-GlcNAcome have been reported mainly according to the relative cytoplasmic and
nuclear distribution of OGT and OGA, in response to various signals [38,191]. Recruitment
of OGT to the plasma membrane was also reported in response to insulin [192,193]. To
our knowledge, very little is known about the potential recruitment of the O-GlcNAc
processing enzymes at crucial vesicular transport hubs within cells, such as the ERES, TGN,
endosomes, or MVBs. Using elegant labeling strategies, considerable efforts have been
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made in recent years to gain information on the OGT and OGA interactomes, eventually
combined with the identification of the O-GlcNAc proteome [191,194–196]. It should also
be noted that the oglcnac.org database contains the OGT-Protein Interaction Network
(OGT-PIN) [197], emphasizing that OGT interactors are not necessarily OGT substrate
proteins [32]. It is very likely that a very small fraction of OGT transiently interacts with
the actors of intracellular transport. Therefore, in-depth subcellular fractionation, e.g.,
endosomal, Golgi or microtubule-enriched fractions, in combination with such state-of-the-
art labeling strategies, is likely to provide clues to define the architecture, dynamics, and
topology of the OGT-interacting subcellular proteomes involved in trafficking regulation.
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